公务员行测常用公式汇总

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常用数学公式汇总

1. 平方差公式:(a +b )·(a -b )=a 2

-b 2

2. 完全平方公式:(a±b )2=a 2±2ab +b

2

3. 完全立方公式:(a ±b)3=(a±b)(a 2 ab+b 2

)

4. 立方和差公式:a 3+b 3=(a ±b)(a 2+ ab+b 2

) m

n

m +n

m n =a m -n (a m )n =a mn (ab)n =a n ·b n

(1)s n =

2

)(1n a a n +⨯=na 1+21

n(n-1)d ;

(2)a n =a 1+(n -1)d ;

(3)项数n =

d

a a n 1

-+1; (4)若a,A,b 成等差数列,则:2A =a+b ; (5)若m+n=k+i ,则:a m +a n =a k +a i ;

(6)前n 个奇数:1,3,5,7,9,…(2n —1)之和为n 2

1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和)

n 1(2)s n =q

q a n -11 ·1)

-((q ≠1)

(3)若a,G,b 成等比数列,则:G 2

=ab ; (4)若m+n=k+i ,则:a m ·a n =a k ·a i ; (5)a m -a n =(m-n)d (6)

n

m

a a =q (m-n) (其中:n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和)

(1)一元二次方程求根公式:ax 2

+bx+c=a(x-x 1)(x-x 2)

其中:x 1=a ac b b 242-+-;x 2=a

ac b b 242---(b 2

-4ac ≥0)

根与系数的关系:x 1+x 2=-

a b ,x 1·x 2=a

c

推广:n n n x x x n x x x x ......21321≥++++

(2)一阶导为零法:连续可导函数,在其内部取得最大值或最小值时,其导数为零。

(5)两项分母列项公式:

)(a m m b +=(m 1—a m +1)×a

b

三项分母裂项公式:)2)((a m a m m b ++=[)(1a m m +—)2)((1a m a m ++]×a

b

2

2.面积公式:

正方形=2

a 长方形=

b a ⨯ 三角形=

c ab ah sin 2

121= 梯形=h b a )(21

+

圆形=πR 2

平行四边形=ah 扇形=0

360

n πR 2 3.表面积:

正方体=62

a 长方体=)(2ac bc a

b ++⨯ 圆柱体=2πr 2

+2πrh 球的表面积=4πR 2

4.体积公式

正方体=3

a 长方体=abc 圆柱体=Sh =πr 2

h 圆锥=

31πr 2

h 球=33

4R π 5.若圆锥的底面半径为r ,母线长为l ,则它的侧面积:S 侧=πr l ;

6.图形等比缩放型:

一个几何图形,若其尺度变为原来的m 倍,则: 1.所有对应角度不发生变化;

2.所有对应长度变为原来的m 倍;

3.所有对应面积变为原来的m 2

倍;

4.所有对应体积变为原来的m 3

倍。 7.几何最值型:

1.平面图形中,若周长一定,越接近与圆,面积越大。

2.平面图形中,若面积一定,越接近于圆,周长越小。

3.立体图形中,若表面积一定,越接近于球,体积越大。

4.立体图形中,若体积一定,越接近于球,表面积越大。

工作量=工作效率×工作时间; 工作效率=工作量÷工作时间; 工作时间=工作量÷工作效率; 总工作量=各分工作量之和; 注:在解决实际问题时,常设总工作量为1或最小公倍数

(1)方阵问题:

1.实心方阵:方阵总人数=(最外层每边人数)2=(外圈人数÷4+1)2=N 2

最外层人数=(最外层每边人数-1)×4

2.空心方阵:方阵总人数=(最外层每边人数)2-(最外层每边人数-2×层数)

2

=(最外层每边人数-层数)×层数×4=中空方阵的人数。 ★无论是方阵还是长方阵:相邻两圈的人数都满足:外圈比内圈多8人。

3.N 边行每边有a 人,则一共有N(a-1)人。

4.实心长方阵:总人数=M ×N 外圈人数=2M+2N-4

5.方阵:总人数=N 2

外圈人数=4N-4

例:有一个3层的中空方阵,最外层有10人,问全阵有多少人? 解:(10-3)×3×4=84(人) (2)排队型:假设队伍有N 人,A 排在第M 位;则其前面有(M-1)人,后面有(N-M )人 (3)爬楼型:从地面爬到第N 层楼要爬(N-1)楼,从第N 层爬到第M 层要怕N M -层。

(1)利润=销售价(卖出价)-成本;

利润率=

成本利润=成本

销售价-成本=成本销售价

-1; 销售价=成本×(1+利润率);成本=+利润率

销售价

1。

(2)利息=本金×利率×时期;

本金=本利和÷(1+利率×时期)。

本利和=本金+利息=本金×(1+利率×时期)=期限

利率)(本金+⨯

1;

月利率=年利率÷12; 月利率×12=年利率。

例:某人存款2400元,存期3年,月利率为10.2‰(即月利1分零2毫),三年到期后,本利和共是多少元?” 2%×36) =2400×1.3672 =3281.28(元)

(1)排列公式:P m n =n (n -1)

(n -2)…(n -m +1),(m≤n)。 5673

7⨯⨯=A (2)组合公式:C m n =P m n ÷P m m

=(规定0n C =1)。1

233

453

5⨯⨯⨯⨯=c

(3)错位排列(装错信封)问题:D 1=0,D 2=1,D 3=2,D 4=9,D 5=44,D 6=265,

(4)N 人排成一圈有N

N A /N 种;

N 枚珍珠串成一串有N

N A /2种。

关键是年龄差不变;①几年后年龄=大小年龄差÷倍数差-小年龄

②几年前年龄=小年龄-大小年龄差÷倍数差

(1)单边线形植树:棵数=总长÷间隔+1;总长=(棵数-1)×间隔 (2)单边环形植树:棵数=总长÷间隔; 总长=棵数×间隔

(3)单边楼间植树:棵数=总长÷间隔-1;总长=(棵数+1)×间隔 (4)双边植树:相应单边植树问题所需棵数的2倍。

(5)剪绳问题:对折N 次,从中剪M 刀,则被剪成了(2N

×M +1)段

(1)平均速度型:平均速度=

2

12

12v v v v +

(2)相遇追及型:相遇问题:相遇距离=(大速度+小速度)×相遇时间 追及问题:追击距离=(大速度—小速度)×追及时间

相关文档
最新文档