成都市七中育才学校(新校区)七年级下册数学期末试卷测试卷(含答案解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都市七中育才学校(新校区)七年级下册数学期末试卷测试卷(含答案解析) 一、解答题
1.已知:AB //CD .点E 在CD 上,点F ,H 在AB 上,点G 在AB ,CD 之间,连接FG ,EH ,GE ,∠GFB =∠CEH .
(1)如图1,求证:GF //EH ;
(2)如图2,若∠GEH =α,FM 平分∠AFG ,EM 平分∠GEC ,试问∠M 与α之间有怎样的数量关系(用含α的式子表示∠M )?请写出你的猜想,并加以证明.
2.如图,//MN PQ ,直线AD 与MN 、PQ 分别交于点A 、D ,点B 在直线PQ 上,过点B 作BG AD ⊥,垂足为点G .
(1)如图1,求证:90MAG PBG ∠+∠=︒;
(2)若点C 在线段AD 上(不与A 、D 、G 重合),连接BC ,MAG ∠和PBC ∠的平分线交于点H 请在图2中补全图形,猜想并证明CBG ∠与AHB ∠的数量关系;
3.已知,AB ∥CD .点M 在AB 上,点N 在CD 上.
(1)如图1中,∠BME 、∠E 、∠END 的数量关系为: ;(不需要证明) 如图2中,∠BMF 、∠F 、∠FND 的数量关系为: ;(不需要证明)
(2)如图3中,NE 平分∠FND ,MB 平分∠FME ,且2∠E +∠F =180°,求∠FME 的度数;
(3)如图4中,∠BME =60°,EF 平分∠MEN ,NP 平分∠END ,且EQ ∥NP ,则∠FEQ 的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ 的度数.
4.已知:直线AB∥CD,M,N分别在直线AB,CD上,H为平面内一点,连HM,HN.(1)如图1,延长HN至G,∠BMH和∠GND的角平分线相交于点E.求证:2∠MEN﹣∠MHN=180°;
(2)如图2,∠BMH和∠HND的角平分线相交于点E.
①请直接写出∠MEN与∠MHN的数量关系:;
②作MP平分∠AMH,NQ∥MP交ME的延长线于点Q,若∠H=140°,求∠ENQ的度数.(可直接运用①中的结论)
5.问题情境:
如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC的度数.小明的思路是:过P作PE∥AB,通过平行线性质,可得∠APC=∠APE+∠CPE=50°+60°=110°.
问题解决:
(1)如图2,AB∥CD,直线l分别与AB、CD交于点M、N,点P在直线I上运动,当点P 在线段MN上运动时(不与点M、N重合),∠PAB=α,∠PCD=β,判断∠APC、α、β之间的数量关系并说明理由;
(2)在(1)的条件下,如果点P在线段MN或NM的延长线上运动时.请直接写出
∠APC、α、B之间的数量关系;
(3)如图3,AB∥CD,点P是AB、CD之间的一点(点P在点A、C右侧),连接PA、PC,∠BAP和∠DCP的平分线交于点Q.若∠APC=116°,请结合(2)中的规律,求∠AQC 的度数.
二、解答题
6.阅读下面材料:
小颖遇到这样一个问题:已知:如图甲,//,AB CD E 为,AB CD 之间一点,连接,,35,37BE DE B D ∠=︒∠=︒,求BED ∠的度数.
她是这样做的: 过点E 作//,EF AB 则有,BEF B ∠=∠ 因为//,AB CD 所以//.EF CD ① 所以,FED D ∠=∠
所以,BEF FED B D ∠+∠=∠+∠ 即BED ∠=_ ; 1.小颖求得BED ∠的度数为__ ; 2.上述思路中的①的理由是__ ; 3.请你参考她的思考问题的方法,解决问题:
已知:直线//,a b 点,A B 在直线a 上,点,C D 在直线b 上,连接,,AD BC BE 平分,ABC DE ∠平分,ADC ∠且,BE DE 所在的直线交于点E .
(1)如图1,当点B 在点A 的左侧时,若,ABC ADC αβ∠=∠=,则BED ∠的度数为 ;(用含有,αβ的式子表示).
(2)如图2,当点B 在点A 的右侧时,设,ABC ADC αβ∠=∠=,直接写出BED ∠的度数(用含有,αβ的式子表示).
7.如图,AB ⊥AK ,点A 在直线MN 上,AB 、AK 分别与直线EF 交于点B 、C ,∠MAB+∠KCF =90°.
(1)求证:EF ∥MN ;
(2)如图2,∠NAB 与∠ECK 的角平分线交于点G ,求∠G 的度数;
(3)如图3,在∠MAB 内作射线AQ ,使∠MAQ =2∠QAB ,以点C 为端点作射线CP ,交直.线.AQ 于点T ,当∠CTA =60°时,直接写出∠FCP 与∠ACP 的关系式.
8.(1)学习了平行线以后,香橙同学想出了过一点画一条直线的平行线的新方法,她是通过折纸做的,过程如(图1).
①请你仿照以上过程,在图2中画出一条直线b ,使直线b 经过点P ,且//b a ,要求保留折纸痕迹,画出所用到的直线,指明结果.无需写画法:
②在(1)中的步骤(b )中,折纸实际上是在寻找过点P 的直线a 的 线.
(2)已知,如图3,//AB CD ,BE 平分ABC ∠,CF 平分BCD ∠.求证://BE CF (写出每
步的依据). 9.问题情境
(1)如图1,已知//AB CD ,125PBA ︒∠=,155PCD ︒∠=,求BPC ∠的度数.佩佩同学的思路:过点P 作PG//AB ,进而//PG CD ,由平行线的性质来求BPC ∠,求得
BPC ∠=________. 问题迁移
(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,90ACB ︒∠=,//DF CG ,AB 与FD 相交于点E ,有一动点P 在边BC 上运动,连接PE ,PA ,记PED α∠=∠,PAC β∠=∠.
①如图2,当点P 在C ,D 两点之间运动时,请直接写出AOE ∠与α∠,β∠之间的数量关系;
②如图3,当点P 在B ,D 两点之间运动时,APE ∠与α∠,β∠之间有何数量关系?请判断并说明理由;拓展延伸
(3)当点P 在C ,D 两点之间运动时,若PED ∠,PAC ∠的角平分线EN ,AN 相交于点
N ,请直接写出ANE ∠与α∠,β∠之间的数量关系.
10.如图1,在平面直角坐标系中,()()02A a C b ,,
,,且满足()2
40a b a b ++-+=,过C 作CB x ⊥轴于B
(1)求三角形ABC 的面积.
(2)发过B 作//BD AC 交y 轴于D ,且,AE DE 分别平分,CAB ODB ∠∠,如图2,若
,90()CAB ACB a αββ∠=∠=+=︒,求AED ∠的度数.
(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等?若存在,求出
P 点坐标;若不存在;请说明理由.
三、解答题
11.如图,在ABC 中,AD 是高,AE 是角平分线,20B ∠=︒,60C ∠=°.
(1)求CAD ∠、AEC ∠和EAD ∠的度数.
(2)若图形发生了变化,已知的两个角度数改为:当30B ∠=︒,60C ∠=°,则
EAD ∠=__________︒.
当50B ∠=︒,C 60∠=︒时,则EAD ∠=__________︒. 当60B ∠=︒,60C ∠=°时,则EAD ∠=__________︒. 当70B ∠=︒,60C ∠=°时,则EAD ∠=__________︒.
(3)若B 和C ∠的度数改为用字母α和β来表示,你能找到EAD ∠与α和β之间的关系吗?请直接写出你发现的结论.
12.如图,已知直线a ∥b ,∠ABC =100°,BD 平分∠ABC 交直线a 于点D ,线段EF 在线段AB 的左侧,线段EF 沿射线AD 的方向平移,在平移的过程中BD 所在的直线与EF 所在的直线交于点P .问∠1的度数与∠EPB 的度数又怎样的关系?
(特殊化)
(1)当∠1=40°,交点P 在直线a 、直线b 之间,求∠EPB 的度数;
(2)当∠1=70°,求∠EPB 的度数;
(一般化)
(3)当∠1=n°,求∠EPB 的度数(直接用含n 的代数式表示).
13.己知:如图①,直线MN ⊥直线PQ ,垂足为O ,点A 在射线OP 上,点B 在射线OQ 上(A 、B 不与O 点重合),点C 在射线ON 上且2OC =,过点C 作直线//l PQ .点D 在点C 的
左边且3CD =
(1)直接写出的BCD ∆面积 ;
(2)如图②,若AC BC ⊥,作CBA ∠的平分线交OC 于E ,交AC 于F ,试说明
CEF CFE ∠=∠;
(3)如图③,若ADC DAC ∠=∠,点B 在射线OQ 上运动,ACB ∠的平分线交DA 的延长线于点H ,在点B 运动过程中
H
ABC
∠∠的值是否变化?若不变,求出其值;若变化,求出变化范围. 14.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处. (1)若140∠=︒,2∠=________.
(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论. ②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.
(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.
15.已知//,MN GH 在Rt ABC 中,90,30ACB BAC ∠=︒∠=︒,点A 在MN 上,边BC 在
GH 上,在Rt DEF △中,90,DFE ∠=︒边DE 在直线AB 上,45EDF ∠=︒;
(1)如图1,求BAN ∠的度数;
(2)如图2,将Rt DEF △沿射线BA 的方向平移,当点F 在M 上时,求AFE ∠度数; (3)将Rt DEF △在直线AB 上平移,当以A D F 、、为顶点的三角形是直角三角形时,直接写出FAN ∠度数.
【参考答案】
一、解答题
1.(1)见解析;(2),证明见解析. 【分析】
(1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解; (2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可. 【详
解析:(1)见解析;(2)902
FME α
∠=︒-,证明见解析.
【分析】
(1)由平行线的性质得到CEH EHB ∠=∠,等量代换得出GFB EHB ∠=∠,即可根据“同位角相等,两直线平行”得解;
(2)过点M 作//MQ AB ,过点G 作//GP AB ,根据平行线的性质及角平分线的定义求解即可. 【详解】 (1)证明:
//AB CD ,
CEH EHB ∴∠=∠, GFB CEH ∠=∠, GFB EHB ∴∠=∠,
//GF EH ∴;
(2)解:902
FME α
∠=︒-
,理由如下:
如图2,过点M 作//MQ AB ,过点G 作//GP AB ,
//MQ CD ∴,
AFM FMQ ∴∠=∠,QME MEC ∠=∠, FME FMQ QME AFM MEC ∴∠=∠+∠=∠+∠,
同理,FGE FGP PGE AFG GEC ∠=∠+∠=∠+∠, FM 平分AFG ∠,EM 平分GEC ∠,
2AFG AFM ∴∠=∠,2GEC MEC ∠=∠,
2FGE FME ∴∠=∠,
由(1)知,//GF EH ,
180FGE GEH ∴∠+∠=︒,
GEH α∠=,
180FGE α∴∠=︒-,
2180FME α∴∠=︒-,
902
FME α
∴∠=︒-

【点睛】
此题考查了平行线的判定与性质,熟记平行线的判定与性质及作出合理的辅助线是解题的关键.
2.(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,. 【分析】
(1)过点作,根据平行线的性质即可求解;
(2)分两种情况:当点在上,当点在上,再过点作即可求解. 【详解】 (1)证明:
解析:(1)证明见解析;(2)补图见解析;当点C 在AG 上时,290AHB CBG ∠-∠=︒;当点C 在DG 上时,290AHB CBG ∠+∠=︒. 【分析】
(1)过点G 作//GE MN ,根据平行线的性质即可求解;
(2)分两种情况:当点C 在AG 上,当点C 在DG 上,再过点H 作//HF MN 即可求解. 【详解】
(1)证明:如图,过点G 作//GE MN ,
∴MAG AGE ∠=∠, ∵//MN PQ ,
∴PBG BGE ∠=∠. ∵BG AD ⊥, ∴90AGB ∠=︒,
∴90MAG PBG AGE BGE AGB ∠+∠=∠+∠=∠=︒. (2)补全图形如图2、图3,
猜想:290AHB CBG ∠-∠=︒或290AHB CBG ∠+∠=︒. 证明:过点H 作//HF MN .
∴1AHF ∠=∠. ∵//MN PQ , ∴//HF PQ ∴2BHF ∠=∠,
∴12AHB AHF BHF ∠=∠+∠=∠+∠. ∵AH 平分MAG ∠, ∴21MAG ∠=∠.
如图3,当点C 在AG 上时, ∵BH 平分PBC ∠,
∴22PBC PBG CBG ∠=∠+∠=∠, ∵//MN PQ , ∴MAG GDB ∠=∠,
2212290AHB MAG PBG CBG GDB PBG CBG CBG
∴∠=∠+∠=∠+∠+∠=∠+∠+∠=︒+∠ 即290AHB CBG ∠-∠=︒. 如图2,当点C 在DG 上时, ∵BH 平分PBC ∠,
∴22PBC PBG CBG ∠=∠-∠=∠.
∴2212290AHB MAG PBG CBG CBG ∠=∠+∠=∠+∠-∠=︒-∠. 即290AHB CBG ∠+∠=︒. 【点睛】
本题考查了平行线的基本性质、角平分线的基本性质及角的运算,解题的关键是准确作出平行线,找出角与角之间的数量关系.
3.(1)∠BME =∠MEN ﹣∠END ;∠BMF =∠MFN +∠FND ;(2)120°;
(3)不变,30°
【分析】
(1)过E作EH∥AB,易得EH∥AB∥CD,根据平行线的性质可求解;过F作FH∥AB
解析:(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不变,30°
【分析】
(1)过E作EH∥AB,易得EH∥AB∥CD,根据平行线的性质可求解;过F作FH∥AB,易得FH∥AB∥CD,根据平行线的性质可求解;
(2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF-∠FND=180°,可求解∠BMF=60°,进而可求解;
∠BME,进而可求解.
(3)根据平行线的性质及角平分线的定义可推知∠FEQ=1
2
【详解】
解:(1)过E作EH∥AB,如图1,
∴∠BME=∠MEH,
∵AB∥CD,
∴HE∥CD,
∴∠END=∠HEN,
∴∠MEN=∠MEH+∠HEN=∠BME+∠END,
即∠BME=∠MEN﹣∠END.
如图2,过F作FH∥AB,
∴∠BMF=∠MFK,
∵AB∥CD,
∴FH∥CD,
∴∠FND=∠KFN,
∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,
即:∠BMF=∠MFN+∠FND.
故答案为∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.
(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,
∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,
∵2∠MEN+∠MFN=180°,
∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,
∴2∠BME+2∠END+∠BMF﹣∠FND=180°,
即2∠BMF+∠FND+∠BMF﹣∠FND=180°,
解得∠BMF=60°,
∴∠FME=2∠BMF=120°;
(3)∠FEQ的大小没发生变化,∠FEQ=30°.
由(1)知:∠MEN=∠BME+∠END,
∵EF平分∠MEN,NP平分∠END,
∴∠FEN=1
2∠MEN=1
2
(∠BME+∠END),∠ENP=1
2
∠END,
∵EQ∥NP,
∴∠NEQ=∠ENP,
∴∠FEQ=∠FEN﹣∠NEQ=1
2(∠BME+∠END)﹣1
2
∠END=1
2
∠BME,
∵∠BME=60°,
∴∠FEQ=1
2
×60°=30°.
【点睛】
本题主要考查平行线的性质及角平分线的定义,作平行线的辅助线是解题的关键.4.(1)见解析;(2)①2∠MEN+∠MHN=360°;②20°
【分析】
(1)过点E作EP∥AB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即
解析:(1)见解析;(2)①2∠MEN+∠MHN=360°;②20°
【分析】
(1)过点E作EP∥AB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即可得证.
(2)①过点H作GI∥AB,利用(1)中结论2∠MEN﹣∠MHN=180°,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等得出∠AMH+∠HNC=360°﹣(∠BMH+∠HND),进而用等量代换得出2∠MEN+∠MHN=360°.
②过点H作HT∥MP,由①的结论得2∠MEN+∠MHN=360°,∠H=140°,∠MEN=110°.利用平行线性质得∠ENQ+∠ENH+∠NHT=180°,由角平分线性质及邻补角可得
∠ENQ+∠ENH+140°﹣1
2
(180°﹣∠BMH)=180°.继续使用等量代换可得∠ENQ度数.【详解】
解:(1)证明:过点E作EP∥AB交MH于点Q.如答图1
∵EP∥AB且ME平分∠BMH,
∴∠MEQ=∠BME=1
2
∠BMH.
∵EP∥AB,AB∥CD,
∴EP∥CD,又NE平分∠GND,
∴∠QEN=∠DNE=1
2
∠GND.(两直线平行,内错角相等)
∴∠MEN=∠MEQ+∠QEN=1
2∠BMH+1
2
∠GND=1
2
(∠BMH+∠GND).
∴2∠MEN=∠BMH+∠GND.
∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH.
∴∠DHN=∠BMH﹣∠MHN.
∴∠GND+∠BMH﹣∠MHN=180°,
即2∠MEN﹣∠MHN=180°.
(2)①:过点H作GI∥AB.如答图2
由(1)可得∠MEN=1
2
(∠BMH+∠HND),
由图可知∠MHN=∠MHI+∠NHI,
∵GI∥AB,
∴∠AMH=∠MHI=180°﹣∠BMH,
∵GI∥AB,AB∥CD,
∴GI∥CD.
∴∠HNC=∠NHI=180°﹣∠HND.
∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND).又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN,
∴∠BMH+∠HND=360°﹣∠MHN.
即2∠MEN+∠MHN=360°.
故答案为:2∠MEN+∠MHN=360°.
②:由①的结论得2∠MEN+∠MHN=360°,
∵∠H=∠MHN=140°,
∴2∠MEN=360°﹣140°=220°.
∴∠MEN=110°.
过点H作HT∥MP.如答图2
∵MP∥NQ,
∴HT∥NQ.
∴∠ENQ+∠ENH+∠NHT=180°(两直线平行,同旁内角互补).∵MP平分∠AMH,
∴∠PMH=1
2∠AMH=1
2
(180°﹣∠BMH).
∵∠NHT=∠MHN﹣∠MHT=140°﹣∠PMH.
∴∠ENQ+∠ENH+140°﹣1
2
(180°﹣∠BMH)=180°.
∵∠ENH=1
2
∠HND.
∴∠ENQ+1
2∠HND+140°﹣90°+1
2
∠BMH=180°.
∴∠ENQ+1
2
(HND+∠BMH)=130°.
∴∠ENQ+1
2
∠MEN=130°.
∴∠ENQ=130°﹣110°=20°.
【点睛】
本题考查了平行线的性质,角平分线的性质,邻补角,等量代换,角之间的数量关系运算,辅助线的作法,正确作出辅助线是解题的关键,本题综合性较强.
5.(1)∠APC=α+β,理由见解析;(2)∠APC=α-β或∠APC=β-α;(3)58°【分析】
(1)过点P作PE∥AB,根据平行线的判定与性质即可求解;
(2)分点P在线段MN或NM的延长线
解析:(1)∠APC=α+β,理由见解析;(2)∠APC=α-β或∠APC=β-α;(3)58°
【分析】
(1)过点P作PE∥AB,根据平行线的判定与性质即可求解;
(2)分点P在线段MN或NM的延长线上运动两种情况,根据平行线的判定与性质及角的和差即可求解;
(3)过点P,Q分别作PE∥AB,QF∥AB,根据平行线的判定与性质及角的和差即可求解.
【详解】
解:(1)如图2,过点P作PE∥AB,
∵AB∥CD,
∴PE∥AB∥CD,
∴∠APE=α,∠CPE=β,
∴∠APC=∠APE+∠CPE=α+β.
(2)如图,在(1)的条件下,如果点P在线段MN的延长线上运动时,
∵AB∥CD,∠PAB=α,
∴∠1=∠PAB=α,
∵∠1=∠APC+∠PCD,∠PCD=β,
∴α=∠APC+β,
∴∠APC=α-β;
如图,在(1)的条件下,如果点P在线段NM的延长线上运动时,
∵AB∥CD,∠PCD=β,
∴∠2=∠PCD=β,
∵∠2=∠PAB+∠APC,∠PAB=α,
∴β=α+∠APC,
∴∠APC=β-α;
(3)如图3,过点P,Q分别作PE∥AB,QF∥AB,
∵AB ∥CD ,
∴AB ∥QF ∥PE ∥CD ,
∴∠BAP =∠APE ,∠PCD =∠EPC ,
∵∠APC =116°,
∴∠BAP +∠PCD =116°,
∵AQ 平分∠BAP ,CQ 平分∠PCD ,
∴∠BAQ =12∠BAP ,∠DCQ =1
2∠PCD ,
∴∠BAQ +∠DCQ =12(∠BAP +∠PCD )=58°,
∵AB ∥QF ∥CD ,
∴∠BAQ =∠AQF ,∠DCQ =∠CQF ,
∴∠AQF +∠CQF =∠BAQ +∠DCQ =58°,
∴∠AQC =58°.
【点睛】
此题考查了平行线的判定与性质,添加辅助线将两条平行线相关的角联系到一起是解题的关键. 二、解答题
6.;2.平行于同一条直线的两条直线平行;3.(1);(2).
【分析】
1、根据角度和计算得到答案;
2、根据平行线的推论解答;
3、(1)根据角平分线的性质及1的结论证明即可得到答案;
(2)根据B
解析:1.72;2.平行于同一条直线的两条直线平行;3.(1)1122
αβ+;(2)1118022
αβ-+. 【分析】
1、根据角度和计算得到答案;
2、根据平行线的推论解答;
3、(1)根据角平分线的性质及1的结论证明即可得到答案;
(2)根据BE 平分,ABC DE ∠平分,ADC ∠求出11,22
ABE CDE αβ∠=∠=,过点E 作
EF ∥AB ,根据平行线的性质求出∠BEF =12α,11801802DEF CDE β∠=︒-∠=︒-,再利用周角求出答案.
【详解】
1、过点E 作//,EF AB
则有,BEF B ∠=∠
因为//,AB CD
所以//.EF CD ①
所以,FED D ∠=∠
所以,BEF FED B D ∠+∠=∠+∠
即BED ∠=72;
故答案为:72;
2、过点E 作//,EF AB
则有,BEF B ∠=∠
因为//,AB CD
所以EF ∥CD (平行于同一条直线的两条直线平行),
故答案为:平行于同一条直线的两条直线平行;
3、(1)∵BE 平分,ABC DE ∠平分,ADC ∠
∴1111,2222
ABE ABC CDE ADC αβ∠=∠=∠=∠=, 过点E 作EF ∥AB ,由1可得∠BED =BEF FED ABE CDE ∠+∠=∠+∠,
∴∠BED =1122
αβ+, 故答案为:1122
αβ+;
(2)∵BE 平分,ABC DE ∠平分,ADC ∠
∴1111,2222
ABE ABC CDE ADC αβ∠=∠=∠=∠=, 过点E 作EF ∥AB ,则∠ABE =∠BEF =12
α, ∵//,AB CD
∴EF ∥CD ,
∴180CDE DEF ∠+∠=︒,
∴11801802DEF CDE β∠=︒-∠=︒-, ∴11360360(180)22BED DEF BEF βα∠=︒-∠-∠=︒-︒--=1118022
αβ-+.
【点睛】
此题考查平行线的性质:两直线平行内错角相等,两直线平行同旁内角互补,平行线的推论,正确引出辅助线是解题的关键.
7.(1)见解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP 或
∠FCP+2∠ACP=180°.
【分析】
(1)有垂直定义可得∠MAB+∠KCN=90°,然后根据同角的余角相等可得∠KAN=∠K
解析:(1)见解析;(2)∠CGA=45°;(3)∠FCP =2∠ACP 或∠FCP +2∠ACP=180°.
【分析】
(1)有垂直定义可得∠MAB+∠KCN =90°,然后根据同角的余角相等可得∠KAN=∠KCF ,从而判断两直线平行;
(2)设∠KAN=∠KCF=α,过点G 作GH ∥EF ,结合角平分线的定义和平行线的判定及性质求解;
(3)分CP 交射线AQ 及射线AQ 的反向延长线两种情况结合角的和差关系分类讨论求解.
【详解】
解:(1)∵AB ⊥AK
∴∠BAC=90°
∴∠MAB+∠KAN =90°
∵∠MAB+∠KCF =90°
∴∠KAN=∠KCF ∴EF ∥MN
(2)设∠KAN=∠KCF=α
则∠BAN=∠BAC+∠KAN=90°+α
∠KCB=180°-∠KCF=180°-α
∵AG 平分∠NAB ,CG 平分∠ECK
∴∠GAN=12∠BAN=45°+12α,∠KCG=12∠KCB=90°-1

∴∠FCG=∠KCG+∠KCF=90°+12α
过点G 作GH ∥EF
∴∠HGC=∠FCG=90°+12α
又∵MN ∥EF
∴MN ∥GH
∴∠HGA=∠GAN=45°+12α
∴∠CGA=∠HGC -∠HGA=(90°+12α)-(45°+12α)=45°
(3)①当CP 交射线AQ 于点T
∵180CTA TAC ACP ∠+∠+∠=︒
∴180CTA QAB BAC ACP ∠+∠+∠+∠=︒
又∵=60,90CTA BAC ∠︒∠=︒
∴30QAB ACP ∠+∠=︒
由(1)可得:EF ∥MN
∴FCA MAC ∠=∠
∵FCP FCA ACP ∠=∠+∠
∴FCP MAC ACP ∠=∠+∠
∵MAC MAQ QAB BAC ∠=∠+∠+∠,2MAQ QAB ∠=∠
∴()390=330901803MAC QAB ACP ACP ∠=∠+︒︒-∠+︒=︒-∠
∴1803FCP ACP ACP ∠=︒-∠+∠
即∠FCP +2∠ACP=180°
②当CP 交射线AQ 的反向延长线于点T ,延长BA 交CP 于点G
FCP FCA ACP ∠=∠-∠,由EF ∥MN 得MAC FCA ∠=∠
∴FCP MAC ACP ∠=∠-∠
又∵TAG QAB ∠=∠,180BAC CAG ∠+∠=︒,90BAC ∠=︒
∴18090CAG BAC ∠=︒-∠=︒
90CAT CAG TAG QAB ∠=∠-∠=︒-∠
∵180CAT CTA ACP ∠+∠+∠=︒,60CTA ∠=︒
∴120CAT ACP ∠+∠=︒
∴90120QAB ACP ︒-∠+∠=︒
∴30QAB ACP ∠=∠-︒
由①可得390MAC QAB ∠=∠+︒
∴()=330903MAC ACP ACP ∠∠-︒+︒=∠
∴32FCP MAC ACP ACP ACP ACP ∠=∠-∠=∠-∠=∠
综上,∠FCP =2∠ACP 或∠FCP +2∠ACP=180°.
【点睛】
本题考查平行线的判定和性质以及角的和差关系,准确理解题意,正确推理计算是解题关键.
8.(1)①见解析;②垂;(2)见解析
【分析】
(1)①过点折纸,使痕迹垂直直线,然后过点折纸使痕迹与前面的痕迹垂直,从而得到直线;
②步骤(b )中,折纸实际上是在寻找过点的直线的垂线.
(2)先根据
解析:(1)①见解析;②垂;(2)见解析
【分析】
(1)①过P 点折纸,使痕迹垂直直线a ,然后过P 点折纸使痕迹与前面的痕迹垂直,从而得到直线b ;
②步骤(b )中,折纸实际上是在寻找过点P 的直线a 的垂线.
(2)先根据平行线的性质得到ABC BCD ∠=∠,再利用角平分线的定义得到23∠∠=,然后根据平行线的判定得到结论.
【详解】
(1)解:①如图2所示:
②在(1)中的步骤(b )中,折纸实际上是在寻找过点P 的直线a 的垂线.
故答案为垂;
(2)证明:BE 平分ABC ∠,CF 平分BCD ∠(已知),
12∠∠∴=,33∠=∠(角平分线的定义),
//AB CD (已知),
ABC BCD ∴∠=∠(两直线平行,内错角相等),
2223∴∠=∠(等量代换),
23∴∠=∠(等式性质),
//BE CF ∴(内错角相等,两直线平行).
【点睛】
本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行线的性质与判定.
9.(1);(2)①,②,理由见解析;(3)
【分析】
(1)过点作,则,由平行线的性质可得的度数;
(2)①过点作的平行线,依据平行线的性质可得与,之间的数量关系; ②过作,依据平行线的性质可得,,即
解析:(1)80︒;(2)①APE αβ∠=∠+∠,②APE βα∠=∠-∠,理由见解析;(3)
1()2
ANE αβ∠=∠+∠ 【分析】
(1)过点P 作//PG AB ,则//PG CD ,由平行线的性质可得BPC ∠的度数;
(2)①过点P 作FD 的平行线,依据平行线的性质可得APE ∠与α∠,β∠之间的数量关系;
②过P 作//PQ DF ,依据平行线的性质可得QPA β∠=∠,QPE α∠=∠,即可得到APE APQ EPQ βα∠=∠-∠=∠-∠;
(3)过P 和N 分别作FD 的平行线,依据平行线的性质以及角平分线的定义,即可得到
ANE ∠与α∠,β∠之间的数量关系为1()2
ANE αβ∠=∠+∠.
【详解】
解:(1)如图1,过点P 作//PG AB ,则//PG CD ,
由平行线的性质可得180B BPG ︒∠+∠=,180C CPG ︒∠+∠=,
又∵125PBA ︒∠=,155PCD ︒∠=,
∴36012515580BPC ︒︒︒︒∠=--=,
故答案为:80︒;
(2)①如图2,APE ∠与α∠,β∠之间的数量关系为APE αβ∠=∠+∠;
过点P 作PM ∥FD ,则PM ∥FD ∥CG ,
∵PM ∥FD ,
∴∠1=∠α,
∵PM ∥CG ,
∴∠2=∠β,
∴∠1+∠2=∠α+∠β,
即:APE αβ∠=∠+∠,
②如图,APE ∠与α∠,β∠之间的数量关系为APE βα∠=∠-∠;理由:
过P 作//PQ DF ,
∵//DF CG ,
∴//PQ CG ,
∴QPA β∠=∠,QPE α∠=∠,
∴APE APQ EPQ βα∠=∠-∠=∠-∠;
(3)如图,
由①可知,∠N=∠3+∠4,
∵EN 平分∠DEP ,AN 平分∠PAC ,
∴∠3=12∠α,∠4=1
2∠β, ∴1()2
ANE αβ∠=∠+∠,
∴ANE ∠与α∠,β∠之间的数量关系为1()2
ANE αβ∠=∠+∠. 【点睛】
本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.
10.(1)4;(2)45°;(3)P (0,-1)或(0,3)
【分析】
(1)根据非负数的性质得到a =−b ,a−b +4=0,解得a =−2,b =2,则A (−2,0),B (2,0),C (2,2),即可计算出
解析:(1)4;(2)45°;(3)P (0,-1)或(0,3)
【分析】
(1)根据非负数的性质得到a =−b ,a−b +4=0,解得a =−2,b =2,则A (−2,0),B (2,0),C (2,2),即可计算出三角形ABC 的面积=4;
(2)由于CB ∥y 轴,BD ∥AC ,则∠CAB =∠ABD ,即∠3+∠4+∠5+∠6=90°,过E 作EF ∥AC ,则BD ∥AC ∥EF ,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED =∠1+∠2=1
2×90°=45°;
(3)先根据待定系数法确定直线AC 的解析式为y =12x +1,则G 点坐标为(0,1),然后利用S △PAC =S △APG +S △CPG 进行计算.
【详解】
解:(1)由题意知:a =−b ,a−b +4=0,
解得:a =−2,b =2,
∴ A (−2,0),B (2,0),C (2,2),
∴S △ABC =1AB BC=42⋅; (2)∵CB ∥y 轴,BD ∥AC ,
∴∠CAB =∠ABD ,
∴∠3+∠4+∠5+∠6=90°,
过E 作EF ∥AC ,
∵BD ∥AC ,
∴BD ∥AC ∥EF ,
∵AE ,DE 分别平分∠CAB ,∠ODB ,
∴∠3=∠4=∠1,∠5=∠6=∠2,
∴∠AED =∠1+∠2=12×90°=45°;
(3)存在.理由如下:
设P 点坐标为(0,t ),直线AC 的解析式为y =kx +b ,
把A (−2,0)、C (2,2)代入得: -2k+b=02k+b=2⎧⎨⎩,解得1k=2b=1
⎧⎪⎨⎪⎩, ∴直线AC 的解析式为y =1
2x +1,
∴G 点坐标为(0,1),
∴S △PAC =S △APG +S △CPG =12|t−1|•2+12|t−1|•2=4,解得t =3或−1,
∴P 点坐标为(0,3)或(0,−1).
【点睛】
本题考查了绝对值、平方的非负性,平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等.
三、解答题
11.(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,.
【分析】
(1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数;
解析:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当αβ<时,
1()2EAD βα∠=-;当αβ>时,1()2
EAD αβ∠=-.
【分析】
(1)先利用三角形内角和定理求出BAC ∠的度数,再根据角平分线和高的性质分别得出EAC ∠和DAC ∠的度数,进而可求AEC ∠和EAD ∠的度数;
(2)先利用三角形内角和定理求出BAC ∠的度数,再根据角平分线和高的性质分别得出EAC ∠和DAC ∠的度数,则前三问利用EAD EAC DAC ∠=∠-∠即可得出答案,第4问利用EAD DAC EAC ∠=∠-∠即可得出答案;
(3)按照(2)的方法,将相应的数换成字母即可得出答案.
【详解】
(1)∵20B ∠=︒,60C ∠=°,
∴180100BAC B C ∠=-∠-∠=︒︒ .
∵AE 平分BAC ∠, ∴1502
EAC BAC ∠=∠=︒. ∵AD 是高,
90ADC ADE ∴∠=∠=︒ ,
9030CAD C ∴∠=︒-∠=︒ ,
20EAD EAC CAD ∴∠=∠-∠=︒ ,
9070AEC EAD ∴∠=︒-∠=︒ .
(2)当30B ∠=︒,60C ∠=°时,
∵30B ∠=︒,60C ∠=°,
∴18090BAC B C ∠=︒-∠-∠=︒.
∵AE 平分BAC ∠, ∴1452
EAC BAC ∠=∠=︒. ∵AD 是高,
90ADC ∴∠=︒ ,
9030CAD C ∴∠=︒-∠=︒ ,
15EAD EAC CAD ∴∠=∠-∠=︒ ;
当50B ∠=︒,60C ∠=°时,
∵50B ∠=︒,60C ∠=°,
∴18070BAC B C ∠=-∠-∠=︒︒ .
∵AE 平分BAC ∠, ∴1352
EAC BAC ∠=∠=︒. ∵AD 是高,
90ADC ∴∠=︒ ,
9030CAD C ∴∠=︒-∠=︒ ,
5EAD EAC CAD ∴∠=∠-∠=︒ ;
当60B ∠=︒,60C ∠=°时,
∵60B ∠=︒,60C ∠=°,
∴18060BAC B C ∠=︒-∠-∠=︒.
∵AE 平分BAC ∠, ∴1302
EAC BAC ∠=∠=︒. ∵AD 是高,
90ADC ∴∠=︒ ,
9030CAD C ∴∠=︒-∠=︒ ,
0EAD EAC CAD ∴∠=∠-∠=︒ ;
当70B ∠=︒,60C ∠=°时,
∵70B ∠=︒,60C ∠=°,
∴18050BAC B C ∠=︒-∠-∠=︒.
∵AE 平分BAC ∠, ∴1252
EAC BAC ∠=∠=︒. ∵AD 是高,
90ADC ∴∠=︒ ,
9030CAD C ∴∠=︒-∠=︒ ,
5EAD DAC EAC ∴∠=∠-∠=︒ .
(3)当B C ∠<∠ 时,即αβ<时,
∵B α∠=,C β∠=,
∴180180BAC B C αβ∠=︒-∠-∠=︒-- .
∵AE 平分BAC ∠, ∴1111(180)902222
EAC BAC αβαβ∠=∠=︒--=--. ∵AD 是高,
90ADC ∴∠=︒ ,
9090CAD C β∴∠=︒-∠=︒- ,
1()2
EAD EAC CAD βα∴∠=∠-∠=- ; 当B C ∠>∠ 时,即αβ>时,
∵B α∠=,C β∠=,
∴180180BAC B C αβ∠=︒-∠-∠=︒-- .
∵AE 平分BAC ∠, ∴1111(180)902222
EAC BAC αβαβ∠=∠=︒--=--. ∵AD 是高,
90ADC ∴∠=︒ ,
9090CAD C β∴∠=︒-∠=︒- ,
1()2
EAD DAC EAC αβ∴∠=∠-∠=- ;
综上所述,当αβ<时,1()2EAD βα∠=-;当αβ>时,1()2
EAD αβ∠=-. 【点睛】
本题主要考查三角形内角和定理和三角形的角平分线,高,掌握三角形内角和定理和直角三角形两锐角互余是解题的关键.
12.(1)∠EPB =170°;(2)①当交点P 在直线b 的下方时:∠EPB =20°,②当交点P 在直线a ,b 之间时:∠EPB =160°,③当交点P 在直线a 的上方时:∠EPB =∠1﹣50°=20°;(3)①当
解析:(1)∠EPB =170°;(2)①当交点P 在直线b 的下方时:∠EPB =20°,②当交点P 在直线a ,b 之间时:∠EPB =160°,③当交点P 在直线a 的上方时:∠EPB =∠1﹣50°=20°;(3)①当交点P 在直线a ,b 之间时:∠EPB =180°﹣|n°﹣50°|;②当交点P 在直线a 上方或直线b 下方时:∠EPB =|n°﹣50°|.
【分析】
(1)利用外角和角平分线的性质直接可求解;
(2)分三种情况讨论:①当交点P 在直线b 的下方时;②当交点P 在直线a ,b 之间时;③当交点P 在直线a 的上方时;分别画出图形求解;
(3)结合(2)的探究,分两种情况得到结论:①当交点P 在直线a ,b 之间时;②当交点P 在直线a 上方或直线b 下方时;
【详解】
解:(1)∵BD 平分∠ABC ,
∴∠ABD =∠DBC =1
2∠ABC =50°,
∵∠EPB 是△PFB 的外角,
∴∠EPB =∠PFB+∠PBF =∠1+(180°﹣50°)=170°;
(2)①当交点P 在直线b 的下方时:
∠EPB =∠1﹣50°=20°;
②当交点P 在直线a ,b 之间时:
∠EPB =50°+(180°﹣∠1)=160°;
③当交点P 在直线a 的上方时:
∠EPB =∠1﹣50°=20°;
(3)①当交点P 在直线a ,b 之间时:∠EPB =180°﹣|n°﹣50°|;
②当交点P 在直线a 上方或直线b 下方时:∠EPB =|n°﹣50°|;
【点睛】
考查知识点:平行线的性质;三角形外角性质.根据动点P 的位置,分类画图,结合图形求解是解决本题的关键.数形结合思想的运用是解题的突破口.
13.(1)3; (2)见解析; (3)见解析
【详解】
分析:(1)因为△BCD 的高为OC ,所以S △BCD=CD•OC ,(2)利用
∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠
解析:(1)3; (2)见解析; (3)见解析
【详解】
分析:(1)因为△BCD 的高为OC ,所以S △BCD =12
CD •OC ,(2)利用∠CFE +∠CBF =90°,∠OBE +∠OEB =90°,求出∠CEF =∠CFE .
(3)由∠ABC +∠ACB =2∠DAC ,∠H +∠HCA =∠DAC ,∠ACB =2∠HCA ,求出∠ABC =2∠H ,即可得答案.
详解:(1)S △BCD =12CD •OC =12
×3×2=3. (2)如图②,∵AC ⊥BC ,∴∠BCF =90°,∴∠CFE +∠CBF =90°.∵直线MN ⊥直线PQ ,∴∠BOC =∠OBE +∠OEB =90°.∵BF 是∠CBA 的平分线,∴∠CBF =∠OBE .∵∠CEF =∠OBE ,∴∠CFE +∠CBF =∠CEF +∠OBE ,∴∠CEF =∠CFE .
(3)如图③,∵直线l ∥PQ ,∴∠ADC =∠PAD .∵∠ADC =∠DAC
∴∠CAP =2∠DAC .∵∠ABC +∠ACB =∠CAP ,
∴∠ABC +∠ACB =2∠DAC .∵∠H +∠HCA =∠DAC ,∴∠ABC +∠ACB =2∠H +2∠HCA ∵CH 是,∠ACB 的平分线,∴∠ACB =2∠HCA ,∴∠ABC =2∠H ,∴H ABC ∠∠=12

点睛:本题主要考查垂线,角平分线和三角形面积,解题的关键是找准相等的角求解. 14.(1)50°;(2)①见解析;②见解析;(3)360°.
【分析】
(1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解; (2)①先根据折叠得:∠ADE=∠A′DE ,∠AED=∠A′
解析:(1)50°;(2)①见解析;②见解析;(3)360°.
【分析】
(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性质求解;
(2)①先根据折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;
②利用两次外角定理得出结论;
(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG )以及(∠C'DE+∠C'ED )和(∠A'HL+∠A'LH ),再利用三角形的内角和定理即可求解.
【详解】
解:(1)∵70C ∠=︒,65B ∠=︒,
∴∠A′=∠A=180°-(65°+70°)=45°,
∴∠A′ED+∠A′DE =180°-∠A′=135°,
∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE )=360°-310°=50°;
(2)①122A ∠+∠=∠,理由如下
由折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,
∵∠AEB+∠ADC=360°,
∴∠1+∠2=360°-∠ADE-∠A′DE -∠AED-∠A′ED=360°-2∠ADE-2∠AED ,
∴∠1+∠2=2(180°-∠ADE-∠AED )=2∠A ;
②221A ∠=∠+∠,理由如下:
∵2∠是ADF 的一个外角
∴2A AFD ∠=∠+∠.
∵AFD ∠是A EF '△的一个外角
∴1AFD A '∠=∠+∠
又∵A A '∠=∠
∴221A ∠=∠+∠
(3)如图
由题意知,
∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG )-(∠C'DE+∠C'ED )-(∠A'HL+∠A'LH )=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')
又∵∠B=∠B',∠C=∠C',∠A=∠A',
∠A+∠B+∠C=180°,
∴∠1+∠2+∠3+∠4+∠5+∠6=360°.
【点睛】
题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.
15.(1)60°;(2)15°;(3)30°或15°
【分析】
(1)利用两直线平行,同旁内角互补,得出,即可得出结论;
(2)先利用三角形的内角和定理求出,即可得出结论;
(3)分和两种情况求解即可得
解析:(1)60°;(2)15°;(3)30°或15°
【分析】
(1)利用两直线平行,同旁内角互补,得出90CAN ∠=︒,即可得出结论;
(2)先利用三角形的内角和定理求出AFD ∠,即可得出结论;
(3)分90DAF ∠=︒和90AFD ∠=︒两种情况求解即可得出结论.
【详解】
解:(1)//MN GH ,
180ACB NAC ∴∠+∠=︒,
90ACB ∠=︒,
90CAN ∴∠=︒,
30BAC ∠=︒,
9060BAN BAC ∴∠=︒-∠=︒;
(2)由(1)知,60BAN ∠=︒,
45EDF ∠=︒,
18075AFD BAN EDF ∴∠=︒-∠-∠=︒,
90DFE ∠=︒,
15AFE DFE AFD ∴∠=∠-∠=︒;
(3)当90DAF ∠=︒时,如图3,
由(1)知,60BAN ∠=︒,
30FAN DAF BAN ∴∠=∠-∠=︒;
当90AFD ∠=︒时,如图4,
90DFE ∠=︒,
∴点A ,E 重合,
45EDF ∠=︒,
45DAF ∴∠=︒,
由(1)知,60BAN ∠=︒,
15FAN BAN DAF ∴∠=∠-∠=︒,
即当以A 、D 、F 为顶点的三角形是直角三角形时,FAN ∠度数为30或15︒.
【点睛】
此题是三角形综合题,主要考查了平行线的性质,三角形的内角和定理,角的和差的计算,求出60BAN ∠=︒是解本题的关键.。

相关文档
最新文档