六年级数学下册解决问题解答应用题专项专题训练经典题型带答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级数学下册解决问题解答应用题专项专题训练经典题型带答案解析
一、苏教小学数学解决问题六年级下册应用题
1.为了测量一个空瓶子的容积,一个学习小组进行了如下实验。
①测量出整个瓶子的高度是22厘米;
②测量出瓶子圆柱形部分的内直径是6厘米;
③给瓶子里注入一些水,把瓶子正放时,测量出水的高度是5厘米;
④把瓶盖拧紧,将瓶子倒置放平,无水部分是圆柱形,测量出无水部分圆柱的高度是12厘米。
(1)要求这个瓶子的容积,上面记录中的哪些信息是必须有的?________(填实验序号)(2)请根据选出的信息,求出这个瓶子的容积。
2.一种压路机滚筒,直径是1.2米,长3米,每分钟转10周,每分钟压路多少平方米?3.一个圆锥形沙堆,底面积是28.26m²,高是2.5m。
用这堆沙在10m宽的公路上铺2cm 厚的路面,能铺多少米?
4.一个近似圆锥的,高2.4m,底面周长31.4m,每立方米沙重1.7吨,如果用一辆载重8吨的车运输,多少次可以运完?
5.小明调制了两杯蜂蜜水。
第一杯用了30毫升蜂蜜和360毫升水。
第二杯用了500毫升水,按照第一杯蜂蜜水中蜂蜜和水体积的比计算,第二杯应加入蜂蜜多少毫升?
6.鸡和免一共有8只,它们的腿有22条。
鸡和兔各有多少只?
7.张宏上个月收集了13张邮票,有8角和1元2角这两种面值。
这些邮票的总面值是14元。
两种面值的邮票各有多少张?
8.在一幅比例尺是1:18000000的地图上,量得甲、乙两地的距离是6厘米。
张师傅凌晨4时从甲地出发,平均每时行驶90千米,到达乙地时是几时?
9.一个底面半径是6cm的圆柱形玻璃器皿里装有一部分水,水中浸没着一个高9cm的圆锥形铅锥,当铅锥从水中取出后,水面下降了0.5cm,这个圆锥的底面积是多少平方厘米?
10.一堆圆锥形黄沙,底面周长是25.12m,高1.5m,每立方米的黄沙重2t,这堆沙重多少吨?
11.把一块长8厘米,宽5厘米,高3厘米的铁块熔铸成一个底面积为31.4平方米的圆锥,这个圆锥的高是多少厘米?(结果保留一位小数)
12.学校组织篮球比赛,春明在这场篮球赛中一共投中10个球,因为他投中的球中有2分球,也有3分球,所以得到24分。
春明在这场篮球赛中投中的2分球和3分球各是多少个?
13.下图,是用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一个直径2米的半圆。
(1)这个大棚的种植面积是多少平方米?
(2)覆盖在这个大棚上的塑料薄膜约有多少平方米?
(3)大棚内的空间约有多大?
14.一个底面半径是10厘米的圆柱体杯子中装有水,水里浸没一个底面半径是5厘米的圆锥体铅锤。
把铅锤从杯中取出后,杯里的水面下降了1厘米。
圆锥体铅锤的高是多少厘米?
15.自来水管的内直径是2cm,管内水的流速是每秒20cm。
一位同学打开水龙头洗手,走时忘了关,5分钟后被另一名同学发现才关上。
大约浪费了多少升水?
16.如图,一个酒瓶里面深24厘米,底面内径是16厘米,瓶里酒高15厘米。
把酒瓶塞紧后,使其瓶口向下倒立,这时酒高19厘米,酒瓶容积是多少毫升?
17.某店主委托运输公司运1000只水晶摆件,商定每只水晶摆件运费0.4元,如果损坏一只,不但不给运费,还要赔偿损失5.1元。
结果运输公司获得运费372.5元。
运输公司损坏了多少只水晶摆件?
18.甲、乙两个筑路队人数的比是7:3,如果从甲队派30人到乙队,则两队的人数比就成了3:2。
甲、乙两个筑路队原来各有多少人?(用比例解)
19.某学校安排学生宿舍,如果每间住12人,那么有34人没有宿舍;如果每间住14人,则空出4间宿舍。
那么有多少间宿舍?有学生多少人?
20.一块长方形的铁皮(如下图),如果用它做一个高为8dm的圆柱形油桶的侧面,再另配一个底面,做这样一个油桶至少还需要多少平方分米铁皮?如果1L柴油重0.85kg,那么这个圆柱形油桶可以盛柴油多少千克?
21.一台压路机的前轮是圆柱形,轮宽2米,半径0.6米.前轮转动一周,轧路的面积是多
少平方米?
22.用如图的一张长方形的铁皮做成一个圆柱形的油桶,求这个油桶的容积是多少立方分米,做这个油桶至少需要多少平方分米铁皮?(接头处和厚度不计)
23.如图是一个饮料瓶的示意图,饮料瓶的容积是625mL,里面装有一些饮料。
将这个瓶子正放时,饮料高10cm,倒放时,空余部分的高是2.5cm,求瓶内的饮料为多少mL?
24.在比例尺是1:20000000的地图上量得甲、乙两地间的铁路长6厘米。
两列高速列车分别从甲、乙两地同时相对开出,已知从甲地开出的列车平均每小时行315千米,从乙地开出的列车平均每小时行285千米,几小时后两车能相遇?
25.近年来,中国的建筑行业蓬勃发展,基建事业不断发展。
2020年1月份新冠肺炎疫情爆发,医院床位紧张。
1月23日,由中建三局牵头,武汉建工、武汉市政、汉阳市政等企业参建在武汉知音湖畔5万平方米的滩涂坡地上,指挥7500名建设者和近千台机械设备,承诺用十天时间建成一所可容纳1000张床位的救命医院——火神山医院。
9天的时间,一座医院平地而起,第10天就开始启用,与疫情赛跑,与时间博弈,火神山医院的建立,是“中国速度"的又一个奇迹。
在施工现场有一个圆锥形石子堆,底面周长为12.56米,高是18分米,用这些石子铺满一条长16米、宽3米的地面,能铺多厚?
26.下图的博士帽是用黑色卡纸做成的,上面是边长30厘米的正方形,下面是底面直径16厘米、高10厘米的无底无盖的圆柱。
制作一个这样的“博士帽”至少需要多少平方厘米的黑色卡纸?
27.小明的储蓄罐里有1角和5角的硬币共27枚,价值5.1元,1角和5角的硬币各多少枚?
28.把一个底面半径是2厘米的圆柱体,沿底面直径垂直于高切成若干等份,再拼成一个近似长方体,(如图)已知拼成后长方体表面积比原来圆柱表面积增加了60平方厘米,这个长方体的体积是多少?
29.鸡兔同笼,有25个头,80条腿,鸡兔各多少只?
30.为了抗旱,小平家挖了一个底面半径5m、深2m的圆柱形蓄水池,并且用水泥涂抹水池的内壁与底部,防止漏水。
一场暴雨过后,小平沿水池边缘走了一圈,并测得池中水深1.2m。
(1)涂抹水泥的面积是多少平方米?
(2)池中水的体积是多少?
31.用a,h分别表示面积为96平方厘米的平行四边形的底和高。
(1)请完成下表,并回答问题。
a/cm123468122448
h/cm96
(3)h与a成什么关系?为什么?
(4)当平行四边形的底为15厘米时,高是多少厘米?
32.一个高为10厘米的圆柱,如果它的高增加2厘米,那么它的面积就增加125.6平方厘米,求这个圆柱的体积?(π取3.14)
33.长沙造纸厂的生产情况如下表,根据表回答问题.
时间(天)1234567…
生产量(吨)70140210280350420490…
.
(2)根据表中的数据,写出一个比例________.
(3)表中相关联的两种量成________关系.
(4)在图中描出表示时间和相应生产量的点,并把它们按顺序连接起来.
(5)估计生产550吨纸片,大约需要________天(填整数).
34.某城市,医院在学校的正南方向500米处,电影院在医院的北偏东60°方向1000米处,请用1:20000的比例尺将医院和电影院的位置画在下面,并求出学校到电影院大约有多少米。
35.六年的小学生活即将结束,婷婷计划星期天请5名同学到家商量去养老院参加义务劳动的事,家中只有一盒长方体饮料(如下图),假如用来招待同学,给每位同学倒上满满一杯(如下图)后,她自己还有饮料吗?(请写出计算过程,盒子、杯子的厚度均勿略不计)(单位:厘米)
36.一辆压路机的前轮是圆柱形,轮宽1.5米,直径是1.2米,前轮转动100周,压路的面积是多少平方米?
37.把一个圆柱的侧面展开后得到一个长18厘米,宽12厘米的长方形,这个圆柱的体积最大可能是多少立方厘米?(π取近似值3)
38.学校要修建一个圆柱形的水池,在比例尺是1:200的设计图纸上,水池的半径为3厘米,深为2厘米。
(1)按图施工,这个水池的实际应该挖多少米深?
(2)按图施工,这个水池的能装下多少立方米的水?
(3)为了加固和美观,施工时给水池底部和水池壁都铺了水泥,且平均厚度是10厘米,然后再用油漆将新铺水泥的表面粉刷一遍,请问粉刷部分的面积是多少平方米?(结果保留一位小数)
39.—个棱长是6分米的正方体。
(1)它的表面积是多少?
(2)如果把它削成一个最大的圆柱体,圆柱体的体积是多少?
(3)如果把它削成一个最大的圆锥体,削去的体积是多少立方分米?
40.下图是甲、乙两辆汽车行驶的路程和时间的关系图。
(1)甲车的路程与时间________,乙车的路程和时间________。
A.成正比例
B.成反比例
C.不成比例
(2)若乙车按目前的平均速度继续行驶,能不能追上甲车?请说明理由。
【参考答案】***试卷处理标记,请不要删除
一、苏教小学数学解决问题六年级下册应用题
1.(1)②③④
(2)3.14×()2×(5+12)
=28.26×17
=480.42(立方厘米)
=480.42(ml)
答:这个瓶子的容积为480.42ml。
【解析】【分析】(1)因为要求的是瓶子的容积,而瓶子上面部分不是圆柱体部分,所以不需要直到整个瓶子的高度,而剩下的几个条件都需要;
(2)瓶子的容积=πr2×(正放水的高度+倒放无水部分的高度),据此代入数据作答即可。
2.14×1.2×3×10=113.04(平方米)
答:每分钟压路113.04平方米。
【解析】【分析】3.14×直径=滚筒的宽;滚筒的宽×长=滚动一周的面积;滚动一周的面积×10周= 每分钟压路面积。
3.解:2cm=0.02m
28.26×2.5×÷10÷0.02
=22.5÷10÷0.02
=112.5(米)
答:能铺112.5米。
【解析】【分析】沙堆的体积是不变的,因此根据圆锥的体积公式计算出圆锥形沙堆的体积,然后用沙堆的体积除以公路的宽,再除以铺的厚度即可求出铺的长度。
4.解:×3.14×(31.4÷3.14÷2)2×2.4×1.7÷8
=×3.14×25×2.4×1.7÷8
=62.8×1.7÷8
=106.76÷8
=13(次)……2.76(吨)
所以需要13+1=14(次)。
答:如果用一辆载重8吨的车运输,14次可以运完。
【解析】【分析】圆锥的体积=×π×底面半径(底面周长÷π÷2)的平方×圆锥的高,再用圆锥的体积×每立方米沙重的吨数求出沙的总吨数,最后用沙的总吨数÷每辆车载沙的吨数,若商为整数则商为总共运送的次数;若有余数,则商+1为总共运送的吨数。
5.解:设第二杯应加入蜂蜜x毫升。
30:360=x:500
360x=30×500
360x=15000
x=15000÷360
x≈41.7
答:第二杯应加入蜂蜜41.7毫升。
【解析】【分析】第一杯中蜂蜜质量:水的质量=第二杯中蜂蜜质量:水质量,据此列比例,然后根据比例的基本性质和等式性质解比例。
6.解:设兔有x只,则鸡有(8-x)只,
4x+2(8-x)=22
4x+2×8-2x=22
2x+16=22
2x+16-16=22-16
2x=6
2x÷2=6÷2
x=3
鸡:8-3=5(只)
答:鸡有5只,兔有3只。
【解析】【分析】此题主要考查了鸡兔同笼的应用,可以用列方程的方法解答,设兔有x 只,则鸡有(8-x)只,每只兔的腿数×兔的只数+每只鸡的腿数×鸡的只数=腿的总数,据此列方程解答。
7.解:设面值1元2角的邮票有x张,则面值8角的邮票有(13-x)张,
12x+8×(13-x)=140
12x+8×13-8x=140
4x+104=140
4x+104-104=140-104
4x=36
4x÷4=36÷4
x=9
面值8角的邮票有:13-9=4(张)
答:面值1元2角的邮票有9张,面值8角的邮票有4张。
【解析】【分析】此题主要考查了列方程解答应用题,设面值1元2角的邮票有x张,则面值8角的邮票有(13-x)张,面值1元2角的邮票张数×面值1元2角+面值8角的邮票张数×面值8角=邮票的总面值,据此列方程解答。
8.解:6÷=108000000(厘米)=1080(千米),
1080÷90=12(小时),
4时+12小时=16时。
答:到达乙地时是16时。
【解析】【分析】根据题意可知,先求出甲、乙两地的实际距离,图上距离÷比例尺=实际距离,再用路程÷速度=时间,求出路上行驶的时间,最后用出发的时刻+路上行驶的时间=到达的时刻,据此列式解答。
9.解:V=πr²h
=3.14×6²×0.5
=56.52(立方厘米)
S=3V÷h
=56.52×3÷9
=18.84(平方厘米)
答:这个圆锥的底面积是18.84平方厘米。
【解析】【分析】下降的水的形状是圆柱,圆柱的体积=底面积×高,圆柱的体积也是铅锥的体积,铅锥的体积×3÷铅锥的高=铅锥的底面积,据此解答。
10.解:25.12÷3.14÷2=4(米)
3.14×4×4×1.5÷3=25.12(立方米)
25.12×2=50.24(吨)
答:这堆沙重50.24吨。
【解析】【分析】底面周长÷3.14÷2=底面半径;3.14×底面半径的平方×高÷3=圆锥体积;圆锥体积×2=这堆沙的重量。
11.解:长方体铁块的体积:8×5×3=40×3=120(立方厘米)
圆锥的高:120÷÷31.4=360÷31.4≈11.5(厘米)
答:这个圆锥的高是11.5厘米。
【解析】【分析】这是一道典型的“等级变形”问题,正方体的体积等于圆柱的体积,据此解答即可。
12.解:设投中3分球x个,则2分球有(10-x)个。
3x+2(10-x)=24
3x+20-2x=24
x=24-20
x=4
10-4=6(个)
答:春明在这场篮球赛中投中的2分球有6个,3分球有4个。
【解析】【分析】此题属于鸡兔同笼问题,设投中3分球x个,则2分球有(10-x)个,根据得分是24分列出方程,解方程求出3分球的个数,进而求出2分球的个数即可。
13.(1)2×15=30(平方米)
答:这个大棚的种植面积是30平方米。
(2)3.14×2×15÷2
=3.14×15
=47.1(m2)
3.14×()2=3.14(m2)
47.1+3.14=50.24(m2)
答:覆盖在这个大棚上的塑料薄膜约有50.24平方米。
(3)解:3.14×()2×15=47.1(立方米)
47.1÷2=23.55(立方米)
答:大棚内的空间约有23.55平方米。
【解析】【分析】(1)大棚的种植面积是长方形,长是15米,宽是2米,根据长方形面积公式计算;
(2)塑料薄膜的面积是一个整圆的面积,加上圆柱侧面积的一半,根据公式计算即可;(3)大棚内的空间是圆柱体积的一半,用底面积乘高再除以2即可求出空间的大小。
14.解:3.14×102×1÷÷(3.14×52)
=3.14×300÷3.14÷25
=300÷25
=12(厘米)
答:圆锥体的高是12厘米。
【解析】【分析】水面下降部分水的体积就是圆锥的体积,根据圆柱的体积公式计算出1
厘米高水的体积,也就是圆锥铅锤的体积。
圆锥的高=体积÷÷底面积,根据公式计算圆锥的高即可。
15.内半径:2÷2=1(厘米)
1秒流出的水:3.14×1×1×20=62.8(毫升)
5分钟流出的水:62.8×5×60=62.8×300=18840(毫升)=18.84(升)
答:大约浪费了18.84升水。
【解析】【分析】流出的水是圆柱,圆柱体积=底面积×高,据此先求出1秒流出了多少水,再求出5分流出了多少水,最后毫升化为升。
16.解:3.14××(24-19+15)
=3.14××20
=3.14×64×20
=200.96×20
=4019.2(毫升)
答:酒瓶容积是4019.2毫升。
【解析】【分析】酒瓶的底面积×(正放时酒的高度+酒瓶的高度-倒放时酒的高度)=酒瓶的容积。
17.解:(0.4×1000-372.5)÷(5.1+0.4)
=(400-372.5)÷5.5
=27.5÷5.5
=5(只)
答:运输公司损坏了5只水晶摆件。
【解析】【分析】首先假设运输1000只水晶摆件一件也没有破损,则,运输公司应该获得的运费=每只水晶摆件运费×水晶摆件总数;然后计算水晶摆件破损数,水晶摆件破损数=(运输公司应该获得的运费-实际获得运费)÷(每只水晶摆件的运费+损失一件水晶摆件的赔偿费)。
18.设甲筑路队原来有7x人,则乙筑路队原来有3x人。
(7x-30):(3x+30)=3:2
2(7x-30)=3(3x+30)
14x-60=9x+90
14x-9x=90+60
5x=150
x=30,
所以7x=210;3x=90。
答:甲筑路队原来各有210人、乙筑路队原来有90人。
【解析】【分析】设甲筑路队原来有7x人,则乙筑路队原来有3x人。
根据“ 如果从甲队派30人到乙队,则两队的人数比就成了3:2 ”可列出方程(7x-30):(3x+30)=3:2,根据比例的基本性质(在比例里,两个外项的积等于两个内项的积。
)即可求出x的值,进一步即可得出7x与3x的值。
19.解:宿舍:(14×4+34)÷(14-12)=45(间)
学生:45×12+34=574(人)或(45-4)×14=574(人)
答:那么有45间宿舍,有学生574人。
【解析】【分析】此题按鸡兔同笼的思路分析:如果每间住14人,就会空出4间宿舍;据此求出4间宿舍如果都住满的人数;如果每间住12人,就会有34人没有宿舍住;据此求出总人数差;再求出每间宿舍人数差;总人数差除以每间宿舍人数差就是宿舍数;最后求出总人数。
20.解:所需铁皮:3.14×(15.7÷3.14÷2)2
=3.14×2.52
=19.625(dm2)
柴油的质量:19.625×8×0.85
=157×0.85
=133.45(kg)
答:做这样一个油桶至少还需要19.625平方分米铁皮,这个圆柱形油桶可以盛柴油133.45千克。
【解析】【分析】至少还需要铁皮的面积=油桶的底面积=π×圆柱的底面半径2,其中圆柱的底面半径=圆柱的底面周长÷π÷2;柴油的质量=圆柱的底面积×圆柱的高×1L柴油的重量。
21.解:3.14×0.6×2×2
=3.14×2.4
=7.536(平方米)
答:轧路的面积是7.536平方米。
【解析】【分析】前轮转动一周,轧路的面积就是求圆柱的侧面积,圆柱的侧面积=底面周长×高;底面周长=2×π×半径。
22.解:设圆的直径为d分米,则:
3.14d+d=2
4.84
4.14d=24.84
d=6
所以r=d÷2=3;h=2d=12
容积:3.14×32×12
=3.14×9×12
=339.12(立方分米)
表面积=3.14×32×2+3.14×6×12
=56.52+226.08
=282.6(平方分米)
答:油桶的容积为339.12立方分米,做这个油桶至少需要282.6平方分米铁皮。
【解析】【分析】设圆的直径是d,大长方形的长是24.84分米,等于小长方形的长加上圆的直径d,小长方形的宽等于两个等圆直径之和,也就是2d,也就是圆柱的高,小长方形是圆柱侧面展开图,所以长应等于圆周长πd=3.14d,根据“大长方形的长等于圆的周长与直径的和”求出圆的直径,进而求出圆柱的高,由于没说铁皮厚度,所以油桶的容积就是圆柱体积,根据“圆柱的体积=πr2h”和“圆柱的表面积=2πr2+2πrh”进行解答即可。
23.解:625mL=625cm3
625÷(10+2.5)×10
=625÷12.5×10
=50×10
=500(cm3)
500cm3=500mL
答:瓶内的饮料为500mL.
【解析】【分析】饮料体积=底面积×高,底面积=瓶子的体积÷(10+2.5)。
24.解:6÷
=6×20000000
=120000000(厘米)
=1200(千米)
1200÷(315+285)
=1200÷600
=2(小时)
答:2小时后两车能相遇。
【解析】【分析】实际距离=图上距离÷比例尺,据此求出实际距离;实际距离÷(甲车速度+乙车速度)=相遇时间。
25.解:18分米=1.8米
12.56÷3.14÷2=2(米)
3.14×22×1.8×÷16÷3
=3.14×4×0.6÷16÷3
=3.14×2.4÷16÷3
=7.536÷16÷3
=0.157(米)
答:能铺0.157米厚。
【解析】【分析】用圆锥的底面周长除以3.14再除以2即可求出底面半径,然后根据圆锥的体积公式计算出石子的体积,再根据长方体的体积公式用石子的体积除以地面的长再除以地面的宽即可求出能铺的厚度。
26.解:3.14×16×10+30×30
=502.4+900
=1402.4(cm2)
答:制作一个这样的“博士帽”至少需要1402.4平方厘米的黑色卡纸。
【解析】【分析】这个“博士帽”面积是一个正方形的面积和一个圆柱的侧面积组成,正方形的面积=边长×边长,圆柱的侧面积=πdh,再把两部分的面积合起来,即可求得“博士帽”的面积。
27.解:5.1元=51角
设5角的有x枚,则1角的就是(27﹣x)枚。
5x+(27﹣x)×1=51
5x+27﹣x=51
4x=51-27
x=24÷4
x=6
27﹣6=21(枚)
答:5角的有6枚,1角的是21枚。
【解析】【分析】此题属于鸡兔同笼问题,用列方程的方法解答比较容易理解。
设5角的有x枚,则1角的就是(27﹣x)枚。
根据价值是5.1元列出方程,解方程求出5角的枚数,进而求出1角的枚数即可。
28.解:圆柱的高=60÷2÷2=15(厘米)
长方体的长=3.14×2=6.28(厘米)
长方体的宽=2厘米,长方体的宽=圆柱的高=15厘米,
所以长方体的体积=6.28×2×15
=12.56×15
=188.4(立方厘米)
答:这个长方体的体积是188.4立方厘米。
【解析】【分析】圆柱沿底面直径垂直于高切成若干等份,再拼成一个近似长方体,表面积增加的是2个圆柱的底面半径×圆柱的高的长方形,代入数值即可计算出圆柱的高,这个长方形的长为圆柱底面周长的一半即π×半径,长方体的宽为圆柱底面半径,长方体的高为圆柱的高,最后根据长方体的体积=长×宽×高,计算即可得出答案。
29.解:25×4-80=20(条腿)
鸡:20÷(4-2)=10(只)
兔:25-10=15(只)
答:鸡10只,兔15只。
【解析】【分析】此题主要考查了鸡兔同笼的应用,可以用假设法解答,假设全部是兔,则一共有25×4=100条腿,比实际多了100-80=20条腿,每只兔比每只鸡多4-2=2条腿,一
共多的腿数÷2=鸡的只数,然后用鸡和兔的总只数-鸡的只数=兔的只数,据此列式解答。
30.(1)解:3.14×52+3.14×(5×2)×2=141.3(平方米)
答:涂抹水泥的面积是141.3平方米。
(2)解:3.14×52×1.2=94.2(立方米)=94200升
答:池中水的体积是94200L。
【解析】【分析】(1)涂抹水泥的面积=圆柱的底面积+侧面积=πr2+πdh=πr2+π(r×2)h,据此代入数值解答即可,π一般取3.14;
(2)池中水的体积=底面积×水深=πr2×水深,1立方米=1000升,据此代入数值解答即可。
31.(1)解:填表如下:
(3)解:因为底×高=平行四边形的面积(一定),所以平行四边形底和高成反比例。
(4)解:15h=96
h=96÷15=6.4
答:高是6.4厘米。
【解析】【分析】(1)平行四边形的面积=底×高,据此计算填表即可;
(2)根据表中数据的走向作答即可;
(3)如果xy=k(k为常数,x,y≠0),那么x和y成反比例;平行四边形的面积=底×高,平行四边形的面积一定,那么平行四边形底和高成反比例;
(4)平行四边形的高=平行四边形的面积÷底,据此作答即可。
32.解:圆柱的底面半径:
125.6÷2÷3.14÷2
=62.8÷3.14÷2
=20÷2
=10(厘米)
体积:
3.14×10²×10
=3.14×100×10
=314×10
=3140(立方厘米)
答:这个圆柱的体积是3140立方厘米。
【解析】【分析】根据题意可知圆柱的高增加2厘米,那么它的面积就增加125.6平方厘米,增加的只是侧面积,侧面积÷高=底面周长,底面周长÷3.14÷2=半径;圆柱体的体积=底面积×高即可。
33.(1)时间;生产量
(2)1:70=2:140(答案不唯一)
(3)正
(4)
(5)8
【解析】【解答】解:(1)表中相关联的量是时间和生产量;
(2)根据表中的数据,写出一个比例是:1:70=2:140;
(3)表中相关联的两种量成正比例;
(5)估计生产550吨纸片,大约需要8天。
故答案为:(1)时间;生产量;(2)1:70=2:140(答案不唯一);(3)正;(5)8。
【分析】(1)表格中变化的两个量就是相关联的两个量;
(2)根据表格中相对应的数据写出两个比值相等的比并组成比例即可;
(3)两个相关联的量的比值一定,二者成正比例关系;
(4)根据每组对应的数据描出对应的点,然后顺次连接各点成线即可;
(5)根据每天的生产量估计出生产550吨纸片大约需要的天数。
34.解:500米=50000厘米,1000米=100000厘米,50000×=2.5(厘米),100000×=5(厘米),如图:
4.2÷=84000(厘米)=840(米)
答:学校到电影院大约有840米。
【解析】【分析】把实际距离都换算成厘米,然后用实际距离乘比例尺分别求出图上距离;图上的方向是上北下南、左西右东,根据图上的方向、夹角的度数和图上距离确定医院的位置,再确定电影院的位置。
测量出学校到电影院的图上距离,然后用图上距离除以比例尺求出学校到电影院的实际距离即可。
35.解:长方体容积:20×10×8=200×8=1600(毫升)
5个圆柱容积:3.14× ×10×5=3.14×9×50=3.14×450=1413(毫升)
饮料剩余:1600-1413=187(毫升)
答:有。
【解析】【分析】长方体的体积=长×宽×高;圆柱的体积=底面积×高,饮料剩余=长方体容积-5个圆柱容积;据此解答即可。
36.解:3.14×1.2×1.5×100
=314×1.8
=565.2(平方米)
答:压路的面积是565.2平方米。
【解析】【分析】压路的面积=圆柱的侧面积×前轮转动周数,圆柱的侧面积=π×直径×轮宽。
37.解:第一种情况:18÷3÷2
=6÷2
=3(厘米)
3×3²×12
=3×9×12
=27×12
=324(立方厘米)
第二种情况:12÷3÷2
=4÷2
=2(厘米)
3×2²×18
=3×4×18
=12×18
=216(立方厘米)
324立方厘米>216立方厘米
答:这个圆柱的体积最大可能是324立方厘米。
【解析】【分析】此题分两种情况,(1)当底面周长是18厘米时,高是12厘米,r=C÷π÷2,得出半径,然后底面积×高就可以计算出体积;(2)当底面周长是12厘米时,高是18厘米,r=C÷π÷2,得出半径,然后底面积×高就可以计算出体积。
38.(1)解:2÷ =400(厘米)=4(米)
答:这个水池实际应该挖4米深。
(2)解:r=3÷ =600(厘米)=6(米)
V = 3.14×6²×4=452.16(立方米)
答:这个水池能装下452.16立方米的水。
(3)解:10cm=0.1m
r=6-0.1=5.9(米), h=4-0.1=3.9(米)
3.14×5.9×2×3.9+3.14×5.9×5.9
=3.14×46.02+3.14×34.81
=3.14×80.83
≈253.8(平方米)
答:粉刷部分的面积是253.8平方米。
【解析】【分析】(1)用图上距离除以比例尺即可求出实际距离,然后换算成米即可;(2)先求出实际的半径长度,然后用底面积乘高求出能装下水的体积即可;
(3)先把10cm换算成0.1m,则实际的半径长度减少了0.1m,实际高度减少了0.1米,先计算出实际半径和实际高度。
然后用底面积加上侧面积即可求出需要粉刷部分的面积。
39.(1)解:6×6×6
=36×6
=216(平方分米)
答:它的表面积是216平方分米。
(2)解:3.14×(6÷2)²×6
=3.14×9×6
=28.26×6
=169.56(立方分米)
答:圆柱体的体积是169.56立方分米。
(3)解:圆锥的体积:
×3.14×(6÷2)²×6
= ×3.14×9×6
=9.42×6
=56.52(立方分米);
正方体的体积:
6×6×6
=36×6
=216(立方分米)
削去的体积:216-56.52=159.48(立方分米)
答:削去的体积是159.48立方分米。
【解析】【分析】(1)已知正方体的棱长,要求正方体的表面积,正方体的表面积=棱长×棱长×6,据此列式解答;
(2)如果把正方体削成一个最大的圆柱体,圆柱的底面直径是正方体的棱长,圆柱的高是正方体的棱长,要求圆柱的体积,用公式:圆柱的体积=底面积×高,据此列式解答;(3)将一个正方体削成一个最大的圆锥体,圆锥的底面直径是正方体的棱长,圆锥的高
是正方体的棱长,先求出圆锥的体积,圆锥的体积公式:V=πr2h,然后求出正方体的体积,最后用正方体的体积-圆锥的体积=削去的体积,据此列式解答。
40.(1)A;C
(2)解:420÷6=70(千米/小时)
70<80
所以,按照目前的平均速度,乙车不能追上甲车。
【解析】【解答】(1)240÷3=80(千米/小时)
480÷6=80(千米/小时)
因为甲车的路程与时间的比值是定值,所以,甲车的路程与时间程正比例。
120÷1=120(千米/小时)
(180-120)÷(4-1)
=60÷3
=20(千米/小时)
(420-180)÷(6-4)
=240÷2
=120(千米/小时)
因为乙车的路程与时间的比值不是定值,所以,乙车的路程与时间不成比例。
故答案为:(1)A;C。
【分析】(1)两个量的比值是定值,则两个量成正比例,据此判断即可。
(2)乙车的平均速度=总路程÷总时间,甲车的速度=路程÷时间,代入数值计算,并比较两车的速度即可判断。