小学四年级奥数100题(附复习资料)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学四年级奥数100题(附复习资料)
实验小学四年级奥数100题
1、6辆大卡车5趟可以运走50吨沙,9辆小卡车4趟可以运走48吨沙。
现在有大小卡车一共60辆,这些卡车一起运送3趟可以运走沙261吨。
那么有多少辆大卡车?
答案:21辆
解析:3辆大卡车运一趟是50÷5÷2=5吨,3辆小卡车运一趟是48÷4÷3=4吨。
那么这些车一次可以运261÷3=87吨。
那么大卡车有:(87-20*4)÷(5-4)*3=21辆
2、某处楼梯一共有10级台阶,若每步走1级或2级台阶,8步正好走完。
那么,走此楼梯有多少种不同的走法?
解析:28
解析:每步走1级或2级台阶,则每步必定要走1级,一共10级,所以还剩下10-8=2级,分给8步,有:8*7÷2=28
3、A和B两个同学同时从甲地出发到乙地,A每分钟行50米,B 每分钟行60米,B到达乙地后立即返回,若两人从出发到相遇用了10分钟,则甲乙两地相距多少米?
答案:550米
解析:两个人合走了2个全程,所以(50+60)×10÷2=550米
4、君君和大伟早晨8点整从甲地出发去乙地,君君开车,速度每小时60千米;大伟步行,速度为每小时4千米;如果君君到底乙地后停留1小时立即返回,恰好在10点整遇到正在前往乙
地的大伟。
那么甲乙两地之间的距离是多少千米?
答案:34千米
解析:二者的路程之和就是甲乙两地的距离
5、在1989后面写一串数字,从第5个数字开始,每个数字都是它前面两个数字乘积的个位数字。
这样得到一串数字:1,9,8,9,2,8,6,8,8,4,2……那么这串数字中,前2005个数字和是多少?
答案:12031
解析:先发现乘积个位数的规律,然后计算和
6、A、B两地相距40千米,甲乙两人同时分别从A、B两地出发,相向而行,8小时后相遇。
如果两人同时从A地出发前往B地,5小时后甲在乙前方5千米处。
问:甲每小时行多少千米?
答案:3千米
解析:设甲的速度是a千米每小时,乙的速度是b千米每小时,所以()*8=40从而得出5。
因为()*5=5,得出1。
根据和差公式(5+1)÷2=3
7、甲乙两人从相距2400米的两地同时出发,相向而行,甲每分钟走30米,乙每分钟走50米,那么相遇时,乙比甲多走多少米?
答案:600米
解析:相遇的时间:2400÷(30+50)=30分钟
乙比甲多走:50*30-30*30=600米
8、某批货物若每次运90箱,则5次运完,运6次不够运;若每次运75箱,则7次运不完,8次又不够运。
如每次运28箱,运若干次正好运完,那么这批货物一共有多少箱?
答案:532
解析:由第一波条件可以知道范围是在:450-540之间,由第二波条件可知范围在520-600之间,综合可知范围在525-540之间,还能够被28整除,所以是532.
9、2018小学四年级奥数练习:需要多少小时?
轮船在静水中的速度是每小时21千米,轮船自甲港逆水航行8小时,到达相距144千米的乙港口,再从乙港口返回甲港需要多少小时?
答案:6小时
解析:船的逆水速度是:144÷8=18千米每小时
水速:21-18=3千米每小时
船的顺水速度:21+3=24千米每小时
所需时间是:144÷24=6小时
10、甲乙两个机器人分别从两点同时、同向出发,甲到达B点的
时候,乙走了288米,甲追上乙时候,乙走了336米,则两点之间的距离是多少米?
答案:2016
解析:由题意知,甲是乙的336÷48=7倍,两点的距离就是288*7=2016米
11、2018小学四年级奥数练习:距离地面多少米?
一个物体从高空落下,已知第一秒下落的距离是5米,以后每秒落下的距离都比前一秒多10米,10秒末物体离地。
则物体最初距离地面的高度为多少米?
答案:500米
解析:5+15+25+……+95=(5+95)*10÷2=500米
12、将两个长4厘米,宽2厘米的长方形拼在一起(彼此不重叠),组成一个新四边形,则新四边形的周长是多少厘米?
答案:16厘米或者20厘米
解析:有两种情况,,新的四边形长与宽分别是8厘米,2
厘米或者是4厘米,4厘米,故新四边形周长为20厘米或者16厘米。
13、30名同学按身高由低到高排成一队,相邻两同学的身高差都相同。
前10名同学的身高和是12.5米,前20名同学的身高和是26.5米,那么这30名同学的身高和是多少米?
答案:42米
解析:第1-10名同学身高和,第11-20名同学身高和,第21-30名同学身高和构成等差数列。
第11-20名同学身高和是26-12.5=14米,根据项数为奇数的等差数列项:和=中间项*项数,
身高和是:14*3=42米
14、在一个雾霾天,狐狸,兔子和狗熊去卖口罩。
狐狸说:狗熊
卖1元一个,我就卖4元一个;狗熊卖2元一个,我就卖8元一个;狗熊卖3元一个,我就卖12元一个……。
兔子说:“我卖的价格是狐狸的一半。
”结果它们卖了相同数量的口罩,一共卖了210元,
那么狐狸卖了多少元?
答案:120元
解析:假设狗熊卖了X元,由题意知,狐狸就是4X,兔子就是2X。
那么42210,30,狐狸卖了4*30=120元。
15、甲乙两港的航程有500千米,上午10点一艘货船从甲港开往乙港(顺流而下),下午2点一艘客船从乙港开往甲港,客船开出12小时与货船相遇,已知货船每小时行15千米,水流速度每小时5千米,问客船每小时行多少千米?
答案:20千米
解析:客船开出12小时的时候,货船已开出12+4=16小时,货船开出16×(15+5)=320千米,那么客船走了500-320=180千米,客船的速度是180÷12=15千米每小时,此时为逆流,还需要加上水流速度,所以船的速度是15+5=20千米
16、甲乙两个人进行射击比赛,约定没中一发得20分,脱靶一发扣12分,两人各打了十发,一共得了208分。
其中甲比乙多得64分,问两人分别中了多少发?
答案:甲中了8发,乙中了6发。
17、小王去买两条鱼,他把一条鱼的标价小数点看错了一位,付
给售货员51元,而售货员说他应该支付74.85元。
那么这两条鱼的价格分别是多少?
答案:1、48.35
2、26.5
解析:(74.85-51)÷9=2.65
51-2.65=48.35
2.65*10=26.5
18、东东和小西练习跑步,若东东让小西先跑10米,则东东跑5秒就能追上小西。
若东东让小西先跑2秒,则东东跑4秒能追上小西。
问东东和小西二人的速度是多少?
答案:6,4
分析:小西的速度为:10÷5*4÷2=4,东东的速度为:
10÷5+4=6
19、小王去买两条鱼,他把第一条鱼的标价小数点看错了一位,付给售货员51元,二售货员说他应该付74.85,那么这两条鱼的价格分别是多少?
答案:1、48.35
2、26.5
解析:(74.85-51)÷9=2.65
51-2.65=48.35元
2.65*10=26.5元
20、举行射击比赛,按照成绩排列名次后,前七名的平均成绩比
前四名的平均成绩少3环,前十名的平均成绩比前七名平均成绩少4环。
那么第五六七名的得分之和比第八九十名的得分之和多了多少环?
答案:28
解析:假设前十名的平均分是x环,则前七名的平均成绩为4环,前四名的平均成绩为7环;第五六七名的得分和比第八九十名得分和多了[7(4)-4(7)]-[107(4)]=28环
21、一副扑克牌一共有54张,黑桃、方块、红桃、梅花各有13张,还有2张王牌。
至少从中取出多少张牌,才能够保证4种花色的牌都有2张。
答案:43张
解析:从最差的情况考虑,因为每一种花色都有13张,假设前39次都摸出3种颜色的牌,又摸出大王小王,最后剩下的再摸出2张只能是最后一张花色,则还剩下11张,所以至少取54-11=43张。
22、某个绘画室中有3腿的凳子和4腿的椅子一共40张,房间里面恰好有40位小朋友坐在这40张凳子和椅子上。
数了一下,凳子的腿和椅子的腿和小朋友的腿数,总数是225。
那么绘画室中凳子有多少张?
解析:鸡兔同笼,也可以用方程解题
答案:15
23、有两块地,平均亩产675千克,其中第一块地是5亩,亩产
粮食705千克,如果第二块地亩产粮食650千克,那么第二块地有多少亩?
答案:6亩
解析:第一块地总平均少了:(705-675)*5=150千克。
所以第二块地比平均多了150千克,第二块地的亩数:150÷(675-650)=6亩
24、如果6个连续奇数的乘积为135135,那么这6个数的和是多少?
答案:48
解析:135135=135*1001=3*3*3*5*7*11*13,所以这6个奇数为3,5,7,9,11,13,和为48。
25、一群猴子,每只猴每天早上吃2个桃子,晚上吃4个桃。
有一堆桃子,如何这群猴子吃3个早上,2个晚上,还会余下6个桃子;如果吃2个早上,3个晚上,还差8个桃子。
这群猴子有多少个?
答案:7只
解析:每只猴子3个早上,2个晚上吃了:3*2+2*4=14个;
每只猴子2个早上,3个晚上吃了:2*2+3*4=16个;
猴子就有:(8+6)÷(16-14)=7只
26、A、B、C、D、E五个人在一次满分为100分的考试中,得分都是大于91分的整数,而且得分各不相同。
如果A、B、C的平均数为95,B、C、D的平均分为94分,A是第一名,E是第三名且得分96分,问:D得了多少分?
答案:97分
由题意可以得出,A比D多了3分,因为E是第三名且得了96分,故第三名的至少为97分,第一名的A得了98分。
所以三人中存在第四和第五名,两个名次的总分最多是95+94=189分。
由于,的平均分是95和94,所以第四名和第五名为B和C。
则D为第二名,由于A最多为100分,比D多3分,所以D至少是97分。
27、一副扑克牌有54张,分别是大王、小王各一张,黑桃,红桃,
梅花,方块四种花色各13张,那么最少抽多少张牌,才能保证其中至少有2张牌点数相同。
答案:16张
解析:要按照最不利原则分析,考虑最差的情况,即两张王,1-13的十三张牌,再抽1张就能够保证有2张点数相同,所以至少抽:13+2+1=16张
28、甲乙两人相距30米对面站好,两人玩“石头剪子布”,胜利的一方向前走3米,负者向后退2米。
平局两人各向前走1米。
玩了15局后,甲距出发点17米,乙距出发点2米。
那么甲胜了多少次?
答案:7次
解析:根据题目的要求慢慢推导就行
29、农场里面有一些鸡和兔子,一共有70条腿。
经过一个神奇
的晚上,原来每一只鸡变成一只兔子,原来的每一只兔子变成两只鸡。
此时,鸡兔一共100条腿,那么,原来有多少只兔子?
答案:10只
30、老师买了同样多的田格本,横线本和练习本。
发给每个同学1个田格本、3个横线本和5个练习本。
这时候横线本还剩下24个,那么田格本和练习本剩下了多少个?
答案:48个
解析:根据题意先计算横线本总数,在求得答案。
31、乒乓球练习馆里,有20名乒乓球运动员在练球,第一个女运动员和七个男运动员练过球;第二个女运动员和八个男运动员练过球;第三个女运动员和九个男运动员练过球;这样一直到最后一个女运动员,她和全体男运动员都练习过球。
请你算一算,这20个运动员中,男女运动员各多少名?
解答:
第一个女运动员和6+1个男运动员练过球;第二个女运动员和6+2个男运动员练过球;第三个女运动员和6+3个男运动员练过球;不妨设有n个女运动员,由此可以推出,第n个女运动员,和6+n个男运动员练过球。
不难看出:男运动员比女运动员多6名。
根据和差
问题的解答规律,可以求出,男运动员的人数为:(20+6)÷2=13(人);女运动员的人数为:20-13=7(人)
32、已知7个红球5个白球一共重43克,5个红球7个白球重
47克,那么4个红球8个白球重多少克?
答案:49克
解析:观察可知,减少2个红球,增加2个白球,多了4克,所以每个白球比红球重2克。
在47克的基础上减去1个红球,增加一个白球,增加2克,为49克。
33、2010个自然数由小到大排成一排,排在奇数位上的各数的平均数是2345,那么偶数位上各数的平均数是多少?
答案:2346
解析:有2010个数字,那么奇数就有1005个,偶数也是1005个。
由于奇数平均数就是中间的数字,所以奇数中间数是2345,那么偶数位上的数是2346.
34、从1999这个数里面减去253后,再加上244,然后再减去253,再加上244……这样一直算下去,当减去多少次的时候,得数恰好第一次等于0。
答案:第195次
解析:每次减去253,加上244,实际上就等于每一次的操作都是减去9,以此类推就可得是第195次。
35、唐唐与甜甜二人进行围棋比赛,谁先胜利三局就算胜利,如果最后是唐唐获得胜利,那么有多少种比赛进程的可能性?
答案:10种
35、点点读一本故事书,第一天读了30页,从第二天起,每天读的页数都比前一天多4页,最后一天读了70页,刚好读完。
那么,这本书一共多少页?
答案:550
36、某厂运来一堆煤,如果每天烧1500千克,比计划提前一天烧完,如果每天烧1000千克,将比计划多烧一天。
这堆煤有多少千克?
想:由已知条件可知道,前后烧煤总数量相差(1500+1000)千
克,是由每天相差(1500-1000)千克造成的,由此可求出原计划烧的天数,进而再求出这堆煤的数量。
解:原计划烧煤天数:
(1500+1000)÷(1500-1000)
=2500÷500
=5(天)
这堆煤的重量:
1500×(5-1)
=1500×4
=6000(千克)
答:这堆煤有6000千克。
37、老师买了同样多的田格本、横线本和练习本。
他发给每个同学1个田格本、3个横线本和5个练习本。
这时横线本还剩下24个,那么田格本和练习本一共剩了多少个?
答案:48
解析:先计算横线本总数,在求解其他
38、小刚在上实验课,不小心把1克、2克、4克、8克的4个砝码中的一个丢失了。
这样在只允许将砝码放在天平的一端,而又只能称一次的情况下,他无法称出12克和7克的重量。
你知道小刚丢失的那个砝码是几克重的砝码?
解答:要想知道丢失的是哪个砝码,我们就得先看看题中的已知条件。
有四个砝码,分别是1克、2克、4克和8克。
要求称重时只允许将砝码放在天平的一端,而且只能称一次。
如果要称12克,必须要用4克和8克这两个砝码;如果要称7克,必须要用1克、2克和4克这三个砝码。
现在12克和7克的重量都无法称出,只因为都缺少一个4克的砝码。
由此得出:丢失的砝码一定是4克重的。
39、小明做了一道加法题,将一个加数的个位3看成了8,将另一个加数十位7看成了1,得到的结果是1998,请问正确的结果是多少?
答案:2053
40、小明从家到公园,原本打算每分钟走50米,为了提早到10分钟,他加快速度,每分钟走75米。
问从家到公园多远?
答案:1500米
解析:原来每分钟走50米,十分钟走500米。
现在每分钟多走25米,总共多走500米,现在走了50÷25=20分钟,路程就是75*20=1500米
41、某县举行长跑比赛,运动员跑到离起点3千米处要返回到起
点。
领先的运动员每分钟跑310米,最后的运动员每分钟跑290米。
起跑后多少分钟这两个运动员相遇?相遇时离返回点有多少米?
答案与解析:起、始点的距离-最后的运动员跑的路程=相遇点离返回点的距离。
起、始点的距离3千米。
最后的运动员跑的路程=290×最后运动员所用时间。
最后运动员所用时间(3000+3000)÷(310+290)
即:3000-290×[(3000+3000)÷(310+290)]
=3000-290×10
=3000-2900
=100(米)
42、某工程队预计30天修完一条水渠,先由18人修了12天后完成工程的一半,如果要提前9天完成,还要增加多少人?
解答:18人修12天水渠共:18×12=216个劳动日,故总工程量为216×2=432个劳动日,还剩216个劳动日,现需
30-12-9=9(天)完成,故需216÷9=24(人),所以还需补6人。
43、小明家有一个闹钟,每小时比标准时间快2分。
周日上午9点整,他对准了闹钟,然后定上闹铃,想让闹铃在11点半的时候响,那么他应该把闹铃定在几点几分?
答案与解析:
标准时间每走60分,闹钟走62分。
从9点到11点半一共
是60×2+30=150分钟,那闹钟应该走62×2+31=155分钟,多走5分钟,所以他应该把闹铃定在11点35分。
44、小高上学时候步行,回家的时候骑车,路上一共用了24分钟。
如果往返都骑车则需要14分钟,求往返都步行需要的时间?
答案:34分钟
解析:骑车往返需要14分钟,那么单程就需要7分钟,步行单程的时间就是24-7=14分钟,所以步行往返则需要17*2=34分钟。
45、有两根绳子,第一根长64米,第二根长52米,剪去同样的长度后,第一根是第二根的3倍,求每根剪去了几米?
答案:46米
解析:画出线段图就很容易看出来了。
46、甲乙丙丁在比较他们的身高,甲说:“我最高”。
乙说:“我不是最矮”,丙说:“我没有甲高,但还有人比我矮”,丁说:“我最矮”。
实际测量的结果说明,只有一人说错了,那么请将他们按身高次序从高到矮排列出来。
答案:乙、甲、丙、丁
解析:丁不可能说错,否则就没有人最矮了。
如果甲也没有说错,则没有人说错,矛盾。
所以只有甲一人说错,丁一定是最矮的,甲不是最高的,丙没有甲高,但还有人比他矮,那么只能是甲第二高,丙第三高,乙最高。
排序就为:乙、甲、丙、丁47、甲乙丙丁四个人的年龄之和是64岁,甲21岁时,乙17岁;
今年甲18岁,丙的年龄是丁的3倍,问丁今年的年龄?
答案:8岁
解析:有题目可知,甲比乙大四岁,所以甲18岁时,乙就是14岁。
四个人年龄和是64岁,甲乙加起来是32岁,那么丙丁年龄和也就是64-32=32岁。
又知道丙的年龄是丁的3倍,所以丁的年龄是32÷4=8岁
48、某年的10月有5的星期六,4个星期日,问这一年的十月一日是星期几?
答:星期一
49、一个长方形的面积是100,那么这个长方形的周长最小是多少?
答案:40
解析:长*宽=100,积是固定的100,求的的是最小周长=(长+宽)*2,当长=宽=10时,(10+10)*2=40,是最小的周长
50、一框苹果分给幼儿园的小朋友,如果每人分5个苹果,还剩32个;如果每人分8个苹果,还有5个小朋友分不到苹果,这批苹果有多少个?
答案:这批苹果有152个。
分析:本题是一道稍有变化的盈亏问题。
已知条件“如果每人分8个苹果,还有5个小朋友分不到”可转化为“如果每人分8个,还差8×5=40(个)苹果。
转化后的条件:每人5个剩32个(盈)
每人8个差40个(亏)
盈亏的总额是(32+40)个,每人两次分配的差是(8-5)个。
解答:
(32+8×5)÷(8-5)=24(人)…………小朋友的人数
5×24+32=152(个)………………………苹果总数
51、公园里有一个圆形花圃,直径是16米,在花圃的周围修一条宽2米的环形便道,沿环形便道的外边缘每隔5米装一盏地灯,一共安装多少盏灯?
相当于求直径为:16+2×2=20米的圆的周长:
即:20×π=62.8(米)
需要的灯数是:62.8÷5≈12(盏)
答:一共安装12盏灯。
52、公园里有一个圆形花坛,直径为16米,在它的周围修一条2米宽的环形小道。
这条小道的面积是多少?
内半径:16÷2=8米
外半径:8+2=10米
面积:
3.14×(10×10-8×8)
=3.14×36
=113.04(平方米)
答:这条小道的面积是113.04(平方米)。
53、商场开展促销活动,一条裤子180元,买3条赠一条。
一次
买4条裤子,现价比原价便宜了多少?
原价四条裤子为:4×180=720
先买三条的一条,那么就是用三条裤子的价钱买四,三条价钱:
180×3=540
720-540=180
答:现价比原价便宜了180元钱。
54、教室门前有一个长方形花坛,长4公尺,宽15公尺。
在它的四周每隔0.5公尺种一棵凤仙花,四个角各种了一棵,一共种多少棵花?
每隔0.5公尺种一棵
长边每边种:4÷0.5=8 棵
宽边每边种:15÷0.5=30 棵
共:(8+30)×2=76棵
但考虑到四角上的每棵算了两遍,所以总数是:76-4=72(棵)答:一共种72棵花。
55、小巍带着一条猎狗骑车离家到36千米远的招宝山郊游,他骑车速度是每小时18千米,猎狗奔跑速度是骑车速度的2倍.当猎狗跑到招宝山脚下后,如小巍还未到,则马上返回迎着小巍跑去,遇到小巍后再跑向招宝山…这样来回跑一直到小巍到招宝山为止。
这时,这只猎狗一共跑了多少千米路?
36÷18×(18×2)
=2×36
=72(千米)
答:当小巍到达招宝山时,猎狗一共跑了72千米的路程。
56、甲乙两人各有一些积分卡,原来乙的张数是甲的4倍,如果乙丢了10张积分卡,乙还比甲多20张,那么甲乙两人原来共有多少张积分卡?
答案:50张,画线段图很容易得出。
57、在一根长棍上,有三种刻度线,第一种刻度线将木棍分成十等份,第二种刻度线将木棍分成十二等份,第三种刻度线将木棍分成十五等份.如果沿每条刻度线将木棍锯断,这木棍总共被锯成了多少段?
10,12,15的最小公倍数是60,
设木棍60厘米,60÷10=6(厘米),60÷12=5(厘米),60÷15=4(厘米)
10等分的为第一种刻度线,共10-1=9(条)
12等分的为第二种刻度线,共12-1=11(条)
15等分的为第三种刻度线,过15-1=14(条)
第一种与第二种刻度线重合的条数:6和5的最小公倍数是30,60÷30-1=2-1=1(条)
第一种与第三种刻度线重合的条数:6和4的最小公倍数是12,60÷12-1=5-1=4(条)
第二种与第三种刻度线重合的条数:5和4的最小公倍数是。