生物信息学(五篇范例)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物信息学(五篇范例)
第一篇:生物信息学
生物信息学(Bioinformatics)是在生命科学的研究中,以计算机为工具对生物信息进行储存、检索和分析的科学。
它是当今生命科学和自然科学的重大前沿领域之一,同时也将是21世纪自然科学的核心领域之一。
其研究重点主要体现在基因组学(Genomics)和蛋白质组学(Proteomics)两方面,具体说就是从核酸和蛋白质序列出发,分析序列中表达的结构功能的生物信息。
具体而言,生物信息学作为一门新的学科领域,它是把基因组DNA序列信息分析作为源头,在获得蛋白质编码区的信息后进行蛋白质空间结构模拟和预测,然后依据特定蛋白质的功能进行必要的药物设计。
基因组信息学,蛋白质空间结构模拟以及药物设计构成了生物信息学的3个重要组成部分。
从生物信息学研究的具体内容上看,生物信息学应包括这3个主要部分:(1)新算法和统计学方法研究;(2)各类数据的分析和解释;(3)研制有效利用和管理数据新工具。
生物信息学是一门利用计算机技术研究生物系统之规律的学科。
目前的生物信息学基本上只是分子生物学与信息技术(尤其是因特网技术)的结合体。
生物信息学的研究材料和结果就是各种各样的生物学数据,其研究工具是计算机,研究方法包括对生物学数据的搜索(收集和筛选)、处理(编辑、整理、管理和显示)及利用(计算、模拟)。
1990年代以来,伴随着各种基因组测序计划的展开和分子结构测定技术的突破和Internet的普及,数以百计的生物学数据库如雨后春笋般迅速出现和成长。
对生物信息学工作者提出了严峻的挑战:数以亿计的ACGT序列中包涵着什么信息?基因组中的这些信息怎样控制有机体的发育?基因组本身又是怎样进化的?
生物信息学的另一个挑战是从蛋白质的氨基酸序列预测蛋白质结构。
这个难题已困扰理论生物学家达半个多世纪,如今找到问题答案要求正变得日益迫切。
诺贝尔奖获得者W.Gilbert在1991年曾经指出:“传统生物学解决问题的方式是实验的。
现在,基于全部基因都将知
晓,并以电子可操作的方式驻留在数据库中,新的生物学研究模式的出发点应是理论的。
一个科学家将从理论推测出发,然后再回到实验中去,追踪或验证这些理论假设”。
生物信息学的主要研究方向:基因组学系统生物学-比较基因组学,1989年在美国举办生物化学系统论与生物数学的计算机模型国际会议,生物信息学发展到了计算生物学、计算系统生物学的时代。
姑且不去引用生物信息学冗长的定义,以通俗的语言阐述其核心应用即是:随着包括人类基因组计划在内的生物基因组测序工程的里程碑式的进展,由此产生的包括生物体生老病死的生物数据以前所未有的速度递增,目前已达到每14个月翻一番的速度。
同时随着互联网的普及,数以百计的生物学数据库如雨后春笋般迅速出现和成长。
然而这些仅仅是原始生物信息的获取,是生物信息学产业发展的初组阶段,这一阶段的生物信息学企业大都以出售生物数据库为生。
以人类基因组测序而闻名的塞莱拉公司即是这一阶段的成功代表。
原始的生物信息资源挖掘出来后,生命科学工作者面临着严峻的挑战:数以亿计的ACGT序列中包涵着什么信息?基因组中的这些信息怎样控制有机体的发育?基因组本身又是怎样进化的?生物信息学产业的高级阶段体现于此,人类从此进入了以生物信息学为中心的后基因组时代。
结合生物信息学的新药创新工程即是这一阶段的典型应用。
第二篇:生物信息学
生物信息学是上世纪90年代初人类基因组计划(HGP)依赖,随着基因组学、蛋白组学等新兴学科的建立,逐渐发展起来的生物学、数学和计算机信息科学的一门交叉应用学科。
目前生物信息学的研究领域主要包括基于生物序列数据的整理和注释、生物信息挖掘工具开发及利用这些工具揭示生物学基础理论知识等领域。
生物信息学作为新型交叉应用学科,可以依托本校已有的计算机科学、信息学、生物学和数学等学科优势,充分展现投入少、见效快、起点高的特色,推动学校学科建设和本科教学水平。
本实验指导书中的8个实验均设计为综合性开发实验,面向生物信息学院全体本科学生和研究生,以及全校对生物信息学感兴趣的其
他专业学生开放。
生物信息学实验室将提供系统的保障,包括采用mail服务器和linux帐号管理等进行实验过程管理和支持。
限选《生物信息学及实验》的生物技术专业本科生至少选择其中5个实验,并不少于8个学时,即为课程要求的0.5个学分。
其他选修者按照课时和学校相关规定计算创新学分。
实验一熟悉生物信息学网站及其数据的生物学意义
实验目的:
培养学生利用互联网资源获取生物信息学研究前沿和相关数据的能力,熟悉生物信息学相关的一些重要国内外网站,及其核酸序列、蛋白质序列及代谢途径等功能相关数据库,学会下载生物相关的信息数据,了解不同的数据文件格式和其中重要的生物学意义。
实验原理:
利用互联网资源检索相关的国内外生物信息学相关网站,如:NCBI、SANGER、TIGR、KEGG、SWISSPORT、Ensemble、中科院北京基因组研究所、北大生物信息
学中心等,下载其中相关的数据,如fasta、genbank格式的核算和蛋白质序列、pathway等数据,理解其重要的生物学意义。
实验内容:
1.浏览和搜索至少10个国外和至少5个国内生物信息学相关网站,并描
述网站特征;
2.下载各网站的代表性数据各10条(组)以上,并说明其生物学意义;
3.讨论各网站适合做何种生物信息学研究的平台,并设计一个研究设想。
实验报告:
1.各网站网址及特征描述;
2.代表性数据的下载和生物学意义的描述;
3.讨论:这些生物信息学相关网站的信息资源,可以被那些生物信息学
研究所利用。
参考书目:
《生物信息学概论》罗静初等译,北京大学出版社,2002;《生物信息学手册》郝柏林等著,上海科技出版社,2004;
《生物信息学实验指导》胡松年等著,浙江大学出版社,2003。
实验二利用BLAST进行序列比对
实验目的:
了解BLAST及其子程序的原理和基本参数,熟练地应用网络平台和Linux计算平台进行本地BLAST序列比对,熟悉BLAST结果的格式和内容并能描述其主要意义,同时比较网上平台和本地平台的优缺点。
实验原理:
利用实验一下载的核算和蛋白质序列,提交到NCBI或者其他拥有BLAST运算平台的网页上,观察其基本参数设定库文件类型,并得到计算结果;同时在本地服务器上学会用formatdb格式化库文件,并输入BLAST命令进行计算,获得结果文件。
实验内容:
1.向网上BLAST服务器提交序列,得到匹配结果;
2.本地使用BLAST,格式化库文件,输入命令行得到匹配结果;
3.对结果文件进行简要描述,阐述生物学意义。
实验报告:
1.阐述BLAST原理和比对步骤;
2.不同类型BLAST的结果及其说明;
3.讨论:不同平台运行BLAST的需求比较。
参考书目:
《生物信息学概论》罗静初等译,北京大学出版社,2002;
《生物信息学实验指导》胡松年等著,浙江大学出版社,2003。
实验三利用ClustalX(W)进行
多序列联配
实验目的:
掌握用Clustal X(W)工具及其基本参数,对具有一定同源性和相
似性的核酸与蛋白质序列进行联配和聚类分析,由此对这些物种的亲缘关系进行判断,并且对这些序列在分子进化过程中的保守性做出估计。
实验原理:
首先对于输入的每一条序列,两两之间进行联配,总共进行n*(n-1)/2次联配,这一步通过一种快速的近似算法实现,其得分用来计算指导树,系统树图能用于指导后面进行的多序列联配的过程。
系统树图是通过UPGMA方法计算的。
在系统树图绘制完以后,输入的所有序列按照得分高低被分成n-1个组,然后再对组与组之间进行联配,这一步用Myers和Miller算法实现。
实验内容:
1.明确软件所支持的输入文件格式,搜集整理出合适的数据;
2.在Windows环境运行Clustal X,在Linux环境运行Clustal W;
3.实验结果及分析,用TREEV32或Njplotwin95生成NJ聚类图。
实验报告:
1.整理好的符合Clustal的序列数据;
2.提交数据网页记录和各步骤记录;
3.提供聚类图和多序列联配图,并说明意义。
参考书目:
《生物信息学概论》罗静初等译,北京大学出版社,2002;
《生物信息学实验指导》胡松年等著,浙江大学出版社,2003。
实验四 ESTS分析
实验目的:
熟悉使用一系列生物信息学分析工具对测序得到ESTs序列数据进行聚类处理,由此对获得表达基因的丰度等相关信息,并且对这些表达基因进行功能的初步诠释,为后续实验通过设计RACE引物获得全长基因,以及进一步的功能注
释和代谢途径分析做好准备。
实验原理:
首先用crossmatch程序去除ESTs原始序列中的载体成分和引物
成分,然后用phrap生成congtig和singlet,用blast程序进一步将有同源性的contig和singlet进行功能聚类,最后通过blast对聚类获得的cluster进行功能注释。
在实验过程中将用到一些本实验室写好的perl程序用于连接各数据库和工具软件。
实验内容:
1.运行CodonCode Aligner程序,并用它建立工程文件,导入例子文件
夹里面的数据;练习对序列的各种查看方式。
2.使用CodonCode Aligner程序里的Clip Ends, Trim Vector, Assemble
等功能,完成序列的剪切、去杂质、组装工作。
实验报告:
1.实验各步骤记录和中间结果文件;
2.举例简要说明结果文件中数据的生物学意义。
参考书目:
《生物信息学概论》罗静初等译,北京大学出版社,2002;
《基因表达序列标签(EST)数据分析手册》胡松年等著,浙江大学出版社,2005。
实验五利用Primer Premier5.0设计
RACE引物
实验目的:
熟悉PCR引物设计工具Primer Premier5.0的一些基本功能,能够根据实验需要选择相应的引物设计方法设计PCR引物。
实验原理:
PCR实验是当代分子生物学的基本实验之一,由于目标序列和实验目的的不同,相应设计引物的要求也不一样。
本实验延续ESTs分析结果,对于其中需要获得全长的基因进行RACE引物的设计,及5’和3’RACE引物,配合接头序列设计单向引物,并模拟练习通过连接获得全长的基因CDS序列。
最后设计已知全长基因序列的PCR扩增引物。
实验内容:
1.从网站下载并安装Primer Premier5.0;
2.从 GenBank 中任意获取一个 DNA 序列,设计出该序列的合适引物;实验报告:
1.实验各步骤使用的数据、运算平台、结果文件记录;
2.比较不同引物设计平台和不同PCR实验的差别;
参考书目:
《生物信息学概论》罗静初等译,北京大学出版社,2002;《生物信息学实验指导》胡松年等著,浙江大学出版社,2003。
实验八 perl程序的安装、编写、调试实验目的:
培养学生能在windows和Linux两种平台安装perl解释器、编写perl程序以及debug和运行的能力,熟悉perl语言基本语法,学会熟练编写和运用perl程序进行基础生物信息学研究。
实验原理:
Perl语言是一门通用的脚本语言,具有强大的字符串处理功能,是生物信息学研究的强大帮手,学会了perl语言,就能方便地处理生物信息学研究中遇到的各种字符串文本,促进研究的快速进行。
实验内容:
1.下载perl程序在Windows和Linux下的安装包并进行安装;
2.编写简单的perl程序,并学会debug;
3.编写具有简单功能的碱基处理perl程序。
实验报告:
1.perl解释器安装方法;
2.perl解释器debug方法;
3.讨论:perl语言在生物信息学研究中所起到的积极作用。
参考书目:
《PERL 编程24学时教程》(美)皮尔斯著王建华等译,机械工业出版社,2000;
《生物信息学手册》郝柏林等著,上海科技出版社,2004;《生物信息学实验指导》胡松年等著,浙江大学出版社,2003
第三篇:生物信息学
浅谈对生物信息学的认识
摘要生物信息学是采用计算机技术和信息论方法研究蛋白质及核酸序列等各种生物信息的采集、储存、传递、检索、分析和解读的科学, 是现代生命科学与信息科学、计算机科学、数学、统计学、物理学和化学等学科相互渗透而形成的交叉学科。
经过一学期的学习,我学到了很多很有用的知识,给我印象最深的有序列比对、蛋白质结构分析、核酸序列分析、数据库及数据库检索等内容。
关键字:生物信息学认识基因组学数据库
时光飞逝,一学期马上就要结束了,本学期的专业选修课也即将结束。
在上课之前,我一直认为生物信息学就是在讲关于人类及动物的基因,以及基因之间的差别。
但是,刚上了几节课,我就发现生物信息学根本不是我想象的那么简单,就这样我怀着对自己的怀疑和对这门课的好奇走进了这门课。
生物信息学是一门新兴的、正在迅速发展的交叉学科,美国国家基因组研究中心认为, 生物信息学是一个代表生物学、数学和计算机的综合力量的新兴学(Bioinformatics is an emerging scientific discipline representing the combined power of biology,mathematics, and computers)。
现代生物信息学是采用计算机技术和信息论方法研究蛋白质及核酸序列等各种生物信息的采集、储存、传递、检索、分析和解读的科学, 是现代生命科学与信息科学、计算机科学、数学、统计学、物理学和化学等学科相互渗透而形成的交叉学科。
在这短短的一学期课中,在老师的带领下,我们学到了很多关
于生物信息学的知识,其中给我印象最深的有序列比对、蛋白质结
构分析、核酸序列分析、数据库及数据库检索等内容。
比如,序列比对,它的基本问题是比较两个或两个以上符号序列的相似性或不相似性。
从生物学角度来看,它包含很多意义;如从相互重叠的序列片段中重构DNA的完整序列等。
老师主要给我们
介
绍了blast比对。
再如,对蛋白质的分析。
比如我们实验测定了一条蛋白质序列
或者从DNA序列翻译得来一条蛋白质序列,我们要借助生物信息学
方法来对它进行基本性质及结构分析。
其中基本性质包括它的分子
量、氨基酸数目、排列顺序、等电点分析等。
结构分析包括跨膜螺
旋分析等。
要运用的工具是protparam tool 和TMHMM。
对于这两
个工具我都进行了实际操作练习,我觉得这对我们以后的理论学习
和实验分析都非常重要。
现代生物信息学的主要研究领域及其进展
1、基因组学和蛋白组学研究
基因组和蛋白组研究是生物信息学的主要内容.同样, 生物信息
学是基因组和蛋白组研究中必不可少的工具。
基因组学(Genomics)和蛋白组学(Proteomics)的实质就是分析和解读核酸和蛋白质序列中所表达的结构与功能的生物信息.这方面的研究已成为生物信息学的主要研究内容之一.一种生物的全部遗传构成被称为该种生物的基因组.有关基因组的研究称为基因组学.其中, 序列基因组学(Sequence genomics)主要研究测序和核苷酸序列;结构基因组学(Structural genomics)着重于遗传图谱、物理图谱和测序等方面的研究;功能基因组学
(Functional genomics)则研究以转录图为基础的基因组表达图谱;比较基因组学(Comparative ge2nomics)的研究内容包括对不同进化阶段基因组的比较和不同种群和群体基因组的比较。
蛋白组和蛋白组学的概念是随基因组和基因组学的出现而出现的.蛋白组(proteme)的概念是由于基因表达水平并不能代表细胞中活性蛋
白质的数量, 基因组序列并不能描述活性蛋白质所必需的翻译后修饰和反映蛋白质种类和含量的动态变化过程而提出的.在一定条件下某一基因组蛋白质表达的数量类型称为蛋白组, 代表这一有机体全部蛋白质组成及其作用方式.有关蛋白组的研究称为蛋白组学.其中, 蛋白组的研究技术与方法、双向凝胶电泳图谱以及对不同条件下蛋白组变化的比较分析是蛋白组学的主要研究内容。
生物信息学在基因组和蛋白组研究中所起的作用主要有:(1)基因组信息结构的计算分析.即对基因组数据进行大规模并行计算并预测各种新基因和功能位点, 研究大量非编码区序列的信息结构和可能的生物学意义。
(2)模式生物全基因组信息结构的比较研究.即
对已完成全基因组测序的各种模式生物的基因组信息结构进行比较分析, 包括同源序列的搜索比较和指导基因克隆.(3)功能基因组的相关信息分析, 包括对基因表达图谱及其相关算法和软件的研究, 与功能基因组信息相关的核酸、蛋白质的空间结构的预测模拟以及蛋白质的功能预测。
2、生物信息数据库
复杂的生物和生物界和日新月异的生命科学研究产出的大量的生物学信息,对这些信息的储存、检索、比较分析必须借助于计算机数据库技术, 包括各类生物学信息数据库的建立与维护、数据的添加与注释、更新与查询、数据库资料的网络化等研究内容。
现有的数据库有:核酸序列数据库(GenBank、EMBL、DDBJ)、基因组数据库、基因图谱数据库、蛋白质序列数据库(SWTSS-
PROT、PIR)和蛋白质结构数据库(Interpro)等。
随着生命科学的不断发展,数据库种类不断增加、结构日益复杂、使用也越来越方便。
生物信息学作为一门新兴学科已经成为生命科学研究中必不可少的研究手段本文对数据库与数据库搜索序列比对蛋白质结构预测药物设计基因芯片技术几个方面做了介绍较为系统地阐述了生物信息学在这些领域的应用当然它所涉及的内容与方法远远不只上面提到的那些新基因和的发现与鉴定非编码区信息结构分析遗传密码的起源和生物
进化完整基因组的比较
研究大规模基因功能表达谱的分析等都是生物信息学研究的对象相信不久的将来生物信息学会在生命
科学领域扮演越来越重要的角色。
参考文献:
1、现代生物信息学及其主要研究领域萧浪涛(湖南农业大学理学院, 湖南长沙 410128)
2、生物信息学技术进展郭志云张怀渝梁龙军事医学科学院生物工程研究所,北京100071;四川农业大学生命科学及理学院,雅安625014
3、利用生物信息学技术研究蛋白功能的几种方法王剑利杨章民综述王一理审阅西安交通大学医学院免疫病理学研究室(西安, 710061)
第四篇:生物信息学研究进展
我国生物信息学发展现状及展望
摘要:简要叙述了我国生物信息学发展现状,以及我国当前生物信息学发展中的一些问题,并对生物信息学的发展前景进行概述。
关键词:生物信息学现状展望
1生物信息学简介
生物信息学(Bioinformatics)是20世纪末才诞生的一门新学科,是信息技术在生物数据处理上的应用,该学科涉及分子生物学技术、计算机信息技术、数据库技术等多门学科,是生物学、数学、物理学、计算机科学等众多学科交叉的新兴学科。
它主要利用计算机信息处理工具和软件对分子生物学实验数据进行加工和分析,从中发现有价值的信息,它是生命科学的前沿学科,其数据信息主要来自于人类及各种模式生物基因组的分子数据,包括DNA、RNA和蛋白质片断的序列数据,也有蛋白质的结构数据和经过计算机处理的分子数据。
2国内生物信息学发展状况
我国生物信息学研究近年来发展较快,相继成立了北京大学生物信息学中心、华大基因组信息学研究中心、中国科学院上海生命科学院生物信息中心,部分高校已经或准备开设生物信息学专业。
2002年国家
自然科学基金委在生物化学、生物物理学与生物医学工程学学科设立了生物信息学项目,并列入生命科学部优先资助的研究项目。
国家863计划特别设立了生物信息技术主题,从国家需求的层面上推动我国生物信息技术的大力发展。
但是由于起步较晚及诸多原因,我国的生物信息学发展水平远远落后于国外。
在PubMed收录的以关键词“Bioinformatics”检索到的历年发表的文章数,可以看出大量的研究文献出现在21世纪以后。
其中我国共有138篇占全部5548篇的2.5%,而美国则发表2160篇占全部的39%之多(统计数据截至2004年2月15日)。
我国学者在生物信息学领域发表的有高影响力的论文只有不到美国学者发表数量的6%,差距相当大。
在生物信息学领域,一些著名院士和教授在各自领域取得了一定成绩,显露出蓬勃发展的势头,有的在国际上还占有一席之地。
如北京大学的罗静初和顾孝诚教授在生物信息学网站建设方面、中科院生物物理所的陈润生研究员在EST序列拼接方面以及在基因组演化方面、天津大学的张春霆院士在DNA序列的几何学分析方面、中科院理论物理所郝柏林院士、清华大学的李衍达院士和孙之荣教授、内蒙古大学的罗辽复教授、上海的丁达夫教授等等。
北京大学于1997年3月成立了生物信息学中心,这个中心在1996年欧洲EMBNet扩大到欧洲之外时已正式成为中国结点(每个国家只有一个结点),目前已有60多种生物数据库的经常更新的镜像点。
近年来,它已组织过多次国内和地区的培训班及会议,有着较广泛的国际联系。
另外,中国科学院、中国医学科学院、军事医学科学院、清华大学、天津大学、浙江大学、复旦大学、哈尔滨工业大学、东南大学、中山大学、内蒙古大学等等都先后开展了生物信息学研究和教学工作,许多大学都设立了生物信息学专业,并同时招收本科、硕士、博士研究生。
各种学术会议及论坛的召开,对于促进我国在这一前沿领域的发展起着越来越重要的作用。
中国科学院于1997年9月和12月召开了第80、87次香山会议,首次邀请有关专家就“DNA芯片的现状与未来”和“生物信息学”进行探讨。
1999年3月,清华大学生物信息学
研究所、国家人类基因组北方研究中心和北京生物技术和新医药产业促进中心共同举办了“北方生物信息学学术研讨会”。
1999年4月,北京大学举办了“国际生物信息学讲习班”。
2001年4月,由北京市科技委员会、中国人类基因组北方研究中心、中国人类基因组南方研究中心、北京华大基因研究中心、军事医学科学院、北京生物工程学会生物信息学专业委
员会、北京生物技术和新医药产业促进中心等共同举办的首届“中国生物信息学大会”在北京召开。
2003年11月28-29日,中国科协“生物信息学与进化计算”第81次青年科学家论坛在北京中国科技会堂成功召开。
这次论坛是中国科协举办的一次多学科交叉的盛会,旨在促进国内青年科学家在这一全新领域内的相互交流,促进该学科的成长与发展。
这是国内首次以“生物信息学”为主题的一次多学科交叉的青年科学家论坛。
与会者一致认为系统生物学、非编码区功能研究、基因调控和相互作用网络等是当前生物信息学研究的热点问题。
尽管如此,真正开展生物信息学具体研究和服务的机构或公司仍相对较少,仅有的几家科研机构主要开展生物信息学理论研究,声称提供生物信息学服务的公司所提供的服务也仅局限于简单的计算机辅助分子生物学实验设计,而且服务体系并不完善;国内互联网上已有的几家生物信息学网站,大部分偏于所有生物(医)学领域的新闻报道,而生物信息学专业技术服务的含量太少,这就与国外有了较大差距。
3我国生物信息学发展中存在的问题
一方面,在生物信息学研究领域,一般的教授、教师能力有限,有些甚至对生物信息学本身知其一不知其二,缺乏正规的训练,很少了解目前的研究重点、热点和今后方向。
由于所申请的经费支持力度和持续时间原因,大多数学者只能选择易于获得研究成果的科研项目,一般缺乏新颖性和创造性。
这可能与我们国家处于快速发展阶段的“短平快”思路和环境有关。
另一方面,可能是教育体制上的原因,科研项目的分配问题、行政管理中存在的问题,传统教育不鼓励学生进行批判性、创新性地学习和思考的问题,也可能是症结所在。
另外,。