九年级数学一元二次方程组的专项培优 易错 难题练习题(含答案)及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学一元二次方程组的专项培优 易错 难题练习题(含答案)及答案
一、一元二次方程
1.已知关于x 的方程x 2﹣(2k +1)x +k 2+1=0.
(1)若方程有两个不相等的实数根,求k 的取值范围;
(2)若方程的两根恰好是一个矩形两邻边的长,且k =2,求该矩形的对角线L 的长.
【答案】(1)k >
34;(2 【解析】
【分析】
(1)根据关于x 的方程x 2-(2k +1)x +k 2+1=0有两个不相等的实数根,得出△>0,再解不等式即可;
(2)当k=2时,原方程x 2-5x+5=0,设方程的两根是m 、n ,则矩形两邻边的长是m 、n ,
利用根与系数的关系得出m+n=5,mn=5,利用完全平方公式进行变形即可求得答案.
【详解】
(1)∵方程x 2-(2k +1)x +k 2+1=0有两个不相等的实数根,
∴Δ=[-(2k +1)]2-4×1×(k 2+1)=4k -3>0,
∴k >34
; (2)当k =2时,原方程为x 2-5x +5=0,
设方程的两个根为m ,n ,
∴m +n =5,mn =5,

=
=. 【点睛】
本题考查了根的判别式、根与系数的关系、矩形的性质等,一元二次方程根的情况与判别式△的关系:(1)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.
2.某中心城市有一楼盘,开发商准备以每平方米7000元价格出售,由于国家出台了有关调控房地产的政策,开发商经过两次下调销售价格后,决定以每平方米5670元的价格销售.
(1)求平均每次下调的百分率;
(2)房产销售经理向开发商建议:先公布下调5%,再下调15%,这样更有吸引力,请问房产销售经理的方案对购房者是否更优惠?为什么?
【答案】(1)平均每次下调的百分率为10%.(2)房产销售经理的方案对购房者更优惠.
【解析】
【分析】
(1)根据利用一元二次方程解决增长率问题的要求,设出未知数,然后列方程求解即可;(2)分别求出两种方式的增长率,然后比较即可.
【详解】
(1)设平均每次下调x%,则
7000(1﹣x)2=5670,解得:x1=10%,x2=190%(不合题意,舍去);
答:平均每次下调的百分率为10%.
(2)(1﹣5%)×(1﹣15%)=95%×85%=80.75%,(1﹣x)2=(1﹣10%)2=81%.
∵80.75%<81%,∴房产销售经理的方案对购房者更优惠.
3.计算题
(1)先化简,再求值:
2
1
x
x-
÷(1+
2
1
1
x-
),其中x=2017.
(2)已知方程x2﹣2x+m﹣3=0有两个相等的实数根,求m的值.
【答案】(1)2018;(2)m=4
【解析】
分析:(1)根据分式的运算法则和运算顺序,先算括号里面的,再算除法,注意因式分解的作用;
(2)根据一元二次方程的根的判别式求解即可.
详解:(1)
2
1
x
x-
÷(1+
2
1
1
x-

=
22
2
11 11 x x
x x
-+
÷
--
=
()() 2
2
11 1
x x
x
x x
+-

-
=x+1,
当x=2017时,原式=2017+1=2018
(2)解:∵方程x2﹣2x+m﹣3=0有两个相等的实数根,
∴△=(﹣2)2﹣4×1×(m﹣3)=0,
解得,m=4
点睛:此题主要考查了分式的混合运算和一元二次方程的根的判别式,关键是熟记分式方程的运算顺序和法则,注意通分约分的作用.
4.由图看出,用水量在m吨之内,水费按每吨1.7元收取,超过m吨,需要加收.
5.某社区决定把一块长50m,宽30m的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形) ,空白区域为活动区,且四周的4个出口宽度相同,当绿化区较长边x为何值时,活动区的面积达到2
1344m?
【答案】当13x m =时,活动区的面积达到21344m
【解析】
【分析】
根据“活动区的面积=矩形空地面积﹣阴影区域面积”列出方程,可解答.
【详解】
解:设绿化区宽为y ,则由题意得
502302x y -=-.
即10y x =-
列方程: 50304(10)1344x x ⨯--=
解得13x =- (舍),213x =.
∴当13x m =时,活动区的面积达到21344m
【点睛】
本题是一元二次方程的应用题,确定等量关系是关键,本题计算量大,要细心.
6.关于x 的方程()2204
k kx k x +++=有两个不相等的实数根. ()1求实数k 的取值范围;
()2是否存在实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根?若存在,求出k 的值;若不存在,说明理由.
【答案】(1)1k >-且0k ≠;(2)不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根.
【解析】
【分析】
()1由于方程有两个不相等的实数根,所以它的判别式0V >,由此可以得到关于k 的不等式,解不等式即可求出k 的取值范围.
()2首先利用根与系数的关系,求出两根之和与两根之积,再由方程的两个实数根之和等于两实数根之积的算术平方根,可以得出关于k 的等式,解出k 值,然后判断k 值是否在()1中的取值范围内.
【详解】
解:()1依题意得2(2)404k k k =+-⋅
>V , 1k ∴>-,
又0k Q ≠,
k ∴的取值范围是1k >-且0k ≠;
()2解:不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根,
理由是:设方程()2204
k kx k x +++=的两根分别为1x ,2x , 由根与系数的关系有:1212214k x x k x x +⎧+=-⎪⎪⎨⎪=⎪⎩
, 又因为方程的两个实数根之和等于两实数根之积的算术平方根,
212
k k +∴-=, 43
k ∴=-, 由()1知,1k >-,且0k ≠,
43
k ∴=-不符合题意, 因此不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根.
【点睛】
本题重点考查了一元二次方程的根的判别式和根与系数的关系。

7.已知:如图,在Rt ABC ∆中,90C ∠=︒,8AC =cm ,6BC =cm.直线PE 从B 点出发,以2 cm/s 的速度向点A 方向运动,并始终与BC 平行,与线段AC 交于点E .同时,点F 从C 点出发,以1cm/s 的速度沿CB 向点B 运动,设运动时间为t (s) (05t <<) .
(1)当t 为何值时,四边形PFCE 是矩形?
(2)当ABC ∆面积是PEF ∆的面积的5倍时,求出t 的值;
【答案】(1)3011t =
;(2)52
t ±=。

【解析】
【分析】 (1)首先根据勾股定理计算AB 的长,再根据相似比例表示PE 的长度,再结合矩形的性质即可求得t 的值.
(2)根据面积相等列出方程,求解即可.
【详解】
解:(1)在Rt ABC ∆中,90,8,6C AC BC ︒∠===Q ,
10AB ∴===
102//,,1068
PA PE AE t PE AE PE BC AB BC AC -∴==∴==Q 34(102),(102)55
PE t AE t ∴=-=-,当PE CF =时,四边形PECF 是矩形, 3(102)5t t ∴-= 解得3011
t = (2)由题意22424116825552
t t =+=⨯⨯⨯
整理得2t 550t -+=,解得t =
t ∴=,ABC ∆面积是PEF ∆的面积的5倍。

【点睛】
本题主要考查矩形的动点问题,这是近几年的考试热点,必须熟练掌握.
8.已知x=﹣1是关于x 的方程x 2+2ax+a 2=0的一个根,求a 的值.
【答案】1
【解析】试题分析:根据一元二次方程解的定义,把x=﹣1代入x 2+2ax+a 2=0得到关于a 的一元二次方程1﹣2a+a 2=0,然后解此一元二次方程即可.
试题解析:把x=﹣1代入x 2+2ax+a 2=0得
1﹣2a+a 2=0,
解得a 1=a 2=1,
所以a 的值为1.
9.设m 是不小于﹣1的实数,关于x 的方程x 2+2(m ﹣2)x+m 2﹣3m+3=0有两个不相等的实数根x 1、x 2,
(1)若x 12+x 22=6,求m 值;
(2)令T=1212
11mx mx x x +--,求T 的取值范围. 【答案】(1)m=
517-;(2)0<T≤4且T≠2. 【解析】
【分析】
由方程方程由两个不相等的实数根求得﹣1≤m <1,根据根与系数的关系可得x 1+x 2=4﹣2m ,x 1•x 2=m 2﹣3m+3;(1)把x 12+x 22=6化为(x 1+x 2)2﹣2x 1x 2=6,代入解方程求得m 的值,根据﹣1≤m <1对方程的解进行取舍;(2)把T 化简为2﹣2m ,结合﹣1≤m <1且m≠0即可求T 得取值范围.
【详解】
∵方程由两个不相等的实数根,
所以△=[2(m ﹣2)]2﹣4(m 2﹣3m+3)
=﹣4m+4>0,
所以m <1,又∵m 是不小于﹣1的实数,
∴﹣1≤m <1
∴x 1+x 2=﹣2(m ﹣2)=4﹣2m ,x 1•x 2=m 2﹣3m+3;
(1)∵x 12+x 22=6,
∴(x 1+x 2)2﹣2x 1x 2=6,
即(4﹣2m )2﹣2(m 2﹣3m+3)=6
整理,得m 2﹣5m+2=0
解得m=
; ∵﹣1≤m <1
所以m=
. (2)T=+
=
=
=
=
=2﹣2m . ∵﹣1≤m <1且m≠0
所以0<2﹣2m≤4且m≠0
即0<T≤4且T≠2.
【点睛】
本题考查了根与系数的关系、根的判别式,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.
10.已知关于x 的方程mx 2+(3﹣m)x ﹣3=0(m 为实数,m≠0).
(1) 试说明:此方程总有两个实数根.
(2) 如果此方程的两个实数根都为正整数,求整数m 的值.
【答案】(1)()2243b ac m -=+≥0;(2)m=-1,-3.
【解析】
分析: (1)先计算判别式得到△=(m -3)2-4m •(-3)=(m +3)2,利用非负数的性质得到△≥0,然后根据判别式的意义即可得到结论;
(2)利用公式法可求出x 1=
3m ,x 2=-1,然后利用整除性即可得到m 的值. 详解: (1)证明:∵m ≠0,
∴方程mx 2+(m -3)x -3=0(m ≠0)是关于x 的一元二次方程,
∴△=(m -3)2-4m ×(-3)
=(m +3)2,
∵(m +3)2≥0,即△≥0,
∴方程总有两个实数根;
(2)解:∵x =
()()332m m m --±+ , ∴x 1=-3m
,x 2=1, ∵m 为正整数,且方程的两个根均为整数,
∴m =-1或-3.
点睛: 本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了解一元二次方程.
11.若关于x 的一元二次方程x 2﹣3x +a ﹣2=0有实数根.
(1)求a 的取值范围;
(2)当a 为符合条件的最大整数,求此时方程的解.
【答案】(1)a ≤
174
;(2)x =1或x =2 【解析】
【分析】(1)由一元二次方程有实数根,则根的判别式△=b 2﹣4ac≥0,建立关于a 的不等式,即可求出a 的取值范围;
(2)根据(1)确定出a的最大整数值,代入原方程后解方程即可得.【详解】(1)∵关于x的一元二次方程x2﹣3x+a﹣2=0有实数根,∴△≥0,即(﹣3)2﹣4(a﹣2)≥0,解得a≤17
4

(2)由(1)可知a≤17
4

∴a的最大整数值为4,
此时方程为x2﹣3x+2=0,
解得x=1或x=2.
【点睛】本题考查了一元二次方程根的判别式以及解一元二次方程,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
12.校园空地上有一面墙,长度为20m,用长为32m的篱笆和这面墙围成一个矩形花圃,如图所示.
(1)能围成面积是126m2的矩形花圃吗?若能,请举例说明;若不能,请说明理由.(2)若篱笆再增加4m,围成的矩形花圃面积能达到170m2吗?请说明理由.
【答案】(1)长为18米、宽为7米或长为14米、宽为9米;(2)若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.
【解析】
【分析】
(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,再根据矩形面积公式列方程求解即可得到答案.
(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,再根据矩形面积公式列方程,求得方程无解,即假设不成立.
【详解】
(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,
根据题意得:x(32﹣2x)=126,
解得:x1=7,x2=9,
∴32﹣2x=18或32﹣2x=14,
∴假设成立,即长为18米、宽为7米或长为14米、宽为9米.
(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,
根据题意得:y(36﹣2y)=170,
整理得:y2﹣18y+85=0.
∵△=(﹣18)2﹣4×1×85=﹣16<0,
∴该方程无解,
∴假设不成立,即若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.
13.工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm2时,裁掉的正方形边长多大?
【答案】裁掉的正方形的边长为2dm,底面积为12dm2.
【解析】
试题分析:设裁掉的正方形的边长为xdm,则制作无盖的长方体容器的长为(10-2x)dm,宽为(6-2x)dm,根据长方体底面面积为12dm2列出方程,解方程即可求得裁掉的正方形边长.
试题解析:
设裁掉的正方形的边长为xdm,
由题意可得(10-2x)(6-2x)=12,
即x2-8x+12=0,解得x=2或x=6(舍去),
答:裁掉的正方形的边长为2dm,底面积为12dm2.
14.关于x的一元二次方程(k-2)x2-4x+2=0有两个不相等的实数根.
(1)求k的取值范围;
(2)如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0与x2+mx-1=0有一个相同的根,求此时m的值.
【答案】(1)k<4且k≠2.(2)m=0或m=
8 3 .
【解析】
分析:
(1)由题意,根据一元二次方程的定义和一元二次方程根的判别式列出关于k的不等式组,解不等式组即可求得对应的k的取值范围;
(2)由(1)得到符合条件的k的值,代入原方程,解方程求得x的值,然后把所得x的值分别代入方程x2+mx-1=0即可求得对应的m的值.
详解:
(1)∵一元二次方程(k-2)x2-4x+2=0有两个不相等的实数根,
∴△=16-8(k-2)=32-8k>0且k-2≠0.
解得:k<4且k≠2.
(2)由(1)可知,符合条件的:k=3,
将k=3代入原方程得:方程x 2-4x+3=0,
解此方程得:x 1=1,x 2=3.
把x=1时,代入方程x 2+mx-1=0,有1+m-1=0,解得m=0.
把x=3时,代入方程x 2+mx-1=0,有9+3m-1=0,解得m=83-. ∴m=0或m=83
-.
点睛:(1)知道“在一元二次方程20?(0)ax bx c a ++=≠中,当△=240b ac ->时,方程有两个不相等的实数根;当△=240b ac -=时,方程有两个相等的实数根;
△=240b ac -<时,方程没有实数根”是正确解答第1小题的关键;(2)解第2小题时,需注意相同的根存在两种情况,解题时不要忽略了其中任何一种情况.
15.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现: 当a >0,b >0时:
∵(a b -)2=a ﹣2ab +b ≥0
∴a +b ≥2ab ,当且仅当a =b 时取等号.
请利用上述结论解决以下问题:
(1)请直接写出答案:当x >0时,x +
1x 的最小值为 .当x <0时,x +1x
的最大值为 ; (2)若y =27101
x x x +++,(x >﹣1),求y 的最小值; (3)如图,四边形ABCD 的对角线AC 、BD 相交于点O ,△AOB 、△COD 的面积分别为4和9,求四边形ABCD 面积的最小值.
【答案】(1)2;﹣2.(2)y 的最小值为9;(3)四边形ABCD 面积的最小值为25.
【解析】
【分析】
(1)当x >0时,按照公式a +b ab a =b 时取等号)来计算即可;当x <0时,﹣x >0,1
x
->0,则也可以按公式a +b ab a =b 时取等号)来计算; (2)将y 27101x x x ++=+的分子变形,分别除以分母,展开,将含x 的项用题中所给公式
求得最小值,再加上常数即可;
(3)设S △BOC =x ,已知S △AOB =4,S △COD =9,由三角形面积公式可知:S △BOC :S △COD =S △AOB :S △AOD ,用含x 的式子表示出S △AOD ,再表示出四边形的面积,根据题中所给公式求得最小值,加上常数即可.
【详解】
(1)当x >0时,x 1x +≥=2; 当x <0时,﹣x >0,1
x ->0.
∵﹣x 1x -≥=2,∴则x 1x +=-(﹣x 1x -)≤﹣2,∴当x >0时,x 1x +的最小值为 2.当x <0时,x 1x +
的最大值为﹣2. 故答案为:2,﹣2.
(2)∵x >﹣1,∴x +1>0,∴y 27101x x x ++=+()2(1)5141
x x x ++++=+=(x +1)
41x +++5=4+5=9,∴y 的最小值为9. (3)设S △BOC =x ,已知S △AOB =4,S △COD =9 则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD ,∴x :9=4:S △AOD ,∴S △AOD 36x =
,∴
四边形ABCD 面积=4+9+x 36x +≥=25. 当且仅当x =6时,取等号,∴四边形ABCD 面积的最小值为25.
【点睛】
本题考查了配方法在最值问题中的应用.对不能直接应用公式的,需要正确变形才可以应用.。

相关文档
最新文档