靖西市第三中学2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

靖西市第三中学2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 下列函数在其定义域内既是奇函数又是增函数的是( ) A . B . C . D .
2. 已知等差数列{a n }满足2a 3﹣a +2a 13=0,且数列{b n } 是等比数列,若b 8=a 8,则b 4b 12=( )
A .2
B .4
C .8
D .16
3. 在ABC ∆中,b =
3c =,30B =,则等于( )
A B . C 或 D .2 4. 复数i ﹣1(i 是虚数单位)的虚部是( )
A .1
B .﹣1
C .i
D .﹣i
5. 如图,一隧道截面由一个长方形和抛物线构成现欲在随道抛物线拱顶上安装交通信息采集装置若位置C 对隧道底AB 的张角θ最大时采集效果最好,则采集效果最好时位置C 到AB 的距离是( )
A .2m
B .2m
C .4 m
D .6 m
6. 已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能是( )
A .1
B .
C .
D .
7. 复数i i
i
z (21+=
是虚数单位)的虚部为( ) A .1- B .i - C .i 2 D .2
【命题意图】本题考查复数的运算和概念等基础知识,意在考查基本运算能力.
8. 已知,A B 是球O 的球面上两点,60AOB ∠=︒,C 为该球面上的动点,若三棱锥O ABC -体积的最大
值为O 的体积为( )
A .81π
B .128π
C .144π
D .288π
【命题意图】本题考查棱锥、球的体积、球的性质,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.
9. 已知直线l :2y kx =+过椭圆)0(122
22>>=+b a b
y a x 的上顶点B 和左焦点F ,且被圆
224x y +=截得的弦长为L
,若5
L ≥
e 的取值范围是( ) (A ) ⎥⎦⎤
⎝⎛550, ( B )
0⎛ ⎝⎦
(C ) ⎥⎦⎤ ⎝⎛5530, (D ) ⎥⎦⎤

⎛5540, 10.定义在R 上的偶函数在[0,7]上是增函数,在[7,+∞)上是减函数,又f (7)=6,则f (x )( ) A .在[﹣7,0]上是增函数,且最大值是6 B .在[﹣7,0]上是增函数,且最小值是6 C .在[﹣7,0]上是减函数,且最小值是6 D .在[﹣7,0]上是减函数,且最大值是6 11.若命题“p ∧q ”为假,且“¬q ”为假,则( ) A .“p ∨q ”为假
B .p 假
C .p 真
D .不能判断q 的真假
12.如果a >b ,那么下列不等式中正确的是( ) A .
B .|a|>|b|
C .a 2>b 2
D .a 3>b 3
二、填空题
13.设全集U={0,1,2,3,4},集合A={0,1,2},集合B={2,3},则(∁U A )∪B= . 14.将边长为1
的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记,
则S 的最小值是 .
15.在△ABC
中,已知=2,b=2a ,那么cosB 的值是 .
16.
17.已知函数f (x )是定义在R 上的奇函数,且它的图象关于直线x=1对称.
17.已知
是等差数列,
为其公差
,
是其前项和,若只有

中的最小项,则可得出的结论中
所有正确的序号是___________





18.等比数列{a n }的前n 项和为S n ,已知S 3=a 1+3a 2,则公比q= .
三、解答题
19.在正方体1111D ABC A B C D -中,,E G H 分别为111,,BC C D AA 的中点. (1)求证:EG 平面11BDD B ;
(2)求异面直线1B H 与EG 所成的角]
20.己知函数f (x )=lnx ﹣ax+1(a >0). (1)试探究函数f (x )的零点个数;
(2)若f (x )的图象与x 轴交于A (x 1,0)B (x 2,0)(x 1<x 2)两点,AB 中点为C (x 0,0),设函数f (x )的导函数为f ′(x ),求证:f ′(x 0)<0.
21.(本小题满分10分)选修4-5:不等式选讲 已知函数()|21|f x x =-.
(1)若不等式1()21(0)2
f x m m +≤+>的解集为(][),22,-∞-+∞,求实数m 的值;
(2)若不等式()2|23|2
y
y a
f x x ≤+
++,对任意的实数,x y R ∈恒成立,求实数a 的最小值. 【命题意图】本题主要考查绝对值不等式的解法、三角不等式、基本不等式等基础知识,以及考查等价转化的能力、逻辑思维能力、运算能力.
22.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()()323
1312
f x x k x kx =-+++,其中.k R ∈
(1)当3k =时,求函数()f x 在[]
0,5上的值域;
(2)若函数()f x 在[]
1,2上的最小值为3,求实数k 的取值范围.
23.记函数f (x )=log 2(2x ﹣3)的定义域为集合M ,函数g (x )=的定义域为集合N .求:
(Ⅰ)集合M ,N ;
(Ⅱ)集合M ∩N ,∁R (M ∪N ).
24.【南通中学2018届高三10月月考】设,,函数
,其中是自然对数的底数,曲
线
在点
处的切线方程为
.
(Ⅰ)求实数、的值;
(Ⅱ)求证:函数存在极小值;
(Ⅲ)若,使得不等式成立,求实数的取值范围.
靖西市第三中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题
1.【答案】B
【解析】【知识点】函数的单调性与最值函数的奇偶性
【试题解析】若函数是奇函数,则故排除A、D;
对C:在(-和(上单调递增,
但在定义域上不单调,故C错;
故答案为:B
2.【答案】D
【解析】解:由等差数列的性质可得a3+a13=2a8,
即有a82=4a8,
解得a8=4(0舍去),
即有b8=a8=4,
由等比数列的性质可得b4b12=b82=16.
故选:D.
3.【答案】C
【解析】
考点:余弦定理.
4.【答案】A
【解析】解:由复数虚部的定义知,i﹣1的虚部是1,
故选A.
【点评】该题考查复数的基本概念,属基础题.
5.【答案】A
【解析】解:建立如图所示的坐标系,设抛物线方程为x2=﹣2py(p>0),
将点(4,﹣4)代入,可得p=2,
所以抛物线方程为x2=﹣4y,
设C(x,y)(y>﹣6),则
由A (﹣4,﹣6),B (4,﹣6),可得k CA =
,k CB =,
∴tan ∠BCA===,
令t=y+6(t >0),则tan ∠BCA==≥
∴t=2
时,位置C 对隧道底AB 的张角最大,
故选:A .
【点评】本题考查抛物线的方程与应用,考查基本不等式,确定抛物线的方程及tan ∠BCA ,正确运用基本不等式是关键.
6. 【答案】C
【解析】解:水平放置的正方体,当正视图为正方形时,其面积最小为1;当正视图为对角面时,其面积最大为

因此满足棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积的范围为

因此可知:A ,B ,D 皆有可能,而<1,故C 不可能.
故选C .
【点评】正确求出满足条件的该正方体的正视图的面积的范围为
是解题的关键.
7. 【答案】A 【解析】()12(i)
122(i)
i i z i i i +-+=
==--,所以虚部为-1,故选A. 8. 【答案】D
【解析】当OC ⊥平面AOB 平面时,三棱锥O ABC -的体积最大,且此时OC 为球的半径.设球的半径为R ,
则由题意,得2
11sin 6032
R R ⨯⨯︒⋅=6R =,所以球的体积为
3
42883
R π=π,故选D .
9. 【答案】 B
【解析】依题意,2, 2.b kc ==
设圆心到直线l 的距离为d ,则L =解得216
5
d ≤。

又因为
d =,所以2116,15k ≤+解得2
14k ≥。

于是222
222211c c e a b c k ===++,所以2
40,5e <≤解得
0e <≤故选B . 10.【答案】D
【解析】解:∵函数在[0,7]上是增函数,在[7,+∞)上是减函数, ∴函数f (x )在x=7时,函数取得最大值f (7)=6, ∵函数f (x )是偶函数,
∴在[﹣7,0]上是减函数,且最大值是6, 故选:D
11.【答案】B
【解析】解:∵命题“p ∧q ”为假,且“¬q ”为假, ∴q 为真,p 为假; 则p ∨q 为真, 故选B .
【点评】本题考查了复合命题的真假性的判断,属于基础题.
12.【答案】D
【解析】解:若a >0>b ,则
,故A 错误;
若a >0>b 且a ,b 互为相反数,则|a|=|b|,故B 错误; 若a >0>b 且a ,b 互为相反数,则a 2>b 2,故C 错误; 函数y=x 3在R 上为增函数,若a >b ,则a 3>b 3,故D 正确; 故选:D
【点评】本题以命题的真假判断与应用为载体,考查了函数的单调性,难度不大,属于基础题.
二、填空题
13.【答案】 {2,3,4} .
【解析】解:∵全集U={0,1,2,3,4},集合A={0,1,2},
∴C U A={3,4},
又B={2,3},
∴(C U A)∪B={2,3,4},
故答案为:{2,3,4}
14.【答案】.
【解析】解:设剪成的小正三角形的边长为x,则:S==,(0<x<1)令3﹣x=t,t∈(2,3),
∴S===,当且仅当t=即t=2时等号成
立;
故答案为:.
15.【答案】.
【解析】解:∵=2,由正弦定理可得:,即c=2a.
b=2a,
∴==.
∴cosB=.
故答案为:.
【点评】本题考查了正弦定理与余弦定理,考查了推理能力与计算能力,属于中档题.
16.【答案】
【解析】解:∵f(x)=a x g(x)(a>0且a≠1),
∴=a x,
又∵f′(x)g(x)>f(x)g′(x),
∴()′=>0,
∴=a x是增函数,
∴a>1,
∵+=.
∴a1+a﹣1=,解得a=或a=2.
综上得a=2.
∴数列{}为{2n}.
∵数列{}的前n项和大于62,
∴2+22+23+…+2n==2n+1﹣2>62,
即2n+1>64=26,
∴n+1>6,解得n>5.
∴n的最小值为6.
故答案为:6.
【点评】本题考查等比数列的前n项和公式的应用,巧妙地把指数函数、导数、数列融合在一起,是一道好题.
17.【答案】①②③④
【解析】
因为只有是中的最小项,所以,,所以,故①②③正
确;
,故④正确;
,无法判断符号,故⑤错误,
故正确答案①②③④
答案:①②③④
18.【答案】2.
【解析】解:设等比数列的公比为q , 由S 3=a 1+3a 2,
当q=1时,上式显然不成立;
当q ≠1时,得

即q 2
﹣3q+2=0,解得:q=2.
故答案为:2.
【点评】本题考查了等比数列的前n 项和,考查了等比数列的通项公式,是基础的计算题.
三、解答题
19.【答案】(1)证明见解析;(2)90. 【解析】
(2)延长DB 于M ,使1
2
BM BD =
,连结11,,B M HM HB M ∠为所求角.
设正方体边长为,则111,cos 02222
B M B H AM HM HB M =
===∴∠=, 1B H ∴与EG 所成的角为90.
考点:直线与平行的判定;异面直线所成的角的计算.
【方法点晴】本题主要考查了直线与平面平行的判定与证明、空间中异面直线所成的角的计算,其中解答中涉及到平行四边形的性质、正方体的结构特征、解三角形的相关知识的应用,着重考查了学生的空间想象能力以及学生分析问题和解答问题的能力,本题的解答中根据异面直线所成的角找到角1HB M ∠为异面直线所成的角是解答的一个难点,属于中档试题. 20.【答案】 【解析】解:(1),
令f'(x )>0,则
;令f'(x )<0,则
. ∴f (x )在x=a 时取得最大值,即
①当,即0<a <1时,考虑到当x 无限趋近于0(从0的右边)时,f (x )→﹣∞;当x →+∞时,f
(x )→﹣∞
∴f (x )的图象与x 轴有2个交点,分别位于(0,)及()
即f (x )有2个零点; ②当,即a=1时,f (x )有1个零点; ③当,即a >1时f (x )没有零点;
(2)由

(0<x 1<x 2),
=,令
,设
,t ∈(0,1)且h (1)=0

,又t ∈(0,1),∴h ′(t )<0,∴h (t )>h (1)=0
即,又,
∴f'(x 0)=
<0.
【点评】本题在导数的综合应用中属于难题,题目中的两个小问都有需要注意之处,如(1)中,在对0<a <1进行研究时,一定要注意到f (x )的取值范围,才能确定零点的个数,否则不能确定.(2)中,代数运算比较复杂,特别是计算过程中,令的化简和换元,使得原本比较复杂的式子变得简单化而可解,这对学
生的综合能力有比较高的要求.
21.【答案】
【解析】(1)由题意,知不等式|2|21(0)x m m ≤+>解集为(][),22,-∞-+∞.
由|2|21x m ≤+,得11
22
m x m --
≤≤+,……………………2分 所以,由122m +=,解得3
2
m =.……………………4分
(2)不等式()2|23|2y y a f x x ≤+++等价于|21||23|22
y
y a x x --+≤+,
由题意知max (|21||23|)22
y
y a x x --+≤+.……………………6分
22.【答案】(1)[]
1,21;(2)2k ≥.
【解析】试题分析:(1)求导,再利用导数工具即可求得正解;(2)求导得()'f x =()()31x x k --,再
分1k ≤和1k >两种情况进行讨论;
试题解析:(1)解:3k = 时,()3
2
691f x x x x =-++
则()()()2
3129313f x x x x x =-+=--' 令()0f x '=得121,3x x ==列表
由上表知函数()f x 的值域为[]
1,21
(2)方法一:()()()()2
331331f x x k x k x x k =-++=--'
①当1k ≤时,[]()1,2,'0x f x ∀∈≥,函数()f x 在区间[]
1,2单调递增 所以()()()min 3
1113132
f x f k k ==-+++= 即5
3
k =
(舍) ②当2k ≥时,[]()1,2,'0x f x ∀∈≤,函数()f x 在区间[]1,2单调递减
所以()()()min 28613213f x f k k ==-++⋅+= 符合题意
③当12k <<时,
当[)1,x k ∈时,()'0f x <()f x 区间在[
)1,k 单调递减 当(],2x k ∈时,()'0f x >()f x 区间在(],2k 单调递增
所以()()()322min 3
13132
f x f k k k k k ==-+++= 化简得:32340k k -+= 即()()2
120k k +-=
所以1k =-或2k =(舍)
注:也可令()3
2
34g k k k =-+
则()()2
3632g k k k k k =='-- 对()()1,2,0k g k ∀∈'≤
()3234g k k k =-+在()1,2k ∈单调递减
所以()02g k <<不符合题意
综上所述:实数k 取值范围为2k ≥
方法二:()()()()2
331331f x x k x k x x k =-++=--'
①当2k ≥时,[]
()1,2,'0x f x ∀∈≤,函数()f x 在区间[]
1,2单调递减 所以()()()min 28613213f x f k k ==-++⋅+=
符合题意 …………8分
②当1k ≤时,[]
()1,2,'0x f x ∀∈≥,函数()f x 在区间[]
1,2单调递增 所以()()min 23f x f <=不符合题意
③当12k <<时,
当[)1,x k ∈时,()'0f x <()f x 区间在[
)1,k 单调递减 当(],2x k ∈时,()'0f x >()f x 区间在(],2k 单调递增 所以()()()min 23f x f k f =<=不符合题意
综上所述:实数k 取值范围为2k ≥ 23.【答案】
【解析】解:(1)由2x ﹣3>0 得 x >,∴M={x|x >}.
由(x ﹣3)(x ﹣1)>0 得 x <1 或x >3,∴N={x|x <1,或 x >3}. (2)M ∩N=(3,+∞),M ∪N={x|x <1,或 x >3}, ∴C R (M ∪N )=.
【点评】本题主要考查求函数的定义域,两个集合的交集、并集、补集的定义和运算,属于基础题.
24.【答案】(Ⅰ);(Ⅱ)证明见解析;(Ⅲ)
.
【解析】试题分析:
(Ⅰ)利用导函数研究函数的切线,得到关于实数a ,b 的方程组,求解方程组可得;
(Ⅱ)结合(Ⅰ)中求得的函数的解析式首先求解导函数,然后利用导函数讨论函数的单调性即可确定函数存
在极小值;
试题解析: (Ⅰ)∵
,∴
,由题设得
,∴

(Ⅱ)由(Ⅰ)得,∴,∴,∴函数在
是增函数,∵,,且函数图像在上不间断,∴,使得

∴函数存在极小值;
(Ⅲ),使得不等式成立,即,使得不等式成立……
(*),令,,
则,
∴结合(Ⅱ)得,其中,满足,
即,∴,,∴,∴,,∴在内单调递增,
∴,
结合(*)有,即实数的取值范围为.。

相关文档
最新文档