安徽省安庆市桐城市三校联考中考数学模拟试卷(含解析)
安徽省安庆市2024届中考数学仿真试卷含解析
安徽省安庆市2024届中考数学仿真试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,正方形ABCD中,对角线AC、BD交于点O,∠BAC的平分线交BD于E,交BC于F,BH⊥AF于H,交AC于G,交CD于P,连接GE、GF,以下结论:①△OAE≌△OBG;②四边形BEGF是菱形;③BE=CG;④PG2 AE=﹣1;⑤S△PBC:S△AFC=1:2,其中正确的有()个.A.2 B.3 C.4 D.52.若代数式2x2+3x﹣1的值为1,则代数式4x2+6x﹣1的值为()A.﹣3 B.﹣1 C.1 D.33.如图,3个形状大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角为60°,A、B、C都在格点上,点D在过A、B、C三点的圆弧上,若E也在格点上,且∠AED=∠ACD,则∠AEC度数为()A.75°B.60°C.45°D.30°4.如图所示的几何体,它的左视图是()A.B.C.D.5225,,0,36,-1.41472π,,有理数有()A.1个B.2个C.3个D.4个6.在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为()A.B.C.D.7.不等式2x﹣1<1的解集在数轴上表示正确的是()A.B.C.D.8.如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数上,且OA⊥OB,,则k的值为()A.﹣2B.4 C.﹣4 D.29.如图,Rt△ABC中,∠C=90°,∠A=35°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m(0<m <180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=()A.35°B.60°C.70°D.70°或120°10.在一次男子马拉松长跑比赛中,随机抽取了10名选手,记录他们的成绩(所用的时间)如下:选手 1 2 3 4 5 6 7 8 9 10时间(min) 129 136 140 145 146 148 154 158 165 175由此所得的以下推断不正确...的是()A.这组样本数据的平均数超过130B .这组样本数据的中位数是147C .在这次比赛中,估计成绩为130 min 的选手的成绩会比平均成绩差D .在这次比赛中,估计成绩为142 min 的选手,会比一半以上的选手成绩要好11.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是( ) A .310B .925C .920D .3512.下列各数中,为无理数的是( ) A .38B .4C .13D .2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同、方差分别为S 甲2=8.5,S 乙2=2.5,S 丙2=10.1,S 丁2=7.4,二月份白菜价格最稳定的市场是_____.14.已知直线23y x =+与抛物线2231y x x =-+交于A 11x y (,),B 22x y (,)两点,则121111x x +=++_______. 15.将抛物线y =2x 2平移,使顶点移动到点P (﹣3,1)的位置,那么平移后所得新抛物线的表达式是_____. 16.一个扇形的面积是125πcm ,半径是3cm ,则此扇形的弧长是_____. 17.以下两题任选一题作答:(1).下图是某商场一楼二楼之间的手扶电梯示意图,其中 AB 、CD 分别表示一楼、二楼地面的水平,∠ABC=150°,BC 的长是 8m ,则乘电梯次点 B 到点 C 上升的高度 h 是_____m .(2).一个多边形的每一个内角都是与它相邻外角的 3 倍,则多边形是_____边形. 18.如图,平行线AB 、CD 被直线EF 所截,若∠2=130°,则∠1=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.20.(6分)某保健品厂每天生产A ,B 两种品牌的保健品共600瓶,A ,B 两种产品每瓶的成本和利润如表,设每天生产A 产品x 瓶,生产这两种产品每天共获利y 元. (1)请求出y 关于x 的函数关系式;(2)如果该厂每天至少投入成本26 400元,那么每天至少获利多少元?(3)该厂每天生产的A ,B 两种产品被某经销商全部订购,厂家对A 产品进行让利,每瓶利润降低100x元,厂家如何生产可使每天获利最大?最大利润是多少?A B 成本(元/瓶) 50 35 利润(元/瓶) 201521.(6分)如图,在△ABC 中,∠ACB=90°,BC 的垂直平分线DE 交BC 于D ,交AB 于E ,F 在DE 上,且AF=CE=AE .(1)说明四边形ACEF 是平行四边形;(2)当∠B 满足什么条件时,四边形ACEF 是菱形,并说明理由. 22.(8分)已知抛物线y =ax 2+ c (a ≠0).(1)若抛物线与x 轴交于点B(4,0),且过点P(1,–3),求该抛物线的解析式;(2)若a >0,c =0,OA 、OB 是过抛物线顶点的两条互相垂直的直线,与抛物线分别交于A 、B 两点,求证:直线AB 恒经过定点(0,1a); (3)若a >0,c <0,抛物线与x 轴交于A ,B 两点(A 在B 左边),顶点为C ,点P 在抛物线上且位于第四象限.直线PA 、PB 与y 轴分别交于M 、N 两点.当点P 运动时,OCOM ON是否为定值?若是,试求出该定值;若不是,请说明理由.23.(8分)如图1,点O 是正方形ABCD 两对角线的交点,分别延长OD 到点G ,OC 到点E ,使OG=1OD ,OE=1OC ,然后以OG 、OE 为邻边作正方形OEFG ,连接AG ,DE .(1)求证:DE ⊥AG ;(1)正方形ABCD 固定,将正方形OEFG 绕点O 逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图1. ①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD 的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由. 24.(10分)已知:如图,梯形ABCD 中,AD ∥BC ,DE ∥AB ,DE 与对角线AC 交于点F ,FG ∥AD ,且FG=EF. (1)求证:四边形ABED 是菱形; (2)联结AE ,又知AC ⊥ED ,求证:21·2AE EF ED .25.(10分)如图,在矩形ABCD 中,AB=1DA ,以点A 为圆心,AB 为半径的圆弧交DC 于点E ,交AD 的延长线于点F ,设DA=1.求线段EC 的长;求图中阴影部分的面积.26.(12分)如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 与BC 交于点D ,过点D 作∠ABD=∠ADE ,交AC 于点E .(1)求证:DE 为⊙O 的切线. (2)若⊙O 的半径为256,AD=203,求CE 的长.27.(12分)如图,已知点D 在反比例函数ay x=的图象上,过点D 作DB y ⊥轴,垂足为(0,3)B ,直线y kx b =+经过点(5,0)A ,与y 轴交于点C ,且BD OC =,:2:5OC OA =.求反比例函数ay x=和一次函数y kx b =+的表达式;直接写出关于x 的不等式akx b x>+的解集. 参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、C 【解题分析】根据AF 是∠BAC 的平分线,BH ⊥AF ,可证AF 为BG 的垂直平分线,然后再根据正方形内角及角平分线进行角度转换证明EG =EB ,FG =FB ,即可判定②选项;设OA =OB =OC =a ,菱形BEGF 的边长为b ,由四边形BEGF 是菱形转换得到CF 2GF 2BF ,由四边形ABCD 是正方形和角度转换证明△OAE ≌△OBG ,即可判定①;则△GOE 是等腰直角三角形,得到GE 2OG ,整理得出a ,b 的关系式,再由△PGC ∽△BGA ,得到BGPG=2,从而判断得出④;得出∠EAB =∠GBC 从而证明△EAB ≌△GBC ,即可判定③;证明△FAB ≌△PBC 得到BF =CP ,即可求出PBC AFCSS,从而判断⑤.【题目详解】解:∵AF 是∠BAC 的平分线, ∴∠GAH =∠BAH , ∵BH ⊥AF ,∴∠AHG =∠AHB =90°, 在△AHG 和△AHB 中GAH BAH AH AHAHG AHB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AHG ≌△AHB (ASA ), ∴GH =BH ,∴AF 是线段BG 的垂直平分线, ∴EG =EB ,FG =FB , ∵四边形ABCD 是正方形, ∴∠BAF =∠CAF =12×45°=22.5°,∠ABE =45°,∠ABF =90°, ∴∠BEF =∠BAF+∠ABE =67.5°,∠BFE =90°﹣∠BAF =67.5°, ∴∠BEF =∠BFE , ∴EB =FB ,∴EG =EB =FB =FG ,∴四边形BEGF 是菱形;②正确;设OA =OB =OC =a ,菱形BEGF 的边长为b , ∵四边形BEGF 是菱形, ∴GF ∥OB ,∴∠CGF =∠COB =90°, ∴∠GFC =∠GCF =45°, ∴CG =GF =b ,∠CGF =90°, ∴CFGFBF , ∵四边形ABCD 是正方形,∴OA =OB ,∠AOE =∠BOG =90°, ∵BH ⊥AF ,∴∠GAH+∠AGH =90°=∠OBG+∠AGH , ∴∠OAE =∠OBG , 在△OAE 和△OBG 中OAE OBG OA OBAOE BOG ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△OAE ≌△OBG (ASA ),①正确; ∴OG =OE =a ﹣b ,∴△GOE 是等腰直角三角形, ∴GEOG , ∴b(a ﹣b ), 整理得a, ∴AC =2a =()b ,AG =AC ﹣CG =()b , ∵四边形ABCD 是正方形, ∴PC ∥AB , ∴BG PG =AG C G=, ∵△OAE ≌△OBG , ∴AE =BG , ∴AEPG=, ∴PGAE=1,④正确; ∵∠OAE =∠OBG ,∠CAB =∠DBC =45°, ∴∠EAB =∠GBC , 在△EAB 和△GBC 中EAB GBC AB BCABE BCG 45︒∠=∠⎧⎪=⎨⎪∠=∠=⎩, ∴△EAB ≌△GBC (ASA ), ∴BE =CG ,③正确; 在△FAB 和△PBC 中FAB PBC AB BCABF BCP 90︒∠=∠⎧⎪=⎨⎪∠=∠=⎩, ∴△FAB ≌△PBC (ASA ), ∴BF =CP ,∴PBC AFCS S=1212BC CP AB CF ⋅⋅=CP CF=2,⑤错误; 综上所述,正确的有4个, 故选:C . 【题目点拨】本题综合考查了全等三角形的判定与性质,相似三角形,菱形的判定与性质等四边形的综合题.该题难度较大,需要学生对有关于四边形的性质的知识有一系统的掌握. 2、D 【解题分析】由2x 2+1x ﹣1=1知2x 2+1x =2,代入原式2(2x 2+1x )﹣1计算可得. 【题目详解】 解:∵2x 2+1x ﹣1=1, ∴2x 2+1x =2,则4x 2+6x ﹣1=2(2x 2+1x )﹣1 =2×2﹣1 =4﹣1 =1.故本题答案为:D. 【题目点拨】本题主要考查代数式的求值,运用整体代入的思想是解题的关键.3、B【解题分析】将圆补充完整,利用圆周角定理找出点E的位置,再根据菱形的性质即可得出△CME为等边三角形,进而即可得出∠AEC的值.【题目详解】将圆补充完整,找出点E的位置,如图所示.∵弧AD所对的圆周角为∠ACD、∠AEC,∴图中所标点E符合题意.∵四边形∠CMEN为菱形,且∠CME=60°,∴△CME为等边三角形,∴∠AEC=60°.故选B.【题目点拨】本题考查了菱形的性质、等边三角形的判定依据圆周角定理,根据圆周角定理结合图形找出点E的位置是解题的关键.4、A【解题分析】从左面观察几何体,能够看到的线用实线,看不到的线用虚线.【题目详解】从左边看是等宽的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选:A.【题目点拨】本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键.5、D【解题分析】试题分析:根据有理数是有限小数或无限循环小数,可得答案:22,?0,?36,?1.414是有理数,故选D.7考点:有理数.6、C【解题分析】试题分析:通过图示可知,要想通过圆,则可以是圆柱、圆锥、球,而能通过三角形的只能是圆锥,综合可知只有圆锥符合条件.故选C7、D【解题分析】先求出不等式的解集,再在数轴上表示出来即可.【题目详解】移项得,2x<1+1,合并同类项得,2x<2,x的系数化为1得,x<1.在数轴上表示为:.故选D.【题目点拨】本题考查了解一元一次不等式,熟练掌握运算法则是解题的关键.8、C【解题分析】试题分析:作AC⊥x轴于点C,作BD⊥x轴于点D.则∠BDO=∠ACO=90°,则∠BOD+∠OBD=90°,∵OA⊥OB,∴∠BOD+∠AOC=90°,∴∠BOD=∠AOC,∴△OBD∽△AOC,∴=(tanA)2=2,又∵S△AOC=×2=1,∴S△OBD=2,∴k=-1.故选C.考点:1.相似三角形的判定与性质;2.反比例函数图象上点的坐标特征.9、D【解题分析】①当点B落在AB边上时,根据DB=DB1,即可解决问题,②当点B落在AC上时,在RT△DCB2中,根据∠C=90°,DB2=DB=2CD可以判定∠CB2D=30°,由此即可解决问题.【题目详解】①当点B落在AB边上时,∵,∴,∴,②当点B落在AC上时,在中,∵∠C=90°, ,∴,∴,故选D.【题目点拨】本题考查的知识点是旋转的性质,解题关键是考虑多种情况,进行分类讨论.10、C【解题分析】分析:要求平均数只要求出数据之和再除以总个数即可;对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可求解.详解:平均数=(129+136+140+145+146+148+154+158+165+175)÷10=149.6(min),故这组样本数据的平均数超过130,A正确,C错误;因为表中是按从小到大的顺序排列的,一共10名选手,中位数为第五位和第六位的平均数,故中位数是(146+148)÷2=147(min),故B 正确,D 正确.故选C. 点睛:本题考查的是平均数和中位数的定义.要注意,当所给数据有单位时,所求得的平均数和中位数与原数据的单位相同,不要漏单位. 11、A 【解题分析】列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率: 【题目详解】 列表如下:∵所有等可能的情况数为20种,其中两次都为红球的情况有6种, ∴63P 2010==两次红, 故选A. 12、D 【解题分析】A ,是有理数;B =2,是有理数;C .13,是有理数;D ,是无理数, 故选D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、乙. 【解题分析】据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,即可得出答案. 【题目详解】解:∵S 甲2=8.5,S 乙2=2.5,S 丙2=10.1,S 丁2=7.4, ∴S 乙2<S 丁2<S 甲2<S 丙2,∴二月份白菜价格最稳定的市场是乙; 故答案为:乙. 【题目点拨】本题考查方差的意义.解题关键是掌握方差的意义:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 14、95【解题分析】将一次函数解析式代入二次函数解析式中,得出关于x 的一元二次方程,根据根与系数的关系得出“x 1 +x 2 =-b a=52,x 1x 2=ca =-1”,将原代数式通分变形后代入数据即可得出结论.【题目详解】将23y x =+代入到2231y x x =-+中得,223231x x x +=-+,整理得,22520x x --=,∴1252x x +=,121x x =-, ∴211212()1111()1111x x x x x x ++++==++++121212()(52292515112)x x x x x x +++==⋅+++-++. 【题目点拨】此题考查了二次函数的性质和一次函数的性质,解题关键在于将一次函数解析式代入二次函数解析式 15、y =2(x+3)2+1 【解题分析】由于抛物线平移前后二次项系数不变,然后根据顶点式写出新抛物线解析式. 【题目详解】抛物线y =2x 2平移,使顶点移到点P (﹣3,1)的位置,所得新抛物线的表达式为y =2(x+3)2+1.故答案为:y =2(x+3)2+1 【题目点拨】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 16、85π 【解题分析】根据扇形面积公式1S 2l r 扇形=⋅⋅求解即可 【题目详解】根据扇形面积公式1S 2l r 扇形=⋅⋅. 可得:121352l π=⨯⨯, 85l π=,故答案:85π.【题目点拨】本题主要考查了扇形的面积和弧长之间的关系, 利用扇形弧长和半径代入公式1S 2l r 扇形=⋅⋅即可求解, 正确理解公式是解题的关键. 注意在求扇形面积时, 要根据条件选择扇形面积公式. 17、4 8 【解题分析】(1)先求出斜边的坡角为30°,再利用含30°的直角三角形即可求解; (2)设这个多边形边上为n ,则内角和为(n-2)×180°,外角度数为360?n故可列出方程求解. 【题目详解】(1)∵∠ABC=150°,∴斜面BC 的坡角为30°, ∴h=12BC =4m (2)设这个多边形边上为n ,则内角和为(n-2)×180°,外角度数为360?n依题意得2180360?3n n n-⨯︒=⨯()解得n=8故为八边形.【题目点拨】此题主要考查含30°的直角三角形与多边形的内角和计算,解题的关键是熟知含30°的直角三角形的性质与多边形的内角和公式.18、50°【解题分析】利用平行线的性质推出∠EFC=∠2=130°,再根据邻补角的性质即可解决问题.【题目详解】∵AB∥CD,∴∠EFC=∠2=130°,∴∠1=180°-∠EFC=50°,故答案为50°【题目点拨】本题考查平行线的性质、邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、两人之中至少有一人直行的概率为59.【解题分析】【分析】画树状图展示所有9种等可能的结果数,找出“至少有一人直行”的结果数,然后根据概率公式求解.【题目详解】画树状图为:共有9种等可能的结果数,其中两人之中至少有一人直行的结果数为5,所以两人之中至少有一人直行的概率为59.【题目点拨】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.概率=所求情况数与总情况数之比.20、(1)y=5x+9000;(2)每天至少获利10800元;(3)每天生产A产品250件,B产品350件获利最大,最大利润为9625元.【解题分析】试题分析:(1)A种品牌白酒x瓶,则B种品牌白酒(600-x)瓶;利润=A种品牌白酒瓶数×A种品牌白酒一瓶的利润+B种品牌白酒瓶数×B种品牌白酒一瓶的利润,列出函数关系式;(2)A 种品牌白酒x 瓶,则B 种品牌白酒(600-x )瓶;成本=A 种品牌白酒瓶数×A 种品牌白酒一瓶的成本+B 种品牌白酒瓶数×B 种品牌白酒一瓶的成本,列出不等式,求x 的值,再代入(1)求利润. (3)列出y 与x 的关系式,求y 的最大值时,x 的值. 试题解析:(1)y =20x +15(600-x ) =5x +9000, ∴y 关于x 的函数关系式为y =5x +9000; (2)根据题意,得50 x +35(600-x )≥26400, 解得x ≥360, ∵y =5x +9000,5>0, ∴y 随x 的增大而增大,∴当x =360时,y 有最小值为10800, ∴每天至少获利10800元; (3)()2015600100x y x x ⎛⎫=-+- ⎪⎝⎭ ()212509625100x =--+, ∵10100-<,∴当x =250时,y 有最大值9625, ∴每天生产A 产品250件,B 产品350件获利最大,最大利润为9625元. 21、(1)说明见解析;(2)当∠B=30°时,四边形ACEF 是菱形.理由见解析. 【解题分析】试题分析:(1)证明△AEC ≌△EAF ,即可得到EF=CA ,根据两组对边分别相等的四边形是平行四边形即可判断; (2)当∠B=30°时,四边形ACEF 是菱形.根据直角三角形的性质,即可证得AC=EC ,根据菱形的定义即可判断. (1)证明:由题意知∠FDC=∠DCA=90°, ∴EF ∥CA , ∴∠FEA=∠CAE , ∵AF=CE=AE ,∴∠F=∠FEA=∠CAE=∠ECA . 在△AEC 和△EAF 中, ∵∴△EAF ≌△AEC (AAS ), ∴EF=CA ,∴四边形ACEF 是平行四边形.(2)解:当∠B=30°时,四边形ACEF 是菱形. 理由如下:∵∠B=30°,∠ACB=90°, ∴AC=AB , ∵DE 垂直平分BC , ∴∠BDE=90° ∴∠BDE=∠ACB ∴ED ∥AC 又∵BD=DC∴DE 是△ABC 的中位线, ∴E 是AB 的中点, ∴BE=CE=AE , 又∵AE=CE , ∴AE=CE=AB , 又∵AC=AB , ∴AC=CE ,∴四边形ACEF 是菱形.考点:菱形的判定;全等三角形的判定与性质;线段垂直平分线的性质;平行四边形的判定. 22、(1)211655y x =-;(2)详见解析;(3)OC OM ON +为定值,OC OM ON +=12【解题分析】(1)把点B(4,0),点P(1,–3)代入y =ax 2+ c (a ≠0),用待定系数法求解即可;(2)如图作辅助线AE 、BF 垂直 x 轴,设A (m ,am 2)、B (n ,an 2),由△AOE ∽△OBF ,可得到21a mn =-,然后表示出直线AB 的解析式即可得到结论;(3)作PQ ⊥AB 于点Q ,设P (m ,am 2+c )、A (–t ,0)、B (t ,0),则at 2+c =0, c = –at 2 由PQ ∥ON ,可得ON =amt +at 2,OM = –amt +at 2,然后把ON ,OM ,OC 的值代入整理即可. 【题目详解】(1)把点B(4,0),点P(1,–3)代入y =ax 2+ c (a ≠0),1603a c a c +=⎧⎨+=-⎩, 解之得15165a c ⎧=⎪⎪⎨⎪=-⎪⎩, ∴211655y x =-; (2)如图作辅助线AE 、BF 垂直 x 轴,设A (m ,am 2)、B (n ,an 2),∵OA ⊥OB , ∴∠AOE=∠OBF , ∴△AOE ∽△OBF ,∴AE OF OE BF =,22am n m an=-,21a mn =-, 直线AB 过点A(m ,am 2)、点B(n ,an 2), ∴()()1y a m n x amn a m n x a =+-=++过点(0,1a); (3)作PQ ⊥AB 于点Q ,设P (m ,am 2+c )、A (–t ,0)、B (t ,0),则at 2+c =0, c = –at 2 ∵PQ ∥ON ,∴ON OBPQ QB=,ON=()2am c t PQ OB QB t m -+⋅=-=()2am c t m t+-=()22am at t m t --=()()at m t m t m t -+-=at (m +t )= amt +at 2, 同理:OM= –amt +at 2, 所以,OM+ON= 2at 2=–2c =OC , 所以,OC OM ON +=12.【题目点拨】本题考查了待定系数法求函数解析式,相似三角形的判定与性质,平行线分线段成比例定理.正确作出辅助线是解答本题的关键.23、(1)见解析;(1)①30°或150°,②AF '的长最大值为222+,此时0315α=. 【解题分析】(1)延长ED 交AG 于点H ,易证△AOG ≌△DOE ,得到∠AGO=∠DEO ,然后运用等量代换证明∠AHE=90°即可; (1)①在旋转过程中,∠OAG′成为直角有两种情况:α由0°增大到90°过程中,当∠OAG′=90°时,α=30°,α由90°增大到180°过程中,当∠OAG′=90°时,α=150°;②当旋转到A 、O 、F′在一条直线上时,AF′的长最大,AF′=AO+OF′=22+1,此时α=315°. 【题目详解】(1)如图1,延长ED 交AG 于点H,∵点O 是正方形ABCD 两对角线的交点, ∴OA=OD ,OA ⊥OD , ∵OG=OE ,在△AOG 和△DOE 中,90OA OD AOG DOE OG OE =⎧⎪∠=∠=︒⎨⎪=⎩, ∴△AOG ≌△DOE ,∴∠AGO=∠DEO,∵∠AGO+∠GAO=90°,∴∠GAO+∠DEO=90°,∴∠AHE=90°,即DE⊥AG;(1)①在旋转过程中,∠OAG′成为直角有两种情况:(Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时,∵OA=OD=12OG=12OG′,∴在Rt△OAG′中,sin∠AG′O=OAOG=12,∴∠AG′O=30°,∵OA⊥OD,OA⊥AG′,∴OD∥AG′,∴∠DOG′=∠AG′O=30°∘,即α=30°;(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,同理可求∠BOG′=30°,∴α=180°−30°=150°.综上所述,当∠OAG′=90°时,α=30°或150°.②如图3,当旋转到A. O、F′在一条直线上时,AF′的长最大,∵正方形ABCD 的边长为1,∴, ∵OG=1OD ,∴∴OF′=1,∴AF′=AO+OF′=2+1, ∵∠COE′=45°,∴此时α=315°.【题目点拨】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,掌握正方形的四条边相等、四个角相等,旋转变换的性质是解题的关键,注意特殊角的三角函数值的应用.24、 (1)见解析;(2)见解析【解题分析】分析:(1)由两组对边分别平行的四边形是平行四边形,得到ABED 是平行四边形. 再由平行线分线段成比例定理得到:FG CF AD CA =, EF CF AB CA = ,FG AD =EF AB,即可得到结论; (2)连接BD ,与AE 交于点H .由菱形的性质得到12EH AE BD =,⊥AE ,进而得到90DHE ∠= ,90AFE ∠=,即有DHE AFE ∠∠=,得到△DHE ∽△AFE ,由相似三角形的性质即可得到结论.详解:(1)∵ AD ∥BC DE ,∥AB ,∴四边形ABED 是平行四边形.∵FG ∥AD ,∴FG CF AD CA =. 同理 EF CF AB CA= . 得:FG AD =EF AB∵FG EF =,∴AD AB =.∴四边形ABED 是菱形.(2)连接BD ,与AE 交于点H .∵四边形ABED 是菱形,∴12EH AE BD =,⊥AE . 得90DHE ∠= .同理90AFE ∠=.∴DHE AFE ∠∠=.又∵AED ∠是公共角,∴△DHE ∽△AFE . ∴EH DE EF AE =. ∴21·2AE EF ED =. 点睛:本题主要考查了菱形的判定和性质以及相似三角形的判定与性质.灵活运用菱形的判定与性质是解题的关键.25、(1)423-;(1)8233π- 【解题分析】(1)根据矩形的性质得出AB=AE=4,进而利用勾股定理得出DE 的长,即可得出答案;(1)利用锐角三角函数关系得出∠DAE=60°,进而求出图中阴影部分的面积为:FAE DAE S S 扇形∆-,求出即可.【题目详解】解:(1)∵在矩形ABCD 中,AB=1DA ,DA=1,∴AB=AE=4,∴2223AE AD -=,∴3;(1)∵sin ∠DEA=12AD AE = , ∴∠DEA=30°,∴∠EAB=30°, ∴图中阴影部分的面积为:S 扇形FAB -S △DAE -S 扇形EAB =904130482232336023603πππ⨯⨯-⨯⨯=-.【题目点拨】此题主要考查了扇形的面积计算以及勾股定理和锐角三角函数关系等知识,根据已知得出DE的长是解题关键.26、(1)证明见解析;(2)CE=1.【解题分析】(1)求出∠ADO+∠ADE=90°,推DE⊥OD,根据切线的判定推出即可;(2)求出CD,AC的长,证△CDE∽△CAD,得出比例式,求出结果即可.【题目详解】(1)连接OD,∵AB是直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,∵OB=OD,∴∠BDO=∠ABD,∵∠ABD=∠ADE,∴∠ADO+∠ADE=90°,即,OD⊥DE,∵OD为半径,∴DE为⊙O的切线;(2)∵⊙O的半径为,∴AB=2OA==AC,∵∠ADB=90°,∴∠ADC=90°,在Rt △ADC 中,由勾股定理得:DC===5,∵∠ODE=∠ADC=90°,∠ODB=∠ABD=∠ADE ,∴∠EDC=∠ADO ,∵OA=OD ,∴∠ADO=∠OAD ,∵AB=AC ,AD ⊥BC ,∴∠OAD=∠CAD ,∴∠EDC=∠CAD ,∵∠C=∠C ,∴△CDE ∽△CAD , ∴=, ∴=,解得:CE=1.【题目点拨】本题考查了等腰三角形的性质与切线的判定,解题的关键是熟练的掌握等腰三角形的性质与切线的判定.27、(1)y=-6x .y=25x-1.(1)x <2. 【解题分析】分析:(1)根据待定系数法即可求出反比例函数和一次函数的表达式.详解:(1)∵BD OC =,:2:5OC OA =, 点A (5,2),点B (2,3),∴523OA OC BD OB ====,,,又∵点C 在y 轴负半轴,点D 在第二象限,∴点C 的坐标为(2,-1),点D 的坐标为(-1,3).∵点()23D -,在反比例函数y =a x 的图象上, ∴236a =-⨯=-, ∴反比例函数的表达式为6y x=-将A (5,2)、B (2,-1)代入y=kx+b ,502k b b +⎧⎨-⎩==,解得:252k b ⎧⎪⎨⎪-⎩== ∴一次函数的表达式为2y x 25=-. (1)将2y x 25=-代入6y x =-,整理得: 222605x x -+=, ∵()2228246055=--⨯⨯=-<, ∴一次函数图象与反比例函数图象无交点.观察图形,可知:当x <2时,反比例函数图象在一次函数图象上方, ∴不等式a x>kx +b 的解集为x <2. 点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.。
2020-2021学年安徽省安庆市中考数学三校联考模拟试题及答案解析
最新安徽省安庆市三校联考中考数学模拟试卷一、选择题(共10小题,每小题4分,满分40分)1.﹣4的绝对值是()A.2 B.4 C.﹣4 D.162.已知,则a的取值范围是()A.a≤0 B.a<0 C.0<a≤1 D.a>03.已知反比例函数的图象过点M(﹣1,2),则此反比例函数的表达式为()A.y=B.y=﹣C.y=D.y=﹣4.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是()A.0.5 B.1 C.2 D.45.如图所示,几何体的主(正)视图是()A.B.C.D.6.清明节前,某班分成甲、乙两组去距离学校4km的烈士陵园扫墓.甲组步行,乙组骑自行车,他们同时从学校出发,结果乙组比甲组早20min到达目的地.已知骑自行车的速度是步行速度的2倍,设步行的速度为x km/h,则x满足的方程为()A.﹣=20 B.﹣=20 C.﹣=D.﹣=7.不等式组:的解集用数轴表示为()A.B.C.D.8.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()A.1 B.2 C.3 D.49.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中正确的结论有()A.2个B.3个C.4个D.5个10.已知a,b,c是△ABC的三条边,对应高分别为h a,h b,h c,且a:b:c=4:5:6,那么h a:h b:h c等于()A.4:5:6 B.6:5:4 C.15:12:10 D.10:12:15二、填空题(本大题共4小题,每小题5分,满分20分)11.分解因式:xy2﹣x=______.12.一副三角板,如图所示叠放在一起,则图中∠α的度数是______.13.某种商品的标价为200元,按标价的八折出售,这时仍可盈利25%,则这种商品的进价是______元.14.如图,一块等边三角形的木板,边长为1,现将木板沿水平线翻滚,那么B点从开始至结束所走过的路径长度为______.三、(本大题共2小题,每小题8分,满分16分)15.化简,求值:,其中m=.16.如图,在一次龙卷风中,一棵大树在离地面若干米处折断倒下,B为折断处最高点,树顶A落在离树根C的12米处,测得∠BAC=30°,求BC的长.(结果保留根号)四、(本大题共2小题,每小题8分,满分16分)17.如图,等腰梯形ABCD中,AD∥BC,点E是AD延长线上一点,DE=BC.判断△ACE的形状,并说明理由.18.一个均匀的正方体子,六个面分别标有数字1、2、3、4、5、6,连续抛掷两次,朝上的数字分别为m、n.若把m、n作为点A的横纵坐标,那么点A(m,n)在函数y=2x的图象上的概率是多少?五、解答题(共2小题,满分20分)19.二次函数图象过A、C、B三点,点A的坐标为(﹣1,0),点B的坐标为(4,0),点C 在y轴正半轴上,且AB=OC.(1)求C的坐标;(2)求二次函数的解析式,并求出函数最大值.20.如图,△ABC在方格纸中(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2),并求出B点坐标;(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A′B′C′;(3)计算△A′B′C′的面积S.六、(本题满分12分)21.某乒乓球训练馆准备购买n副某种品牌的乒乓球拍,每副球拍配k(k≥3)个乒乓球.已知A、B两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元.现两家超市正在促销,A超市所有商品均打九折(按原价的90%付费)销售,而B超市买1副乒乓球拍送3个乒乓球.若仅考虑购买球拍和乒乓球的费用,请解答下列问题:(1)如果只在某一家超市购买所需球拍和乒乓球,那么去A超市还是B超市买更合算?(2)当k=12时,请设计最省钱的购买方案.七、(本题满分12分)22.小明和几位同学做手的影子游戏时,发现对于同一物体,影子的大小与光源到物体的距离有关.因此,他们认为:可以借助物体的影子长度计算光源到物体的位置.于是,他们做了以下尝试.(1)如图1,垂直于地面放置的正方形框架ABCD,边长AB为30cm,在其正上方有一灯泡,在灯泡的照射下,正方形框架的横向影子A′B,D′C的长度和为6cm.那么灯泡离地面的高度为______.(2)不改变图1中灯泡的高度,将两个边长为30cm的正方形框架按图2摆放,请计算此时横向影子A′B,D′C的长度和为多少?(3)有n个边长为a的正方形按图3摆放,测得横向影子A′B,D′C的长度和为b,求灯泡离地面的距离.(写出解题过程,结果用含a,b,n的代数式表示)八、(本题满分14分)23.如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,且AB=3,BC=,直线y=经过点C,交y轴于点G.(1)点C、D的坐标;(2)求顶点在直线y=上且经过点C、D的抛物线的解析式;(3)将(2)中的抛物线沿直线y=平移,平移后的抛物线交y轴于点F,顶点为点E.平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请明理由.参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.﹣4的绝对值是()A.2 B.4 C.﹣4 D.16【考点】绝对值.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:|﹣4|=4.故选B.2.已知,则a的取值范围是()A.a≤0 B.a<0 C.0<a≤1 D.a>0【考点】二次根式的性质与化简.【分析】等式左边为算术平方根,右边的结果应为非负数,且二次根式有意义,故有a>0,且(1﹣a)≥0.【解答】解:由已知,得a>0,且(1﹣a)≥0;解可得:0<a≤1.故选C.3.已知反比例函数的图象过点M(﹣1,2),则此反比例函数的表达式为()A.y=B.y=﹣C.y=D.y=﹣【考点】待定系数法求反比例函数解析式.【分析】函数经过一定点,将此点坐标代入函数解析式(k≠0),即可求得k的值.【解答】解:设反比例函数的解析式为(k≠0).∵该函数的图象过点M(﹣1,2),∴2=,得k=﹣2.∴反比例函数解析式为y=﹣.故选B.4.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是()A.0.5 B.1 C.2 D.4【考点】垂径定理的应用.【分析】根据题意知,已知弦长和弓形高,求半径(直径).根据垂径定理和勾股定理求解.【解答】解:设半径为r,过O作OE⊥AB交AB于点D,连接OA、OB,则AD=AB=×0.8=0.4米,设OA=r,则OD=r﹣DE=r﹣0.2,在Rt△OAD中,OA2=AD2+OD2,即r2=0.42+(r﹣0.2)2,解得r=0.5米,故此输水管道的直径=2r=2×0.5=1米.故选B.5.如图所示,几何体的主(正)视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据三视图画法规则:(1)高平齐:正视图和侧视图的高保持平齐;(2)宽相等:侧视图的宽和俯视图的宽相等;(3)长对正:正视图和俯视图的长对正.【解答】解:由图可得,主视图应该是三列,正方体的数目分别是:1、2、1.故选B.6.清明节前,某班分成甲、乙两组去距离学校4km的烈士陵园扫墓.甲组步行,乙组骑自行车,他们同时从学校出发,结果乙组比甲组早20min到达目的地.已知骑自行车的速度是步行速度的2倍,设步行的速度为x km/h,则x满足的方程为()A.﹣=20 B.﹣=20 C.﹣=D.﹣=【考点】由实际问题抽象出分式方程.【分析】首先表示出骑自行车速度为2xkm/h,再根据时间=路程÷速度表示出去距离学校4km 的烈士陵园扫墓步行所用的时间与骑自行车所用时间,根据时间相差20min可得方程.【解答】解:20min=h,步行的速度为x km/h,则骑自行车速度为2xkm/h,由题意得:﹣=,故选C.7.不等式组:的解集用数轴表示为()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】本题应该先对不等式组进行化简,然后在数轴上分别表示出x的取值范围,它们相交的地方就是不等式组的解集.【解答】解:不等式组可化为:,在数轴上可表示为:故选A.8.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()A.1 B.2 C.3 D.4【考点】全等三角形的判定.【分析】根据全等三角形的判定分别求出以BC为公共边的三角形,以AB为公共边的三角形,以AC为公共边的三角形的个数,相加即可.【解答】解:以BC为公共边的三角形有3个,以AB为公共边的三角形有0个,以AC为公共边的三角形有1个,共3+0+1=4个,故选D.9.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中正确的结论有()A.2个B.3个C.4个D.5个【考点】二次函数图象与系数的关系.【分析】观察图象:开口向下得到a<0;对称轴在y轴的右侧得到a、b异号,则b>0;抛物线与y轴的交点在x轴的上方得到c>0,所以abc<0;当x=﹣1时图象在x轴下方得到y=a﹣b+c=0,即a+c=b;对称轴为直线x=1,可得x=2时图象在x轴上方,则y=4a+2b+c>0;利用对称轴x=﹣=1得到a=﹣b,而a﹣b+c<0,则﹣b﹣b+c<0,所以2c<3b;开口向下,当x=1,y有最大值a+b+c,得到a+b+c>am2+bm+c,即a+b>m(am+b)(m≠1).【解答】解:开口向下,a<0;对称轴在y轴的右侧,a、b异号,则b>0;抛物线与y轴的交点在x轴的上方,c>0,则abc<0,所以①不正确;当x=﹣1时图象在x轴下方,则y=a﹣b+c=0,即a+c=b,所以②不正确;对称轴为直线x=1,则x=2时图象在x轴上方,则y=4a+2b+c>0,所以③正确;x=﹣=1,则a=﹣b,而a﹣b+c=0,则﹣b﹣b+c=0,2c=3b,所以④不正确;开口向下,当x=1,y有最大值a+b+c;当x=m(m≠1)时,y=am2+bm+c,则a+b+c>am2+bm+c,即a+b>m(am+b)(m≠1),所以⑤正确.故选:A.10.已知a,b,c是△ABC的三条边,对应高分别为h a,h b,h c,且a:b:c=4:5:6,那么h a:h b:h c等于()A.4:5:6 B.6:5:4 C.15:12:10 D.10:12:15【考点】三角形的面积.【分析】设a=4k,b=5k,c=6k,根据三角形的面积公式得到S△=ah a=bh b=ch c=4kh a=5kh b=6kh c,即可得到结论.ABC【解答】解:∵a:b:c=4:5:6,∴设a=4k,b=5k,c=6k,∴S△ABC=ah a=bh b=ch c=4kh a=5kh b=6kh c,∴h a:h b:h c=15:12:10,故选C.二、填空题(本大题共4小题,每小题5分,满分20分)11.分解因式:xy2﹣x= x(y﹣1)(y+1).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:xy2﹣x,=x(y2﹣1),=x(y﹣1)(y+1).故答案为:x(y﹣1)(y+1).12.一副三角板,如图所示叠放在一起,则图中∠α的度数是75°.【考点】三角形内角和定理.【分析】根据三角板的常数以及三角形的一个外角等于与它不相邻的两个内角的和求出∠1的度数,再根据直角等于90°计算即可得解.【解答】解:如图,∠1=45°﹣30°=15°,∠α=90°﹣∠1=90°﹣15°=75°.故答案为:75°13.某种商品的标价为200元,按标价的八折出售,这时仍可盈利25%,则这种商品的进价是128 元.【考点】一元一次方程的应用.【分析】设每件的进价为x元,根据八折出售可获利25%,根据:进价=标价×8折﹣获利,可得出方程:200×80%﹣25%x=x,解出即可.【解答】解:设每件的进价为x元,由题意得:200×80%=x(1+25%),解得:x=128,故答案为:128.14.如图,一块等边三角形的木板,边长为1,现将木板沿水平线翻滚,那么B点从开始至结束所走过的路径长度为.【考点】弧长的计算;等边三角形的性质.【分析】B点从开始至结束所走过的路径长度为两段弧长,一段是以点C为圆心,BC为半径,圆心角为120°,第二段是以A为圆心,AB为半径,圆心角为120°的两段弧长,依弧长公式计算即可.【解答】解:从图中发现:B点从开始至结束所走过的路径长度为两段弧长即第一段=,第二段=.故B点从开始至结束所走过的路径长度=+=.三、(本大题共2小题,每小题8分,满分16分)15.化简,求值:,其中m=.【考点】分式的化简求值.【分析】先根据分式的混合运算法则把分式化简,再把m=代入求解即可求得答案.【解答】解:原式=,=,=,=,=,=.∴当m=时,原式=.16.如图,在一次龙卷风中,一棵大树在离地面若干米处折断倒下,B为折断处最高点,树顶A落在离树根C的12米处,测得∠BAC=30°,求BC的长.(结果保留根号)【考点】解直角三角形的应用.【分析】在三角形ABC中,根据tan∠BAC=,再由∠BAC=30°,代入即可得出答案.【解答】解:∵BC⊥AC,∴∠BCA=90°在直角△ABC中,∵tan,∴BC=ACtan∠BAC=12×tan30°=12×=4米.四、(本大题共2小题,每小题8分,满分16分)17.如图,等腰梯形ABCD中,AD∥BC,点E是AD延长线上一点,DE=BC.判断△ACE的形状,并说明理由.【考点】等腰梯形的性质.【分析】根据AD∥BC,得到∠BCD=∠CDE,又因为DE=BC,所以△BCD≌△EDC;根据全等三角形对应边相等得到BD=CE,又因为等腰梯形的对角线相等,所以AC=CE,所以是等腰三角形.【解答】解:△ACE是等腰三角形.理由如下:∵AD∥BC,∴∠BCD=∠EDC,在△BCD和△EDC中,∵,∴△BCD≌△EDC(SAS)∴BD=CE,∵等腰梯形的对角线相等,所以AC=CE,∴△ACE是等腰三角形.18.一个均匀的正方体子,六个面分别标有数字1、2、3、4、5、6,连续抛掷两次,朝上的数字分别为m、n.若把m、n作为点A的横纵坐标,那么点A(m,n)在函数y=2x的图象上的概率是多少?【考点】一次函数图象上点的坐标特征;概率公式.【分析】列举出所有情况,让点A(m,n)在函数y=2x的图象上的情况数除以总情况数即为所求的概率.【解答】解:根据题意,以(m,n)为坐标的点A共有36个,而只有(1,2),(2,4),(3,6)三个点在函数y=2x图象上,所以,所求概率是,即:点A在函数y=2x图象上的概率是.五、解答题(共2小题,满分20分)19.二次函数图象过A、C、B三点,点A的坐标为(﹣1,0),点B的坐标为(4,0),点C 在y轴正半轴上,且AB=OC.(1)求C的坐标;(2)求二次函数的解析式,并求出函数最大值.【考点】待定系数法求二次函数解析式;二次函数的最值.【分析】(1)根据A.B两点的坐标及点C在y轴正半轴上,且AB=OC.求出点C的坐标为(0,5);(2)设二次函数的解析式为y=ax2+bx+c,把A、B、C三点的坐标代入解析式,可求出a、b、c的值.【解答】解:(1)∵A(﹣1,0),B(4,0)∴AO=1,OB=4,AB=AO+OB=1+4=5,∴OC=5,即点C的坐标为(0,5);(2)解法1:设图象经过A、C、B三点的二次函数的解析式为y=ax2+bx+c由于这个函数图象过点(0,5),可以得到C=5,又由于该图象过点(﹣1,0),(4,0),则:,解方程组,得∴所求的函数解析式为y=﹣x2+x+5∵a=﹣<0∴当x=﹣=时,y有最大值==;解法2:设图象经过A、C、B二点的二次函数的解析式为y=a(x﹣4)(x+1)∵点C(0,5)在图象上,∴把C坐标代入得:5=a(0﹣4)(0+1),解得:a=﹣,∴所求的二次函数解析式为y=﹣(x﹣4)(x+1)∵点A,B的坐标分别是点A(﹣1,0),B(4,0),∴线段AB的中点坐标为(,0),即抛物线的对称轴为直线x=∵a=﹣<0∴当x=时,y有最大值y=﹣=.20.如图,△ABC在方格纸中(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2),并求出B点坐标;(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A′B′C′;(3)计算△A′B′C′的面积S.【考点】作图-位似变换;三角形的面积.【分析】(1)A点的坐标为(2,3)所以原点O的坐标就在A点左2个格,下3个格的点上.由此建立直角坐标系,读出B点坐标;(2)连接OA,OB,OC,并延长到OA′,OB′,OC′,使OA′,OB′,OC′的长度是OA,OB,OC的2倍.然后顺次连接三点;(3)从网格上可看出三角形的底和高,利用三角形的面积公式计算.【解答】解:(1)画出原点O,x轴、y轴.B(2,1)(2)画出图形△A′B′C′.(3)S=×4×8=16.六、(本题满分12分)21.某乒乓球训练馆准备购买n副某种品牌的乒乓球拍,每副球拍配k(k≥3)个乒乓球.已知A、B两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元.现两家超市正在促销,A超市所有商品均打九折(按原价的90%付费)销售,而B超市买1副乒乓球拍送3个乒乓球.若仅考虑购买球拍和乒乓球的费用,请解答下列问题:(1)如果只在某一家超市购买所需球拍和乒乓球,那么去A超市还是B超市买更合算?(2)当k=12时,请设计最省钱的购买方案.【考点】一元一次不等式的应用.【分析】(1)本题可根据去超市花的总费用=购买球拍的费用+购买乒乓球的费用,列出去A,B超市所需的总费用,然后比较这两个总费用,分别得出不同的自变量的取值范围中哪个超市最合算.(2)可分别计算出只在A超市购买,只在B超市购买和在A,B超市同时购买的三种不同情况下,所需的费用,然后比较出最省钱的方案.【解答】解:(1)由题意,去A超市购买n副球拍和kn个乒乓球的费用为0.9(20n+kn)元,去B超市购买n副球拍和k个乒乓球的费用为[20n+n(k﹣3)]元,由0.9(20n+kn)<20n+n(k﹣3),解得k>10;由0.9(20n+kn)=20n+n(k﹣3),解得k=10;由0.9(20n+kn)>20n+n(k﹣3),解得k<10.∴当k>10时,去A超市购买更合算;当k=10时,去A、B两家超市购买都一样;当3≤k<10时,去B超市购买更合算.(2)当k=12时,购买n副球拍应配12n个乒乓球.若只在A超市购买,则费用为0.9(20n+12n)=28.8n(元);若只在B超市购买,则费用为20n+(12n﹣3n)=29n(元);若在B超市购买n副球拍,然后再在A超市购买不足的乒乓球,则费用为20n+0.9×(12﹣3)n=28.1n(元)显然28.1n<28.8n<29n∴最省钱的购买方案为:在B超市购买n副球拍同时获得送的3n个乒乓球,然后在A超市按九折购买9n个乒乓球.七、(本题满分12分)22.小明和几位同学做手的影子游戏时,发现对于同一物体,影子的大小与光源到物体的距离有关.因此,他们认为:可以借助物体的影子长度计算光源到物体的位置.于是,他们做了以下尝试.(1)如图1,垂直于地面放置的正方形框架ABCD,边长AB为30cm,在其正上方有一灯泡,在灯泡的照射下,正方形框架的横向影子A′B,D′C的长度和为6cm.那么灯泡离地面的高度为180cm .(2)不改变图1中灯泡的高度,将两个边长为30cm的正方形框架按图2摆放,请计算此时横向影子A′B,D′C的长度和为多少?(3)有n个边长为a的正方形按图3摆放,测得横向影子A′B,D′C的长度和为b,求灯泡离地面的距离.(写出解题过程,结果用含a,b,n的代数式表示)【考点】相似三角形的应用.【分析】(1)设灯泡的位置为点P,易得△PAD∽△PA′D′,设出所求的未知数,利用相似三角形的对应边的比等于对应高的比,可得灯泡离地面的高度;(2)同法可得到横向影子A′B,D′C的长度和;(3)按照相应的三角形相似,利用相似三角形的对应边的比等于对应高的比,用字母表示出其他线段,即可得到灯泡离地面的距离.【解答】解:(1)设灯泡离地面的高度为xcm,∵AD∥A′D′,∴∠PAD=∠PA′D′,∠PDA=∠PD′A′.∴△PAD∽△PA′D′.根据相似三角形对应高的比等于相似比的性质,可得,∴=,解得x=180.(2)设横向影子A′B,D′C的长度和为ycm,同理可得∴=,解得y=12cm;(3)记灯泡为点P,如图:∵AD∥A′D′,∴∠PAD=∠PA′D′,∠PDA=∠PD′A′.∴△PAD∽△PA′D′.根据相似三角形对应高的比等于相似比的性质,可得(直接得出三角形相似或比例线段均不扣分)设灯泡离地面距离为x,由题意,得PM=x,PN=x﹣a,AD=na,A′D′=na+b,∴=1﹣=1﹣x=.八、(本题满分14分)23.如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,且AB=3,BC=,直线y=经过点C,交y轴于点G.(1)点C、D的坐标;(2)求顶点在直线y=上且经过点C、D的抛物线的解析式;(3)将(2)中的抛物线沿直线y=平移,平移后的抛物线交y轴于点F,顶点为点E.平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请明理由.【考点】二次函数综合题.【分析】(1)根据题意可得点C的纵坐标为3、2,代入直线解析式可得出点C的横坐标,继而也可得出点D的坐标;(2)先求出顶点坐标为(,),再利用顶点式求出抛物线的解析式;(3)先设抛物线解析式为y=(x﹣m)2+m﹣2,然后分类讨论:①当FG=EG时,FG=EG=2m,则F(0,2m﹣2),代入解析式得:m2+m﹣2=2m﹣2,求m 的值;②当GE=EF时,FG=2m,则F(0,2m﹣2),代入解析式得:m2+m﹣2=2m﹣2,求m的值;③当FG=FE时,不存在.【解答】解:(1)令y=2,2=x﹣2,解得x=4,则OA=4﹣3=1,∴C(4,2),D(1,2);(2)由二次函数对称性得,顶点横坐标为=,令x=,则y=×﹣2=,∴顶点坐标为(,),∴设抛物线解析式为y=a(x﹣)2+,把点D(1,2)代入得,a=,∴解析式为y=(x﹣)2+;(3)设顶点E在直线上运动的横坐标为m,则E(m,m﹣2)(m>0)∴可设解析式为y=(x﹣m)2+m﹣2,①当FG=EG时,FG=EG=2m,则F(0,2m﹣2),代入解析式得:m2+m﹣2=2m﹣2,得m=0(舍去),m=﹣,此时所求的解析式为:y=(x﹣+)2+3﹣;②当GE=EF时,FG=2m,则F(0,2m﹣2),代入解析式得:m2+m﹣2=2m﹣2,解得m=0(舍去),m=,此时所求的解析式为:y=(x﹣)2﹣;③当FG=FE时,不存在.2016年9月20日。
2020-2021学年安徽省安庆市中考数学三校联考模拟试题及答案解析
最新安徽省安庆市三校联考中考数学模拟试卷一、选择题(共10小题,每小题4分,满分40分)1.﹣4的绝对值是()A.2 B.4 C.﹣4 D.162.已知,则a的取值范围是()A.a≤0 B.a<0 C.0<a≤1 D.a>03.已知反比例函数的图象过点M(﹣1,2),则此反比例函数的表达式为()A.y= B.y=﹣C.y=D.y=﹣4.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是()A.0.5 B.1 C.2 D.45.如图所示,几何体的主(正)视图是()A.B.C.D.6.清明节前,某班分成甲、乙两组去距离学校4km的烈士陵园扫墓.甲组步行,乙组骑自行车,他们同时从学校出发,结果乙组比甲组早20min到达目的地.已知骑自行车的速度是步行速度的2倍,设步行的速度为x km/h,则x满足的方程为()A.﹣=20 B.﹣=20 C.﹣=D.﹣=7.不等式组:的解集用数轴表示为()A.B.C.D.8.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()A.1 B.2 C.3 D.49.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中正确的结论有()A.2个B.3个C.4个D.5个10.已知a,b,c是△ABC的三条边,对应高分别为h a,h b,h c,且a:b:c=4:5:6,那么h a:h b:h c等于()A.4:5:6 B.6:5:4 C.15:12:10 D.10:12:15二、填空题(本大题共4小题,每小题5分,满分20分)11.分解因式:xy2﹣x=______.12.一副三角板,如图所示叠放在一起,则图中∠α的度数是______.13.某种商品的标价为200元,按标价的八折出售,这时仍可盈利25%,则这种商品的进价是______元.14.如图,一块等边三角形的木板,边长为1,现将木板沿水平线翻滚,那么B点从开始至结束所走过的路径长度为______.三、(本大题共2小题,每小题8分,满分16分)15.化简,求值:,其中m=.16.如图,在一次龙卷风中,一棵大树在离地面若干米处折断倒下,B为折断处最高点,树顶A落在离树根C的12米处,测得∠BAC=30°,求BC的长.(结果保留根号)四、(本大题共2小题,每小题8分,满分16分)17.如图,等腰梯形ABCD中,AD∥BC,点E是AD延长线上一点,DE=BC.判断△ACE 的形状,并说明理由.18.一个均匀的正方体子,六个面分别标有数字1、2、3、4、5、6,连续抛掷两次,朝上的数字分别为m、n.若把m、n作为点A的横纵坐标,那么点A(m,n)在函数y=2x 的图象上的概率是多少?五、解答题(共2小题,满分20分)19.二次函数图象过A、C、B三点,点A的坐标为(﹣1,0),点B的坐标为(4,0),点C在y轴正半轴上,且AB=OC.(1)求C的坐标;(2)求二次函数的解析式,并求出函数最大值.20.如图,△ABC在方格纸中(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2),并求出B点坐标;(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A′B′C′;(3)计算△A′B′C′的面积S.六、(本题满分12分)21.某乒乓球训练馆准备购买n副某种品牌的乒乓球拍,每副球拍配k(k≥3)个乒乓球.已知A、B两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元.现两家超市正在促销,A超市所有商品均打九折(按原价的90%付费)销售,而B超市买1副乒乓球拍送3个乒乓球.若仅考虑购买球拍和乒乓球的费用,请解答下列问题:(1)如果只在某一家超市购买所需球拍和乒乓球,那么去A超市还是B超市买更合算?(2)当k=12时,请设计最省钱的购买方案.七、(本题满分12分)22.小明和几位同学做手的影子游戏时,发现对于同一物体,影子的大小与光源到物体的距离有关.因此,他们认为:可以借助物体的影子长度计算光源到物体的位置.于是,他们做了以下尝试.(1)如图1,垂直于地面放置的正方形框架ABCD,边长AB为30cm,在其正上方有一灯泡,在灯泡的照射下,正方形框架的横向影子A′B,D′C的长度和为6cm.那么灯泡离地面的高度为______.(2)不改变图1中灯泡的高度,将两个边长为30cm的正方形框架按图2摆放,请计算此时横向影子A′B,D′C的长度和为多少?(3)有n个边长为a的正方形按图3摆放,测得横向影子A′B,D′C的长度和为b,求灯泡离地面的距离.(写出解题过程,结果用含a,b,n的代数式表示)八、(本题满分14分)23.如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,且AB=3,BC=,直线y=经过点C,交y轴于点G.(1)点C、D的坐标;(2)求顶点在直线y=上且经过点C、D的抛物线的解析式;(3)将(2)中的抛物线沿直线y=平移,平移后的抛物线交y轴于点F,顶点为点E.平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请明理由.参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.﹣4的绝对值是()A.2 B.4 C.﹣4 D.16【考点】绝对值.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:|﹣4|=4.故选B.2.已知,则a的取值范围是()A.a≤0 B.a<0 C.0<a≤1 D.a>0【考点】二次根式的性质与化简.【分析】等式左边为算术平方根,右边的结果应为非负数,且二次根式有意义,故有a>0,且(1﹣a)≥0.【解答】解:由已知,得a>0,且(1﹣a)≥0;解可得:0<a≤1.故选C.3.已知反比例函数的图象过点M(﹣1,2),则此反比例函数的表达式为()A.y= B.y=﹣C.y=D.y=﹣【考点】待定系数法求反比例函数解析式.【分析】函数经过一定点,将此点坐标代入函数解析式(k≠0),即可求得k的值.【解答】解:设反比例函数的解析式为(k≠0).∵该函数的图象过点M(﹣1,2),∴2=,得k=﹣2.∴反比例函数解析式为y=﹣.故选B.4.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是()A.0.5 B.1 C.2 D.4【考点】垂径定理的应用.【分析】根据题意知,已知弦长和弓形高,求半径(直径).根据垂径定理和勾股定理求解.【解答】解:设半径为r,过O作OE⊥AB交AB于点D,连接OA、OB,则AD=AB=×0.8=0.4米,设OA=r,则OD=r﹣DE=r﹣0.2,在Rt△OAD中,OA2=AD2+OD2,即r2=0.42+(r﹣0.2)2,解得r=0.5米,故此输水管道的直径=2r=2×0.5=1米.故选B.5.如图所示,几何体的主(正)视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据三视图画法规则:(1)高平齐:正视图和侧视图的高保持平齐;(2)宽相等:侧视图的宽和俯视图的宽相等;(3)长对正:正视图和俯视图的长对正.【解答】解:由图可得,主视图应该是三列,正方体的数目分别是:1、2、1.故选B.6.清明节前,某班分成甲、乙两组去距离学校4km的烈士陵园扫墓.甲组步行,乙组骑自行车,他们同时从学校出发,结果乙组比甲组早20min到达目的地.已知骑自行车的速度是步行速度的2倍,设步行的速度为x km/h,则x满足的方程为()A.﹣=20 B.﹣=20 C.﹣=D.﹣=【考点】由实际问题抽象出分式方程.【分析】首先表示出骑自行车速度为2xkm/h,再根据时间=路程÷速度表示出去距离学校4km的烈士陵园扫墓步行所用的时间与骑自行车所用时间,根据时间相差20min可得方程.【解答】解:20min=h,步行的速度为x km/h,则骑自行车速度为2xkm/h,由题意得:﹣=,故选C.7.不等式组:的解集用数轴表示为()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】本题应该先对不等式组进行化简,然后在数轴上分别表示出x的取值范围,它们相交的地方就是不等式组的解集.【解答】解:不等式组可化为:,在数轴上可表示为:故选A.8.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()A.1 B.2 C.3 D.4【考点】全等三角形的判定.【分析】根据全等三角形的判定分别求出以BC为公共边的三角形,以AB为公共边的三角形,以AC为公共边的三角形的个数,相加即可.【解答】解:以BC为公共边的三角形有3个,以AB为公共边的三角形有0个,以AC为公共边的三角形有1个,共3+0+1=4个,故选D.9.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中正确的结论有()A.2个B.3个C.4个D.5个【考点】二次函数图象与系数的关系.【分析】观察图象:开口向下得到a<0;对称轴在y轴的右侧得到a、b异号,则b>0;抛物线与y轴的交点在x轴的上方得到c>0,所以abc<0;当x=﹣1时图象在x轴下方得到y=a﹣b+c=0,即a+c=b;对称轴为直线x=1,可得x=2时图象在x轴上方,则y=4a+2b+c>0;利用对称轴x=﹣=1得到a=﹣b,而a﹣b+c<0,则﹣b﹣b+c <0,所以2c<3b;开口向下,当x=1,y有最大值a+b+c,得到a+b+c>am2+bm+c,即a+b>m(am+b)(m≠1).【解答】解:开口向下,a<0;对称轴在y轴的右侧,a、b异号,则b>0;抛物线与y 轴的交点在x轴的上方,c>0,则abc<0,所以①不正确;当x=﹣1时图象在x轴下方,则y=a﹣b+c=0,即a+c=b,所以②不正确;对称轴为直线x=1,则x=2时图象在x轴上方,则y=4a+2b+c>0,所以③正确;x=﹣=1,则a=﹣b,而a﹣b+c=0,则﹣b﹣b+c=0,2c=3b,所以④不正确;开口向下,当x=1,y有最大值a+b+c;当x=m(m≠1)时,y=am2+bm+c,则a+b+c >am2+bm+c,即a+b>m(am+b)(m≠1),所以⑤正确.故选:A.10.已知a,b,c是△ABC的三条边,对应高分别为h a,h b,h c,且a:b:c=4:5:6,那么h a:h b:h c等于()A.4:5:6 B.6:5:4 C.15:12:10 D.10:12:15【考点】三角形的面积.【分析】设a=4k,b=5k,c=6k,根据三角形的面积公式得到S△=ah a=bh b=ch c=4kh a=5kh b=6kh c,即可得到结论.ABC【解答】解:∵a:b:c=4:5:6,∴设a=4k,b=5k,c=6k,∴S△ABC=ah a=bh b=ch c=4kh a=5kh b=6kh c,∴h a:h b:h c=15:12:10,故选C.二、填空题(本大题共4小题,每小题5分,满分20分)11.分解因式:xy2﹣x= x(y﹣1)(y+1).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:xy2﹣x,=x(y2﹣1),=x(y﹣1)(y+1).故答案为:x(y﹣1)(y+1).12.一副三角板,如图所示叠放在一起,则图中∠α的度数是75°.【考点】三角形内角和定理.【分析】根据三角板的常数以及三角形的一个外角等于与它不相邻的两个内角的和求出∠1的度数,再根据直角等于90°计算即可得解.【解答】解:如图,∠1=45°﹣30°=15°,∠α=90°﹣∠1=90°﹣15°=75°.故答案为:75°13.某种商品的标价为200元,按标价的八折出售,这时仍可盈利25%,则这种商品的进价是128 元.【考点】一元一次方程的应用.【分析】设每件的进价为x元,根据八折出售可获利25%,根据:进价=标价×8折﹣获利,可得出方程:200×80%﹣25%x=x,解出即可.【解答】解:设每件的进价为x元,由题意得:200×80%=x(1+25%),解得:x=128,故答案为:128.14.如图,一块等边三角形的木板,边长为1,现将木板沿水平线翻滚,那么B点从开始至结束所走过的路径长度为.【考点】弧长的计算;等边三角形的性质.【分析】B点从开始至结束所走过的路径长度为两段弧长,一段是以点C为圆心,BC为半径,圆心角为120°,第二段是以A为圆心,AB为半径,圆心角为120°的两段弧长,依弧长公式计算即可.【解答】解:从图中发现:B点从开始至结束所走过的路径长度为两段弧长即第一段=,第二段=.故B点从开始至结束所走过的路径长度=+=.三、(本大题共2小题,每小题8分,满分16分)15.化简,求值:,其中m=.【考点】分式的化简求值.【分析】先根据分式的混合运算法则把分式化简,再把m=代入求解即可求得答案.【解答】解:原式=,=,=,=,=,=.∴当m=时,原式=.16.如图,在一次龙卷风中,一棵大树在离地面若干米处折断倒下,B为折断处最高点,树顶A落在离树根C的12米处,测得∠BAC=30°,求BC的长.(结果保留根号)【考点】解直角三角形的应用.【分析】在三角形ABC中,根据tan∠BAC=,再由∠BAC=30°,代入即可得出答案.【解答】解:∵BC⊥AC,∴∠BCA=90°在直角△ABC中,∵tan,∴BC=ACtan∠BAC=12×tan30°=12×=4米.四、(本大题共2小题,每小题8分,满分16分)17.如图,等腰梯形ABCD中,AD∥BC,点E是AD延长线上一点,DE=BC.判断△ACE 的形状,并说明理由.【考点】等腰梯形的性质.【分析】根据AD∥BC,得到∠BCD=∠CDE,又因为DE=BC,所以△BCD≌△EDC;根据全等三角形对应边相等得到BD=CE,又因为等腰梯形的对角线相等,所以AC=CE,所以是等腰三角形.【解答】解:△ACE是等腰三角形.理由如下:∵AD∥BC,∴∠BCD=∠EDC,在△BCD和△EDC中,∵,∴△BCD≌△EDC(SAS)∴BD=CE,∵等腰梯形的对角线相等,所以AC=CE,∴△ACE是等腰三角形.18.一个均匀的正方体子,六个面分别标有数字1、2、3、4、5、6,连续抛掷两次,朝上的数字分别为m、n.若把m、n作为点A的横纵坐标,那么点A(m,n)在函数y=2x 的图象上的概率是多少?【考点】一次函数图象上点的坐标特征;概率公式.【分析】列举出所有情况,让点A(m,n)在函数y=2x的图象上的情况数除以总情况数即为所求的概率.【解答】解:根据题意,以(m,n)为坐标的点A共有36个,而只有(1,2),(2,4),(3,6)三个点在函数y=2x图象上,所以,所求概率是,即:点A在函数y=2x图象上的概率是.五、解答题(共2小题,满分20分)19.二次函数图象过A、C、B三点,点A的坐标为(﹣1,0),点B的坐标为(4,0),点C在y轴正半轴上,且AB=OC.(1)求C的坐标;(2)求二次函数的解析式,并求出函数最大值.【考点】待定系数法求二次函数解析式;二次函数的最值.【分析】(1)根据A.B两点的坐标及点C在y轴正半轴上,且AB=OC.求出点C的坐标为(0,5);(2)设二次函数的解析式为y=ax2+bx+c,把A、B、C三点的坐标代入解析式,可求出a、b、c的值.【解答】解:(1)∵A(﹣1,0),B(4,0)∴AO=1,OB=4,AB=AO+OB=1+4=5,∴OC=5,即点C的坐标为(0,5);(2)解法1:设图象经过A、C、B三点的二次函数的解析式为y=ax2+bx+c由于这个函数图象过点(0,5),可以得到C=5,又由于该图象过点(﹣1,0),(4,0),则:,解方程组,得∴所求的函数解析式为y=﹣x2+x+5∵a=﹣<0∴当x=﹣=时,y有最大值==;解法2:设图象经过A、C、B二点的二次函数的解析式为y=a(x﹣4)(x+1)∵点C(0,5)在图象上,∴把C坐标代入得:5=a(0﹣4)(0+1),解得:a=﹣,∴所求的二次函数解析式为y=﹣(x﹣4)(x+1)∵点A,B的坐标分别是点A(﹣1,0),B(4,0),∴线段AB的中点坐标为(,0),即抛物线的对称轴为直线x=∵a=﹣<0∴当x=时,y有最大值y=﹣=.20.如图,△ABC在方格纸中(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2),并求出B点坐标;(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A′B′C′;(3)计算△A′B′C′的面积S.【考点】作图-位似变换;三角形的面积.【分析】(1)A点的坐标为(2,3)所以原点O的坐标就在A点左2个格,下3个格的点上.由此建立直角坐标系,读出B点坐标;(2)连接OA,OB,OC,并延长到OA′,OB′,OC′,使OA′,OB′,OC′的长度是OA,OB,OC的2倍.然后顺次连接三点;(3)从网格上可看出三角形的底和高,利用三角形的面积公式计算.【解答】解:(1)画出原点O,x轴、y轴.B(2,1)(2)画出图形△A′B′C′.(3)S=×4×8=16.六、(本题满分12分)21.某乒乓球训练馆准备购买n副某种品牌的乒乓球拍,每副球拍配k(k≥3)个乒乓球.已知A、B两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元.现两家超市正在促销,A超市所有商品均打九折(按原价的90%付费)销售,而B超市买1副乒乓球拍送3个乒乓球.若仅考虑购买球拍和乒乓球的费用,请解答下列问题:(1)如果只在某一家超市购买所需球拍和乒乓球,那么去A超市还是B超市买更合算?(2)当k=12时,请设计最省钱的购买方案.【考点】一元一次不等式的应用.【分析】(1)本题可根据去超市花的总费用=购买球拍的费用+购买乒乓球的费用,列出去A,B超市所需的总费用,然后比较这两个总费用,分别得出不同的自变量的取值范围中哪个超市最合算.(2)可分别计算出只在A超市购买,只在B超市购买和在A,B超市同时购买的三种不同情况下,所需的费用,然后比较出最省钱的方案.【解答】解:(1)由题意,去A超市购买n副球拍和kn个乒乓球的费用为0.9(20n+kn)元,去B超市购买n副球拍和k个乒乓球的费用为[20n+n(k﹣3)]元,由0.9(20n+kn)<20n+n(k﹣3),解得k>10;由0.9(20n+kn)=20n+n(k﹣3),解得k=10;由0.9(20n+kn)>20n+n(k﹣3),解得k<10.∴当k>10时,去A超市购买更合算;当k=10时,去A、B两家超市购买都一样;当3≤k<10时,去B超市购买更合算.(2)当k=12时,购买n副球拍应配12n个乒乓球.若只在A超市购买,则费用为0.9(20n+12n)=28.8n(元);若只在B超市购买,则费用为20n+(12n﹣3n)=29n(元);若在B超市购买n副球拍,然后再在A超市购买不足的乒乓球,则费用为20n+0.9×(12﹣3)n=28.1n(元)显然28.1n<28.8n<29n∴最省钱的购买方案为:在B超市购买n副球拍同时获得送的3n个乒乓球,然后在A超市按九折购买9n个乒乓球.七、(本题满分12分)22.小明和几位同学做手的影子游戏时,发现对于同一物体,影子的大小与光源到物体的距离有关.因此,他们认为:可以借助物体的影子长度计算光源到物体的位置.于是,他们做了以下尝试.(1)如图1,垂直于地面放置的正方形框架ABCD,边长AB为30cm,在其正上方有一灯泡,在灯泡的照射下,正方形框架的横向影子A′B,D′C的长度和为6cm.那么灯泡离地面的高度为180cm .(2)不改变图1中灯泡的高度,将两个边长为30cm的正方形框架按图2摆放,请计算此时横向影子A′B,D′C的长度和为多少?(3)有n个边长为a的正方形按图3摆放,测得横向影子A′B,D′C的长度和为b,求灯泡离地面的距离.(写出解题过程,结果用含a,b,n的代数式表示)【考点】相似三角形的应用.【分析】(1)设灯泡的位置为点P,易得△PAD∽△PA′D′,设出所求的未知数,利用相似三角形的对应边的比等于对应高的比,可得灯泡离地面的高度;(2)同法可得到横向影子A′B,D′C的长度和;(3)按照相应的三角形相似,利用相似三角形的对应边的比等于对应高的比,用字母表示出其他线段,即可得到灯泡离地面的距离.【解答】解:(1)设灯泡离地面的高度为xcm,∵AD∥A′D′,∴∠PAD=∠PA′D′,∠PDA=∠PD′A′.∴△PAD∽△PA′D′.根据相似三角形对应高的比等于相似比的性质,可得,∴=,解得x=180.(2)设横向影子A′B,D′C的长度和为ycm,同理可得∴=,解得y=12cm;(3)记灯泡为点P,如图:∵AD∥A′D′,∴∠PAD=∠PA′D′,∠PDA=∠PD′A′.∴△PAD∽△PA′D′.根据相似三角形对应高的比等于相似比的性质,可得(直接得出三角形相似或比例线段均不扣分)设灯泡离地面距离为x,由题意,得PM=x,PN=x﹣a,AD=na,A′D′=na+b,∴=1﹣=1﹣x=.八、(本题满分14分)23.如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,且AB=3,BC=,直线y=经过点C,交y轴于点G.(1)点C、D的坐标;(2)求顶点在直线y=上且经过点C、D的抛物线的解析式;(3)将(2)中的抛物线沿直线y=平移,平移后的抛物线交y轴于点F,顶点为点E.平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请明理由.【考点】二次函数综合题.【分析】(1)根据题意可得点C的纵坐标为3、2,代入直线解析式可得出点C的横坐标,继而也可得出点D的坐标;(2)先求出顶点坐标为(,),再利用顶点式求出抛物线的解析式;(3)先设抛物线解析式为y=(x﹣m)2+m﹣2,然后分类讨论:①当FG=EG 时,FG=EG=2m,则F(0,2m﹣2),代入解析式得:m2+m﹣2=2m﹣2,求m的值;②当GE=EF时,FG=2m,则F(0,2m﹣2),代入解析式得:m2+m﹣2=2m﹣2,求m的值;③当FG=FE时,不存在.【解答】解:(1)令y=2,2=x﹣2,解得x=4,则OA=4﹣3=1,∴C(4,2),D(1,2);(2)由二次函数对称性得,顶点横坐标为=,令x=,则y=×﹣2=,∴顶点坐标为(,),∴设抛物线解析式为y=a(x﹣)2+,把点D(1,2)代入得,a=,∴解析式为y=(x﹣)2+;(3)设顶点E在直线上运动的横坐标为m,则E(m,m﹣2)(m>0)∴可设解析式为y=(x﹣m)2+m﹣2,①当FG=EG时,FG=EG=2m,则F(0,2m﹣2),代入解析式得:m2+m﹣2=2m﹣2,得m=0(舍去),m=﹣,此时所求的解析式为:y=(x﹣+)2+3﹣;②当GE=EF时,FG=2m,则F(0,2m﹣2),代入解析式得:m2+m﹣2=2m﹣2,解得m=0(舍去),m=,此时所求的解析式为:y=(x﹣)2﹣;③当FG=FE时,不存在.2016年9月20日。
2019年安庆市桐城市三校联考中考数学模拟试卷含答案解析+【精选五套中考模拟卷】
2019年安庆市桐城市三校联考中考数学模拟试卷含答案解析一、选择题(共10小题,每小题4分,满分40分)1.﹣4的绝对值是()A.2 B.4 C.﹣4 D.162.已知,则a的取值范围是()A.a≤0 B.a<0 C.0<a≤1 D.a>03.已知反比例函数的图象过点M(﹣1,2),则此反比例函数的表达式为()A.y= B.y=﹣C.y=D.y=﹣4.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是()A.0.5 B.1 C.2 D.45.如图所示,几何体的主(正)视图是()A.B.C.D.6.清明节前,某班分成甲、乙两组去距离学校4km的烈士陵园扫墓.甲组步行,乙组骑自行车,他们同时从学校出发,结果乙组比甲组早20min到达目的地.已知骑自行车的速度是步行速度的2倍,设步行的速度为x km/h,则x满足的方程为()A.﹣=20 B.﹣=20 C.﹣=D.﹣=7.不等式组:的解集用数轴表示为()A.B.C.D.8.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()A.1 B.2 C.3 D.49.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中正确的结论有()A.2个B.3个C.4个D.5个10.已知a,b,c是△ABC的三条边,对应高分别为h a,h b,h c,且a:b:c=4:5:6,那么h a:h b:h c等于()A.4:5:6 B.6:5:4 C.15:12:10 D.10:12:15二、填空题(本大题共4小题,每小题5分,满分20分)11.分解因式:xy2﹣x=______.12.一副三角板,如图所示叠放在一起,则图中∠α的度数是______.13.某种商品的标价为200元,按标价的八折出售,这时仍可盈利25%,则这种商品的进价是______元.14.如图,一块等边三角形的木板,边长为1,现将木板沿水平线翻滚,那么B点从开始至结束所走过的路径长度为______.三、(本大题共2小题,每小题8分,满分16分)15.化简,求值:,其中m=.16.如图,在一次龙卷风中,一棵大树在离地面若干米处折断倒下,B为折断处最高点,树顶A落在离树根C的12米处,测得∠BAC=30°,求BC的长.(结果保留根号)四、(本大题共2小题,每小题8分,满分16分)17.如图,等腰梯形ABCD中,AD∥BC,点E是AD延长线上一点,DE=BC.判断△ACE的形状,并说明理由.18.一个均匀的正方体子,六个面分别标有数字1、2、3、4、5、6,连续抛掷两次,朝上的数字分别为m、n.若把m、n作为点A的横纵坐标,那么点A(m,n)在函数y=2x的图象上的概率是多少?五、解答题(共2小题,满分20分)19.二次函数图象过A、C、B三点,点A的坐标为(﹣1,0),点B的坐标为(4,0),点C在y轴正半轴上,且AB=OC.(1)求C的坐标;(2)求二次函数的解析式,并求出函数最大值.20.如图,△ABC在方格纸中(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2),并求出B点坐标;(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A′B′C′;(3)计算△A′B′C′的面积S.六、(本题满分12分)21.某乒乓球训练馆准备购买n副某种品牌的乒乓球拍,每副球拍配k(k≥3)个乒乓球.已知A、B两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元.现两家超市正在促销,A超市所有商品均打九折(按原价的90%付费)销售,而B超市买1副乒乓球拍送3个乒乓球.若仅考虑购买球拍和乒乓球的费用,请解答下列问题:(1)如果只在某一家超市购买所需球拍和乒乓球,那么去A超市还是B超市买更合算?(2)当k=12时,请设计最省钱的购买方案.七、(本题满分12分)22.小明和几位同学做手的影子游戏时,发现对于同一物体,影子的大小与光源到物体的距离有关.因此,他们认为:可以借助物体的影子长度计算光源到物体的位置.于是,他们做了以下尝试.(1)如图1,垂直于地面放置的正方形框架ABCD,边长AB为30cm,在其正上方有一灯泡,在灯泡的照射下,正方形框架的横向影子A′B,D′C的长度和为6cm.那么灯泡离地面的高度为______.(2)不改变图1中灯泡的高度,将两个边长为30cm的正方形框架按图2摆放,请计算此时横向影子A′B,D′C 的长度和为多少?(3)有n个边长为a的正方形按图3摆放,测得横向影子A′B,D′C的长度和为b,求灯泡离地面的距离.(写出解题过程,结果用含a,b,n的代数式表示)八、(本题满分14分)23.如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,且AB=3,BC=,直线y=经过点C,交y轴于点G.(1)点C、D的坐标;(2)求顶点在直线y=上且经过点C、D的抛物线的解析式;(3)将(2)中的抛物线沿直线y=平移,平移后的抛物线交y轴于点F,顶点为点E.平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请明理由.参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.﹣4的绝对值是()A.2 B.4 C.﹣4 D.16【考点】绝对值.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:|﹣4|=4.故选B.2.已知,则a的取值范围是()A.a≤0 B.a<0 C.0<a≤1 D.a>0【考点】二次根式的性质与化简.【分析】等式左边为算术平方根,右边的结果应为非负数,且二次根式有意义,故有a>0,且(1﹣a)≥0.【解答】解:由已知,得a>0,且(1﹣a)≥0;解可得:0<a≤1.故选C.3.已知反比例函数的图象过点M(﹣1,2),则此反比例函数的表达式为()A.y= B.y=﹣C.y=D.y=﹣【考点】待定系数法求反比例函数解析式.【分析】函数经过一定点,将此点坐标代入函数解析式(k≠0),即可求得k的值.【解答】解:设反比例函数的解析式为(k≠0).∵该函数的图象过点M(﹣1,2),∴2=,得k=﹣2.∴反比例函数解析式为y=﹣.故选B.4.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是()A.0.5 B.1 C.2 D.4【考点】垂径定理的应用.【分析】根据题意知,已知弦长和弓形高,求半径(直径).根据垂径定理和勾股定理求解.【解答】解:设半径为r,过O作OE⊥AB交AB于点D,连接OA、OB,则AD=AB=×0.8=0.4米,设OA=r,则OD=r﹣DE=r﹣0.2,在Rt△OAD中,OA2=AD2+OD2,即r2=0.42+(r﹣0.2)2,解得r=0.5米,故此输水管道的直径=2r=2×0.5=1米.故选B.5.如图所示,几何体的主(正)视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据三视图画法规则:(1)高平齐:正视图和侧视图的高保持平齐;(2)宽相等:侧视图的宽和俯视图的宽相等;(3)长对正:正视图和俯视图的长对正.【解答】解:由图可得,主视图应该是三列,正方体的数目分别是:1、2、1.故选B.6.清明节前,某班分成甲、乙两组去距离学校4km的烈士陵园扫墓.甲组步行,乙组骑自行车,他们同时从学校出发,结果乙组比甲组早20min到达目的地.已知骑自行车的速度是步行速度的2倍,设步行的速度为x km/h,则x满足的方程为()A.﹣=20 B.﹣=20 C.﹣=D.﹣=【考点】由实际问题抽象出分式方程.【分析】首先表示出骑自行车速度为2xkm/h,再根据时间=路程÷速度表示出去距离学校4km的烈士陵园扫墓步行所用的时间与骑自行车所用时间,根据时间相差20min可得方程.【解答】解:20min=h,步行的速度为x km/h,则骑自行车速度为2xkm/h,由题意得:﹣=,故选C.7.不等式组:的解集用数轴表示为()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】本题应该先对不等式组进行化简,然后在数轴上分别表示出x的取值范围,它们相交的地方就是不等式组的解集.【解答】解:不等式组可化为:,在数轴上可表示为:故选A.8.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()A.1 B.2 C.3 D.4【考点】全等三角形的判定.【分析】根据全等三角形的判定分别求出以BC为公共边的三角形,以AB为公共边的三角形,以AC为公共边的三角形的个数,相加即可.【解答】解:以BC为公共边的三角形有3个,以AB为公共边的三角形有0个,以AC为公共边的三角形有1个,共3+0+1=4个,故选D.9.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中正确的结论有()A.2个B.3个C.4个D.5个【考点】二次函数图象与系数的关系.【分析】观察图象:开口向下得到a<0;对称轴在y轴的右侧得到a、b异号,则b>0;抛物线与y轴的交点在x轴的上方得到c>0,所以abc<0;当x=﹣1时图象在x轴下方得到y=a﹣b+c=0,即a+c=b;对称轴为直线x=1,可得x=2时图象在x轴上方,则y=4a+2b+c>0;利用对称轴x=﹣=1得到a=﹣b,而a﹣b+c<0,则﹣b﹣b+c<0,所以2c<3b;开口向下,当x=1,y有最大值a+b+c,得到a+b+c>am2+bm+c,即a+b>m(am+b)(m≠1).【解答】解:开口向下,a<0;对称轴在y轴的右侧,a、b异号,则b>0;抛物线与y轴的交点在x轴的上方,c>0,则abc<0,所以①不正确;当x=﹣1时图象在x轴下方,则y=a﹣b+c=0,即a+c=b,所以②不正确;对称轴为直线x=1,则x=2时图象在x轴上方,则y=4a+2b+c>0,所以③正确;x=﹣=1,则a=﹣b,而a﹣b+c=0,则﹣b﹣b+c=0,2c=3b,所以④不正确;开口向下,当x=1,y有最大值a+b+c;当x=m(m≠1)时,y=am2+bm+c,则a+b+c>am2+bm+c,即a+b>m(am+b)(m≠1),所以⑤正确.故选:A.10.已知a,b,c是△ABC的三条边,对应高分别为h a,h b,h c,且a:b:c=4:5:6,那么h a:h b:h c等于()A.4:5:6 B.6:5:4 C.15:12:10 D.10:12:15【考点】三角形的面积.【分析】设a=4k,b=5k,c=6k,根据三角形的面积公式得到S△ABC=ah a=bh b=ch c=4kh a=5kh b=6kh c,即可得到结论.【解答】解:∵a:b:c=4:5:6,∴设a=4k,b=5k,c=6k,∴S△ABC=ah a=bh b=ch c=4kh a=5kh b=6kh c,∴h a:h b:h c=15:12:10,故选C.二、填空题(本大题共4小题,每小题5分,满分20分)11.分解因式:xy2﹣x= x(y﹣1)(y+1).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:xy2﹣x,=x(y2﹣1),=x(y﹣1)(y+1).故答案为:x(y﹣1)(y+1).12.一副三角板,如图所示叠放在一起,则图中∠α的度数是75°.【考点】三角形内角和定理.【分析】根据三角板的常数以及三角形的一个外角等于与它不相邻的两个内角的和求出∠1的度数,再根据直角等于90°计算即可得解.【解答】解:如图,∠1=45°﹣30°=15°,∠α=90°﹣∠1=90°﹣15°=75°.故答案为:75°13.某种商品的标价为200元,按标价的八折出售,这时仍可盈利25%,则这种商品的进价是128 元.【考点】一元一次方程的应用.【分析】设每件的进价为x元,根据八折出售可获利25%,根据:进价=标价×8折﹣获利,可得出方程:200×80%﹣25%x=x,解出即可.【解答】解:设每件的进价为x元,由题意得:200×80%=x(1+25%),解得:x=128,故答案为:128.14.如图,一块等边三角形的木板,边长为1,现将木板沿水平线翻滚,那么B点从开始至结束所走过的路径长度为.【考点】弧长的计算;等边三角形的性质.【分析】B点从开始至结束所走过的路径长度为两段弧长,一段是以点C为圆心,BC为半径,圆心角为120°,第二段是以A为圆心,AB为半径,圆心角为120°的两段弧长,依弧长公式计算即可.【解答】解:从图中发现:B点从开始至结束所走过的路径长度为两段弧长即第一段=,第二段=.故B点从开始至结束所走过的路径长度=+=.三、(本大题共2小题,每小题8分,满分16分)15.化简,求值:,其中m=.【考点】分式的化简求值.【分析】先根据分式的混合运算法则把分式化简,再把m=代入求解即可求得答案.【解答】解:原式=,=,=,=,=,=.∴当m=时,原式=.16.如图,在一次龙卷风中,一棵大树在离地面若干米处折断倒下,B为折断处最高点,树顶A落在离树根C的12米处,测得∠BAC=30°,求BC的长.(结果保留根号)【考点】解直角三角形的应用.【分析】在三角形ABC中,根据tan∠BAC=,再由∠BAC=30°,代入即可得出答案.【解答】解:∵BC⊥AC,∴∠BCA=90°在直角△ABC中,∵tan,∴BC=ACtan∠BAC=12×tan30°=12×=4米.四、(本大题共2小题,每小题8分,满分16分)17.如图,等腰梯形ABCD中,AD∥BC,点E是AD延长线上一点,DE=BC.判断△ACE的形状,并说明理由.【考点】等腰梯形的性质.【分析】根据AD∥BC,得到∠BCD=∠CDE,又因为DE=BC,所以△BCD≌△EDC;根据全等三角形对应边相等得到BD=CE,又因为等腰梯形的对角线相等,所以AC=CE,所以是等腰三角形.【解答】解:△ACE是等腰三角形.理由如下:∵AD∥BC,∴∠BCD=∠EDC,在△BCD和△EDC中,∵,∴△BCD≌△EDC(SAS)∴BD=CE,∵等腰梯形的对角线相等,所以AC=CE,∴△ACE是等腰三角形.18.一个均匀的正方体子,六个面分别标有数字1、2、3、4、5、6,连续抛掷两次,朝上的数字分别为m、n.若把m、n作为点A的横纵坐标,那么点A(m,n)在函数y=2x的图象上的概率是多少?【考点】一次函数图象上点的坐标特征;概率公式.【分析】列举出所有情况,让点A(m,n)在函数y=2x的图象上的情况数除以总情况数即为所求的概率.【解答】解:根据题意,以(m,n)为坐标的点A共有36个,而只有(1,2),(2,4),(3,6)三个点在函数y=2x图象上,所以,所求概率是,即:点A在函数y=2x图象上的概率是.五、解答题(共2小题,满分20分)19.二次函数图象过A、C、B三点,点A的坐标为(﹣1,0),点B的坐标为(4,0),点C在y轴正半轴上,且AB=OC.(1)求C的坐标;(2)求二次函数的解析式,并求出函数最大值.【考点】待定系数法求二次函数解析式;二次函数的最值.【分析】(1)根据A.B两点的坐标及点C在y轴正半轴上,且AB=OC.求出点C的坐标为(0,5);(2)设二次函数的解析式为y=ax2+bx+c,把A、B、C三点的坐标代入解析式,可求出a、b、c的值.【解答】解:(1)∵A(﹣1,0),B(4,0)∴AO=1,OB=4,AB=AO+OB=1+4=5,∴OC=5,即点C的坐标为(0,5);(2)解法1:设图象经过A、C、B三点的二次函数的解析式为y=ax2+bx+c由于这个函数图象过点(0,5),可以得到C=5,又由于该图象过点(﹣1,0),(4,0),则:,解方程组,得∴所求的函数解析式为y=﹣x2+x+5∵a=﹣<0∴当x=﹣=时,y有最大值==;解法2:设图象经过A、C、B二点的二次函数的解析式为y=a(x﹣4)(x+1)∵点C(0,5)在图象上,∴把C坐标代入得:5=a(0﹣4)(0+1),解得:a=﹣,∴所求的二次函数解析式为y=﹣(x﹣4)(x+1)∵点A,B的坐标分别是点A(﹣1,0),B(4,0),∴线段AB的中点坐标为(,0),即抛物线的对称轴为直线x=∵a=﹣<0∴当x=时,y有最大值y=﹣=.20.如图,△ABC在方格纸中(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2),并求出B点坐标;(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A′B′C′;(3)计算△A′B′C′的面积S.【考点】作图-位似变换;三角形的面积.【分析】(1)A点的坐标为(2,3)所以原点O的坐标就在A点左2个格,下3个格的点上.由此建立直角坐标系,读出B点坐标;(2)连接OA,OB,OC,并延长到OA′,OB′,OC′,使OA′,OB′,OC′的长度是OA,OB,OC的2倍.然后顺次连接三点;(3)从网格上可看出三角形的底和高,利用三角形的面积公式计算.【解答】解:(1)画出原点O,x轴、y轴.B(2,1)(2)画出图形△A′B′C′.(3)S=×4×8=16.六、(本题满分12分)21.某乒乓球训练馆准备购买n副某种品牌的乒乓球拍,每副球拍配k(k≥3)个乒乓球.已知A、B两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元.现两家超市正在促销,A超市所有商品均打九折(按原价的90%付费)销售,而B超市买1副乒乓球拍送3个乒乓球.若仅考虑购买球拍和乒乓球的费用,请解答下列问题:(1)如果只在某一家超市购买所需球拍和乒乓球,那么去A超市还是B超市买更合算?(2)当k=12时,请设计最省钱的购买方案.【考点】一元一次不等式的应用.【分析】(1)本题可根据去超市花的总费用=购买球拍的费用+购买乒乓球的费用,列出去A,B超市所需的总费用,然后比较这两个总费用,分别得出不同的自变量的取值范围中哪个超市最合算.(2)可分别计算出只在A超市购买,只在B超市购买和在A,B超市同时购买的三种不同情况下,所需的费用,然后比较出最省钱的方案.【解答】解:(1)由题意,去A超市购买n副球拍和kn个乒乓球的费用为0.9(20n+kn)元,去B超市购买n 副球拍和k个乒乓球的费用为[20n+n(k﹣3)]元,由0.9(20n+kn)<20n+n(k﹣3),解得k>10;由0.9(20n+kn)=20n+n(k﹣3),解得k=10;由0.9(20n+kn)>20n+n(k﹣3),解得k<10.∴当k>10时,去A超市购买更合算;当k=10时,去A、B两家超市购买都一样;当3≤k<10时,去B超市购买更合算.(2)当k=12时,购买n副球拍应配12n个乒乓球.若只在A超市购买,则费用为0.9(20n+12n)=28.8n(元);若只在B超市购买,则费用为20n+(12n﹣3n)=29n(元);若在B超市购买n副球拍,然后再在A超市购买不足的乒乓球,则费用为20n+0.9×(12﹣3)n=28.1n(元)显然28.1n<28.8n<29n∴最省钱的购买方案为:在B超市购买n副球拍同时获得送的3n个乒乓球,然后在A超市按九折购买9n个乒乓球.七、(本题满分12分)22.小明和几位同学做手的影子游戏时,发现对于同一物体,影子的大小与光源到物体的距离有关.因此,他们认为:可以借助物体的影子长度计算光源到物体的位置.于是,他们做了以下尝试.(1)如图1,垂直于地面放置的正方形框架ABCD,边长AB为30cm,在其正上方有一灯泡,在灯泡的照射下,正方形框架的横向影子A′B,D′C的长度和为6cm.那么灯泡离地面的高度为180cm .(2)不改变图1中灯泡的高度,将两个边长为30cm的正方形框架按图2摆放,请计算此时横向影子A′B,D′C 的长度和为多少?(3)有n个边长为a的正方形按图3摆放,测得横向影子A′B,D′C的长度和为b,求灯泡离地面的距离.(写出解题过程,结果用含a,b,n的代数式表示)【考点】相似三角形的应用.【分析】(1)设灯泡的位置为点P,易得△PAD∽△PA′D′,设出所求的未知数,利用相似三角形的对应边的比等于对应高的比,可得灯泡离地面的高度;(2)同法可得到横向影子A′B,D′C的长度和;(3)按照相应的三角形相似,利用相似三角形的对应边的比等于对应高的比,用字母表示出其他线段,即可得到灯泡离地面的距离.【解答】解:(1)设灯泡离地面的高度为xcm,∵AD∥A′D′,∴∠PAD=∠PA′D′,∠PDA=∠PD′A′.∴△PAD∽△PA′D′.根据相似三角形对应高的比等于相似比的性质,可得,∴=,解得x=180.(2)设横向影子A′B,D′C的长度和为ycm,同理可得∴=,解得y=12cm;(3)记灯泡为点P,如图:∵AD∥A′D′,∴∠PAD=∠PA′D′,∠PDA=∠PD′A′.∴△PAD∽△PA′D′.根据相似三角形对应高的比等于相似比的性质,可得(直接得出三角形相似或比例线段均不扣分)设灯泡离地面距离为x,由题意,得PM=x,PN=x﹣a,AD=na,A′D′=na+b,∴=1﹣=1﹣x=.八、(本题满分14分)23.如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,且AB=3,BC=,直线y=经过点C,交y轴于点G.(1)点C、D的坐标;(2)求顶点在直线y=上且经过点C、D的抛物线的解析式;(3)将(2)中的抛物线沿直线y=平移,平移后的抛物线交y轴于点F,顶点为点E.平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请明理由.【考点】二次函数综合题.【分析】(1)根据题意可得点C的纵坐标为3、2,代入直线解析式可得出点C的横坐标,继而也可得出点D 的坐标;(2)先求出顶点坐标为(,),再利用顶点式求出抛物线的解析式;(3)先设抛物线解析式为y=(x﹣m)2+m﹣2,然后分类讨论:①当FG=EG时,FG=EG=2m,则F(0,2m﹣2),代入解析式得: m2+m﹣2=2m﹣2,求m的值;②当GE=EF时,FG=2m,则F(0,2m﹣2),代入解析式得: m2+m﹣2=2m﹣2,求m的值;③当FG=FE时,不存在.【解答】解:(1)令y=2,2=x﹣2,解得x=4,则OA=4﹣3=1,∴C(4,2),D(1,2);(2)由二次函数对称性得,顶点横坐标为=,令x=,则y=×﹣2=,∴顶点坐标为(,),∴设抛物线解析式为y=a(x﹣)2+,把点D(1,2)代入得,a=,∴解析式为y=(x﹣)2+;(3)设顶点E在直线上运动的横坐标为m,则E(m, m﹣2)(m>0)∴可设解析式为y=(x﹣m)2+m﹣2,①当FG=EG时,FG=EG=2m,则F(0,2m﹣2),代入解析式得: m2+m﹣2=2m﹣2,得m=0(舍去),m=﹣,此时所求的解析式为:y=(x﹣+)2+3﹣;②当GE=EF时,FG=2m,则F(0,2m﹣2),代入解析式得: m2+m﹣2=2m﹣2,解得m=0(舍去),m=,此时所求的解析式为:y=(x﹣)2﹣;③当FG=FE时,不存在.2019年9月20日中考数学模拟试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果“盈利5%”记作+5%,那么—3%表示( * ).A .亏损3%B .亏损2%C .盈利3%D .盈利2% 2.下列图形中,既是轴对称图形又是中心对称图形的是( * ).A .B .C .D .3.若一个三角形的两边长分别为5和8,则第三边长可能是( * ). A .15 B .10 C .3 D .2 4.下列运算正确的是( * ).A .936a a a ÷=B (0,0)x y x y x y =+≥≥C .236(2)6a a =D .222(2)4a b a b -=-5.如图1是一个几何体的三视图,则该几何体的展开图可以是( * ).A .B .C .D .6.方程1213x x =-+的解是( * ). A .7x =- B .4x =- C .4x = D .5x = 日加工零件数 4 5 6 7 8 人数26543这些工人日加工零件数的众数、中位数、平均数分别是( * ). A .5、6、5 B .5、5、6 C .6、5、6 D .5、6、6 8.若代数式4a +在实数范围内有意义,则a 的取值范围是( * ).A .4a ≠-B .4a ≥-C .4a >-D .4a >-且0a ≠9.如图2,△ABC 是等边三角形,D 是BC 边上一点,将△ABD绕点A 逆时针旋转60°得到△ACE ,连接DE ,则下列说法不一定正确的是( * ).A .△ADE 是等边三角形B .A B ∥CEC .∠BAD =∠DEC D .AC =CD+CE比例函数aby x=与一次10.已知二次函数2()y x a b =-++的图象如图3所示,则反函数y ax b =+的图象可能是( * ).A .B .图1图2图3CA BDEC .D .二、填空题(本大题共6小题,每小题3分,满分18分) 11.分解因式:2ab b -= * .12.近年来,国家重视精准扶贫,收效显著,据统计约65 000 000人脱贫.将65000 000用科学记数法表示为 * . 13.若实数m 、n30n +=,则10()m n += * .22AEP PFDE S a S ∆=四边形;④若b * .(填写所有正确结论的序号)小题,满分如图7,点C 、F 、E 、B 在一条直线上,CD =BA ,CE =BF ,DF =AE ,求证:∠B =∠C . 19.(本小题满分10分)某校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选一类最喜爱的电视节目,以下是根据调查结果绘制的不完整统计表,根据表中信息,回答下列问题:(1)本次共调查了__* __名学生,若将各类电视节目喜爱的人数所占比例绘制成扇形统计图,则“喜爱动画”对应扇形的圆心角度数是__* __;(2)该校共有2000名学生,根据调查结果估计该校“喜爱体育”节目的学生人数;(3)在此次问卷调查中,甲、乙两班分别有2人喜爱新闻节目,若从这4人中随机抽取2人去参加“新闻小记者”培训,求抽取的2人来自不同班级的概率.20.(本小题满分10分)如图8,□ABCD 中,AB =2,BC .(1)利用尺规作∠ABC 的平分线BE ,交AD 于点E ;(保留作图痕迹,不写作法) (2)记DE a =,先化简212329a a T a a a +=÷--+-,再求T 的值. 21.(本小题满分12分)图8B AC D如图9,C 地在A 地的正东方向,因有大山阻隔,由A 地到C 地需绕行B 地,现计划开凿隧道使A 、C 两地直线贯通,经测量得:B 地在A 地的北偏东67°方向,距离A 地280km ,C 地在B 地南偏东的30°方向. (1)求B 地到直线AC 的距离;(2)求隧道开通后与隧道开通前相比,从A 地到C 地的路程将缩短多少?(本题结果都精确到0.1km )22.(本小题满分12分) 如图10,菱形ABCD 的对角线AC 、BD 相交于点O ,点E 、F 分别是AB 、AD 的中点.(2) 点O 为坐标原点,点B 是x 轴正半轴上一点,当:5:2OA OB =时,求直线AB 的解析式. 24.(本小题满分14分)如图11,⊙O 是△ABC 的内切圆.(1)若∠A=60°,连接BO 、CO 并延长,分别交AC 、AB 于点D 、E ,① 求∠BOC 的度数;② 试探究BE 、CD 、BC 之间的等量关系,并证明你的结论;(2)若AB =AC =10,sin ∠ABC=45,AC 、AB 与⊙O 相切于点D 、E ,将BC 向上平移与⊙O 交于点F 、G ,若以D 、E 、F 、G 为顶点的四边形是矩形,求平移的距离.25.(本小题满分14分) 已知抛物线22y x x m m =---. (1)求证:抛物线与x 轴必定有公共点;(2)若P (a ,y 1),Q (-2,y 2)是抛物线上的两点,且y 1>y 2,求a 的取值范围;(3)设抛物线与x 轴交于点()1,0A x 、()2,0B x ,点A 在点B 的左侧,与y 轴负半轴交于点C ,且123x x +=,若点D 是直线BC 下方抛物线上一点,连接AD 交BC 于点E ,记△ACE 的面积为S 1,△DCE 的面积为S 2,求21SS 是否有最值?若有,求出该最值;若没有,请说明理由.图11OBCA图9九年级数学答案与评分标准一、选择题(本大题共有10小题,每小题3分,满分30分) 二、填空题(本大题共有6小题,每小题3分,满分18分) 11.()b a b - 12.7105.6⨯ 13.1 14.080 15.3π 16.①②③④评分细则:第16题写对一个或二个给1分,写对三个给2分,全部写对给3分。
安徽省安庆市桐城二中2025届九年级数学下学期第四次模拟考试题
桐城2024-2025学年度其次学期第四次模拟考试数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1﹒(13)-2的相反数是().A.9 B.-9 C.19D.192﹒在下列的计算中,正确的是()A.m3+m2=m5 B.m5÷m2=m3C.(2m)3=6m3D.(m+1)2=m2+13﹒PM2.5是指大气中直径小于或等于2.5μm(1μm=0.000001m)的颗粒物,也称为可入肺颗粒物,它们含有肯定量的有毒、有害物质,对人体健康和大气环境质量有很大影响.2.3μm用科学记数法可表示为()A.23×10-5m B.2.3×10-5m C.2.3×10-6m D.0.23×10-7m4﹒由6个大小相同的正方体塔成的几何体如图所示,比较它的正视图,左视图和俯视图的面积,则()A.三个视图的面积一样大B.左视图的面积最小C.主视图的面积最小 D.俯视图的面积最小5﹒某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个.若安排x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27-x) B.16x=22(27-x)C.2×16x=22(27-x) D.2×22x=16(27-x)6﹒已知一组数据a,b,c的平均数为5,方差为4,那么数据a-2,b-2,c-2的平均数和方差分别是()A. 3 ,2 B.3 ,4 C. 5 ,2 D.5 ,47﹒如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的始终角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°8﹒如图,点E、F、G、H分别为四边形ABCD四条边AB、BC、CD、DA的中点,则关于四边形EFGH,下列说法正确的是()A.肯定不是平行四边形B.肯定不会是中心对称图形C.可能是轴对称图形D.当AC=BD时,它为矩形9﹒已知:如图,在平面直角坐标系xoy中,等边△AOB的边长为6,点C在边OA上,点D在边AB 上,且OC=3BD.反比例函数y=kx(k≠0)的图象恰好经过点C和点D.则k的值为( )1A.813 25B .813 16C.813 5D.813 410﹒如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补.若∠MPN在绕点P 旋转的过程中,其两边分别与OA,OB相交于M、N两点,则以下结论:(1)PM=PN恒成立,(2)OM+ON的值不变,(3)四边形PMON的面积不变,(4)MN的长不变,其中正确的个数为()A.4B.3C.2D.1二、填空题(本大题共4小题,每小题5分,满分20分)11﹒不等式组3(2)4,1213x xxx--<⎧⎪+⎨-≤⎪⎩的解集为______.12﹒因式分解:-2x2y+16xy-32y=______________.13.在边长为4的等边三角形ABC中,D为BC边上的随意一点,过点D分别作DE⊥AB,DF⊥AC,垂足分别为E,F,则DE+DF=____________.14﹒如图,点P是正方形ABCD的边BC上一点(与点B,C不重合),且PC>PB.分别以PB,PC为边在正方形内部作正方形PBHE和正方形PCFG,余下的阴影部分面积为S.连接PE,PF,EF,AG,AG把阴影部分面积分成两部分,面积分别为s1,s2.有下列说法:①∠EPF=90°;②延长AG交EF于点M,则点M是EF的中点;③PCPBS•=;④若ss212=,则BPPC23=.其中正确的是_________________(把全部正确结论的序号都选上)三、(本大题共2小题,每小题8分,满分16分)15.计算:︒--+-30tan2721)21(116﹒解方程:1x -2+2=1-x2-x .四、(本大题共2小题,每小题8分,满分16分)17﹒如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A (2,2),B (4,0),C (4,-4).(1)请在图1中,画出△ABC 向左平移6个单位长度后得到的△111A B C ;(2)以点O 为位似中心,将△ABC 缩小为原来的12,得到△222A B C ,请在图2中y 轴的右侧画出△222A B C ,并求出∠222A C B 的正弦值18﹒如图,AB 是⊙O 的直径,AC 是弦,点P 在⊙O 外,连接PA 交⊙O 于点F ,连接PC 交⊙O 于点D ,交AB 于点E ,连接FC 、FB .若AC =45,CD =8,当2AC AF AP =⋅ 时,求⊙O 的半径.五、(本大题共2小题,每小题10分,满分20分) 19﹒如图,某人为了测量小山顶上的塔ED 的高,他在山下的点A 处测得塔尖点D 的仰角为45°,再沿AC 方向前进60m 到达山脚点B ,测得塔尖点D 的仰角为60°,塔底点E 的仰角为30°,求塔ED 的高度.(结果保留根号)20﹒一次函数b kx y +=(k ≠0)的图象经过点A (2,-6),且与反比例函数y =-12x的图象交于点B (a ,4)(1)求一次函数的解析式;(2)将直线AB 向上平移10个单位后得到直线l :y 1=k 1x +b 1 (k 1≠0),l 与反比例函数y 2=6x的图象相交,求使y 1<y 2成立的x 的取值范围.xy–5–4–3–2–112345–5–4–3–2–112345C B AO六、(本题满分12分)21﹒如图1,一枚质地匀称的正四面体骰子,它有四个面并分别标有数字1,2,3,4.图1 图2 第23题图如图2,正方形ABCD 顶点处各有一个圈.跳圈嬉戏的规则为:嬉戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从图A 起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D ;若其次次掷得2,就从D 起先顺时针连续跳2个边长,落到圈B ;…… 设嬉戏者从圈A 起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A 的概率P 1;(2)淇淇随机掷两次骰子,用列表法或树状图求最终落回到圈A 的概率P 2,并指出她与嘉嘉落回到圈A 的可能性一样吗?七、(本题满分12分)22﹒中霖科技有限公司用160万元,作为新产品的研发费用,胜利研制出了一种市场急需的电子产品,已于当年投入生产并进行销售.已知生产这种电子产品的成本为4元/件,在销售过程中发觉:每年的年销售量y (万件)与销售价格x (元/件)的关系如图所示,其中AB 为反比例函数图像的一部分,BC 为一次函数图像的一部分.设公司销售这种电子产品的年利润为z (万元).(注:若上一年盈利,则盈利不计入下一年的年利润;若上一年亏损,则亏损记作下一年的成本) (1)恳求出y (万件)与x (元/件)之间的函数关系式.(2)求出第一年这种电子产品的年利润z (万元)与x (元/件)之间的函数关系式,并求出第一年年利润的最大值.(3)假设公司的这种电子产品第一年恰好按年利润z (万元)取得最大值时进行销售,现依据第一年的盈亏状况,确定其次年将这种电子产品每件的销售价格x (元)定在8元以上(x >8),当其次年的年利润不低于103万元时,请结合年利润z (万元)与销售价格x (元/件)的函数示意图,求销售价格x (元/件)的取值范围.八、(本题满分14分) 23.如图,抛物线21144yx x c 与x 轴的负半轴交于点A ,与y 轴交于点B ,连结AB ,点C(6,215)在抛物线上,直线AC 与y 轴交于点D(1)求c 的值及直线AC 的函数表达式;(2)点P 在x 轴正半轴上,点Q 在y 轴正半轴上,连结PQ 与直线AC 交于点M ,连结MO 并延长交AB于点N,若M 为PQ 的中点.①求证:APM AON△∽△;②设点M的横坐标为m,求AN的长(用含m的代数式表示).。
安徽省桐城市2024届中考冲刺卷数学试题含解析
安徽省桐城市2024届中考冲刺卷数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)1.化简a1a11a+--的结果为()A.﹣1 B.1 C.a1a1+-D.a11a+-2.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=142°,则∠C的度数为()A.38°B.39°C.42°D.48°3.cos30°的相反数是()A.33-B.12-C.32-D.22-4.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A.B.C.D.5.如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(﹣4,0),顶点B在第二象限,∠BAO=60°,BC交y轴于点D,DB:DC=3:1.若函数(k>0,x>0)的图象经过点C,则k的值为()A.B.C.D.6.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是()A.60°B.50°C.40°D.30°7.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD 中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①②B.②③C.①③D.②④8.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A.14°B.15°C.16°D.17°9.如图,直线a、b被c所截,若a∥b,∠1=45°,∠2=65°,则∠3的度数为()A.110°B.115°C.120°D.130°10.已知点A(1﹣2x,x﹣1)在第二象限,则x的取值范围在数轴上表示正确的是()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,要使△ABC∽△ACD,需补充的条件是_____.(只要写出一种)12.如果点P 1(2,y 1)、P 2(3,y 2) 在抛物线22y x x =-+上,那么 y 1 ______ y 2.(填“>”,“<”或“=”).13.小明用一个半径为30cm 且圆心角为240°的扇形纸片做成一个圆锥形纸帽(粘合部分忽略不计),那么这个圆锥形纸帽的底面半径为_____cm .14.如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,点D 在圆O 上,BD =CD ,AB =10,AC =6,连接OD 交BC 于点E ,DE =______.15.一机器人以0.2m/s 的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为__s .16.如图,已知⊙O 1与⊙O 2相交于A 、B 两点,延长连心线O 1O 2交⊙O 2于点P ,联结PA 、PB ,若∠APB=60°,AP=6,那么⊙O 2的半径等于________.三、解答题(共8题,共72分)17.(8分)在ABC 中,ABC 90∠=,BD 为AC 边上的中线,过点C 作CE BD ⊥于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG BD =,连接BG ,DF .()1求证:BD DF =;()2求证:四边形BDFG 为菱形; ()3若AG 5=,CF 7=BDFG 的周长.18.(8分)如图,Rt△ABC中,∠C=90°,AB=14,AC=7,D是BC上一点,BD=8,DE⊥AB,垂足为E,求线段DE的长.19.(8分)小明准备用一块矩形材料剪出如图所示的四边形ABCD(阴影部分),做成要制作的飞机的一个机翼,请你根据图中的数据帮小明计算出CD的长度.(结果保留根号).20.(8分)如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.(1)求证:四边形BFCE是平行四边形;(2)若AD=10,DC=3,∠EBD=60°,则BE= 时,四边形BFCE是菱形.21.(8分)已知关于x的方程x2-(m+2)x+(2m-1)=0。
2020年安庆市桐城市三校联考中考数学模拟试卷含答案解析
2020年安徽省安庆市桐城市三校联考中考数学模拟试卷一、选择题(共10小题,每小题4分,满分40分)1.﹣4的绝对值是()A.2 B.4 C.﹣4 D.162.已知,则a的取值范围是()A.a≤0 B.a<0 C.0<a≤1 D.a>03.已知反比例函数的图象过点M(﹣1,2),则此反比例函数的表达式为()A.y= B.y=﹣C.y=D.y=﹣4.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是()A.0.5 B.1 C.2 D.45.如图所示,几何体的主(正)视图是()A.B.C.D.6.清明节前,某班分成甲、乙两组去距离学校4km的烈士陵园扫墓.甲组步行,乙组骑自行车,他们同时从学校出发,结果乙组比甲组早20min到达目的地.已知骑自行车的速度是步行速度的2倍,设步行的速度为x km/h,则x满足的方程为()A.﹣=20 B.﹣=20 C.﹣=D.﹣=7.不等式组:的解集用数轴表示为()A.B.C.D.8.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()A.1 B.2 C.3 D.49.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中正确的结论有()A.2个B.3个C.4个D.5个10.已知a,b,c是△ABC的三条边,对应高分别为h a,h b,h c,且a:b:c=4:5:6,那么h a:h b:h c等于()A.4:5:6 B.6:5:4 C.15:12:10 D.10:12:15二、填空题(本大题共4小题,每小题5分,满分20分)11.分解因式:xy2﹣x=______.12.一副三角板,如图所示叠放在一起,则图中∠α的度数是______.13.某种商品的标价为200元,按标价的八折出售,这时仍可盈利25%,则这种商品的进价是______元.14.如图,一块等边三角形的木板,边长为1,现将木板沿水平线翻滚,那么B点从开始至结束所走过的路径长度为______.三、(本大题共2小题,每小题8分,满分16分)15.化简,求值:,其中m=.16.如图,在一次龙卷风中,一棵大树在离地面若干米处折断倒下,B为折断处最高点,树顶A落在离树根C的12米处,测得∠BAC=30°,求BC的长.(结果保留根号)四、(本大题共2小题,每小题8分,满分16分)17.如图,等腰梯形ABCD中,AD∥BC,点E是AD延长线上一点,DE=BC.判断△ACE 的形状,并说明理由.18.一个均匀的正方体子,六个面分别标有数字1、2、3、4、5、6,连续抛掷两次,朝上的数字分别为m、n.若把m、n作为点A的横纵坐标,那么点A(m,n)在函数y=2x的图象上的概率是多少?五、解答题(共2小题,满分20分)19.二次函数图象过A、C、B三点,点A的坐标为(﹣1,0),点B的坐标为(4,0),点C在y轴正半轴上,且AB=OC.(1)求C的坐标;(2)求二次函数的解析式,并求出函数最大值.20.如图,△ABC在方格纸中(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2),并求出B点坐标;(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A′B′C′;(3)计算△A′B′C′的面积S.六、(本题满分12分)21.某乒乓球训练馆准备购买n副某种品牌的乒乓球拍,每副球拍配k(k≥3)个乒乓球.已知A、B两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元.现两家超市正在促销,A超市所有商品均打九折(按原价的90%付费)销售,而B超市买1副乒乓球拍送3个乒乓球.若仅考虑购买球拍和乒乓球的费用,请解答下列问题:(1)如果只在某一家超市购买所需球拍和乒乓球,那么去A超市还是B超市买更合算?(2)当k=12时,请设计最省钱的购买方案.七、(本题满分12分)22.小明和几位同学做手的影子游戏时,发现对于同一物体,影子的大小与光源到物体的距离有关.因此,他们认为:可以借助物体的影子长度计算光源到物体的位置.于是,他们做了以下尝试.(1)如图1,垂直于地面放置的正方形框架ABCD,边长AB为30cm,在其正上方有一灯泡,在灯泡的照射下,正方形框架的横向影子A′B,D′C的长度和为6cm.那么灯泡离地面的高度为______.(2)不改变图1中灯泡的高度,将两个边长为30cm的正方形框架按图2摆放,请计算此时横向影子A′B,D′C的长度和为多少?(3)有n个边长为a的正方形按图3摆放,测得横向影子A′B,D′C的长度和为b,求灯泡离地面的距离.(写出解题过程,结果用含a,b,n的代数式表示)八、(本题满分14分)23.如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,且AB=3,BC=,直线y=经过点C,交y轴于点G.(1)点C、D的坐标;(2)求顶点在直线y=上且经过点C、D的抛物线的解析式;(3)将(2)中的抛物线沿直线y=平移,平移后的抛物线交y轴于点F,顶点为点E.平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请明理由.2020年安徽省安庆市桐城市三校联考中考数学模拟试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.﹣4的绝对值是()A.2 B.4 C.﹣4 D.16【考点】绝对值.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:|﹣4|=4.故选B.2.已知,则a的取值范围是()A.a≤0 B.a<0 C.0<a≤1 D.a>0【考点】二次根式的性质与化简.【分析】等式左边为算术平方根,右边的结果应为非负数,且二次根式有意义,故有a>0,且(1﹣a)≥0.【解答】解:由已知,得a>0,且(1﹣a)≥0;解可得:0<a≤1.故选C.3.已知反比例函数的图象过点M(﹣1,2),则此反比例函数的表达式为()A.y= B.y=﹣C.y=D.y=﹣【考点】待定系数法求反比例函数解析式.【分析】函数经过一定点,将此点坐标代入函数解析式(k≠0),即可求得k的值.【解答】解:设反比例函数的解析式为(k≠0).∵该函数的图象过点M(﹣1,2),∴2=,得k=﹣2.∴反比例函数解析式为y=﹣.故选B.4.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是()A.0.5 B.1 C.2 D.4【考点】垂径定理的应用.【分析】根据题意知,已知弦长和弓形高,求半径(直径).根据垂径定理和勾股定理求解.【解答】解:设半径为r,过O作OE⊥AB交AB于点D,连接OA、OB,则AD=AB=×0.8=0.4米,设OA=r,则OD=r﹣DE=r﹣0.2,在Rt△OAD中,OA2=AD2+OD2,即r2=0.42+(r﹣0.2)2,解得r=0.5米,故此输水管道的直径=2r=2×0.5=1米.故选B.5.如图所示,几何体的主(正)视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据三视图画法规则:(1)高平齐:正视图和侧视图的高保持平齐;(2)宽相等:侧视图的宽和俯视图的宽相等;(3)长对正:正视图和俯视图的长对正.【解答】解:由图可得,主视图应该是三列,正方体的数目分别是:1、2、1.故选B.6.清明节前,某班分成甲、乙两组去距离学校4km的烈士陵园扫墓.甲组步行,乙组骑自行车,他们同时从学校出发,结果乙组比甲组早20min到达目的地.已知骑自行车的速度是步行速度的2倍,设步行的速度为x km/h,则x满足的方程为()A.﹣=20 B.﹣=20 C.﹣=D.﹣=【考点】由实际问题抽象出分式方程.【分析】首先表示出骑自行车速度为2xkm/h,再根据时间=路程÷速度表示出去距离学校4km的烈士陵园扫墓步行所用的时间与骑自行车所用时间,根据时间相差20min可得方程.【解答】解:20min=h,步行的速度为x km/h,则骑自行车速度为2xkm/h,由题意得:﹣=,故选C.7.不等式组:的解集用数轴表示为()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】本题应该先对不等式组进行化简,然后在数轴上分别表示出x的取值范围,它们相交的地方就是不等式组的解集.【解答】解:不等式组可化为:,在数轴上可表示为:故选A.8.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()A.1 B.2 C.3 D.4【考点】全等三角形的判定.【分析】根据全等三角形的判定分别求出以BC为公共边的三角形,以AB为公共边的三角形,以AC为公共边的三角形的个数,相加即可.【解答】解:以BC为公共边的三角形有3个,以AB为公共边的三角形有0个,以AC为公共边的三角形有1个,共3+0+1=4个,故选D.9.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中正确的结论有()A.2个B.3个C.4个D.5个【考点】二次函数图象与系数的关系.【分析】观察图象:开口向下得到a<0;对称轴在y轴的右侧得到a、b异号,则b>0;抛物线与y轴的交点在x轴的上方得到c>0,所以abc<0;当x=﹣1时图象在x轴下方得到y=a﹣b+c=0,即a+c=b;对称轴为直线x=1,可得x=2时图象在x轴上方,则y=4a+2b+c>0;利用对称轴x=﹣=1得到a=﹣b,而a﹣b+c<0,则﹣b﹣b+c<0,所以2c<3b;开口向下,当x=1,y有最大值a+b+c,得到a+b+c>am2+bm+c,即a+b>m(am+b)(m≠1).【解答】解:开口向下,a<0;对称轴在y轴的右侧,a、b异号,则b>0;抛物线与y轴的交点在x轴的上方,c>0,则abc<0,所以①不正确;当x=﹣1时图象在x轴下方,则y=a﹣b+c=0,即a+c=b,所以②不正确;对称轴为直线x=1,则x=2时图象在x轴上方,则y=4a+2b+c>0,所以③正确;x=﹣=1,则a=﹣b,而a﹣b+c=0,则﹣b﹣b+c=0,2c=3b,所以④不正确;开口向下,当x=1,y有最大值a+b+c;当x=m(m≠1)时,y=am2+bm+c,则a+b+c>am2+bm+c,即a+b>m(am+b)(m≠1),所以⑤正确.故选:A.10.已知a,b,c是△ABC的三条边,对应高分别为h a,h b,h c,且a:b:c=4:5:6,那么h a:h b:h c等于()A.4:5:6 B.6:5:4 C.15:12:10 D.10:12:15【考点】三角形的面积.【分析】设a=4k,b=5k,c=6k,根据三角形的面积公式得到S△ABC=ah a=bh b=ch c=4kh a=5kh b=6kh c,即可得到结论.【解答】解:∵a:b:c=4:5:6,∴设a=4k,b=5k,c=6k,∴S△ABC=ah a=bh b=ch c=4kh a=5kh b=6kh c,∴h a:h b:h c=15:12:10,故选C.二、填空题(本大题共4小题,每小题5分,满分20分)11.分解因式:xy2﹣x=x(y﹣1)(y+1).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:xy2﹣x,=x(y2﹣1),=x(y﹣1)(y+1).故答案为:x(y﹣1)(y+1).12.一副三角板,如图所示叠放在一起,则图中∠α的度数是75°.【考点】三角形内角和定理.【分析】根据三角板的常数以及三角形的一个外角等于与它不相邻的两个内角的和求出∠1的度数,再根据直角等于90°计算即可得解.【解答】解:如图,∠1=45°﹣30°=15°,∠α=90°﹣∠1=90°﹣15°=75°.故答案为:75°13.某种商品的标价为200元,按标价的八折出售,这时仍可盈利25%,则这种商品的进价是128元.【考点】一元一次方程的应用.【分析】设每件的进价为x元,根据八折出售可获利25%,根据:进价=标价×8折﹣获利,可得出方程:200×80%﹣25%x=x,解出即可.【解答】解:设每件的进价为x元,由题意得:200×80%=x(1+25%),解得:x=128,故答案为:128.14.如图,一块等边三角形的木板,边长为1,现将木板沿水平线翻滚,那么B点从开始至结束所走过的路径长度为.【考点】弧长的计算;等边三角形的性质.【分析】B点从开始至结束所走过的路径长度为两段弧长,一段是以点C为圆心,BC为半径,圆心角为120°,第二段是以A为圆心,AB为半径,圆心角为120°的两段弧长,依弧长公式计算即可.【解答】解:从图中发现:B点从开始至结束所走过的路径长度为两段弧长即第一段=,第二段=.故B点从开始至结束所走过的路径长度=+=.三、(本大题共2小题,每小题8分,满分16分)15.化简,求值:,其中m=.【考点】分式的化简求值.【分析】先根据分式的混合运算法则把分式化简,再把m=代入求解即可求得答案.【解答】解:原式=,=,=,=,=,=.∴当m=时,原式=.16.如图,在一次龙卷风中,一棵大树在离地面若干米处折断倒下,B为折断处最高点,树顶A落在离树根C的12米处,测得∠BAC=30°,求BC的长.(结果保留根号)【考点】解直角三角形的应用.【分析】在三角形ABC中,根据tan∠BAC=,再由∠BAC=30°,代入即可得出答案.【解答】解:∵BC⊥AC,∴∠BCA=90°在直角△ABC中,∵tan,∴BC=ACtan∠BAC=12×tan30°=12×=4米.四、(本大题共2小题,每小题8分,满分16分)17.如图,等腰梯形ABCD中,AD∥BC,点E是AD延长线上一点,DE=BC.判断△ACE 的形状,并说明理由.【考点】等腰梯形的性质.【分析】根据AD∥BC,得到∠BCD=∠CDE,又因为DE=BC,所以△BCD≌△EDC;根据全等三角形对应边相等得到BD=CE,又因为等腰梯形的对角线相等,所以AC=CE,所以是等腰三角形.【解答】解:△ACE是等腰三角形.理由如下:∵AD∥BC,∴∠BCD=∠EDC,在△BCD和△EDC中,∵,∴△BCD≌△EDC(SAS)∴BD=CE,∵等腰梯形的对角线相等,所以AC=CE,∴△ACE是等腰三角形.18.一个均匀的正方体子,六个面分别标有数字1、2、3、4、5、6,连续抛掷两次,朝上的数字分别为m、n.若把m、n作为点A的横纵坐标,那么点A(m,n)在函数y=2x的图象上的概率是多少?【考点】一次函数图象上点的坐标特征;概率公式.【分析】列举出所有情况,让点A(m,n)在函数y=2x的图象上的情况数除以总情况数即为所求的概率.【解答】解:根据题意,以(m,n)为坐标的点A共有36个,而只有(1,2),(2,4),(3,6)三个点在函数y=2x图象上,所以,所求概率是,即:点A在函数y=2x图象上的概率是.五、解答题(共2小题,满分20分)19.二次函数图象过A、C、B三点,点A的坐标为(﹣1,0),点B的坐标为(4,0),点C在y轴正半轴上,且AB=OC.(1)求C的坐标;(2)求二次函数的解析式,并求出函数最大值.【考点】待定系数法求二次函数解析式;二次函数的最值.【分析】(1)根据A.B两点的坐标及点C在y轴正半轴上,且AB=OC.求出点C的坐标为(0,5);(2)设二次函数的解析式为y=ax2+bx+c,把A、B、C三点的坐标代入解析式,可求出a、b、c的值.【解答】解:(1)∵A(﹣1,0),B(4,0)∴AO=1,OB=4,AB=AO+OB=1+4=5,∴OC=5,即点C的坐标为(0,5);(2)解法1:设图象经过A、C、B三点的二次函数的解析式为y=ax2+bx+c由于这个函数图象过点(0,5),可以得到C=5,又由于该图象过点(﹣1,0),(4,0),则:,解方程组,得∴所求的函数解析式为y=﹣x2+x+5∵a=﹣<0∴当x=﹣=时,y有最大值==;解法2:设图象经过A、C、B二点的二次函数的解析式为y=a(x﹣4)(x+1)∵点C(0,5)在图象上,∴把C坐标代入得:5=a(0﹣4)(0+1),解得:a=﹣,∴所求的二次函数解析式为y=﹣(x﹣4)(x+1)∵点A,B的坐标分别是点A(﹣1,0),B(4,0),∴线段AB的中点坐标为(,0),即抛物线的对称轴为直线x=∵a=﹣<0∴当x=时,y有最大值y=﹣=.20.如图,△ABC在方格纸中(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2),并求出B点坐标;(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A′B′C′;(3)计算△A′B′C′的面积S.【考点】作图-位似变换;三角形的面积.【分析】(1)A点的坐标为(2,3)所以原点O的坐标就在A点左2个格,下3个格的点上.由此建立直角坐标系,读出B点坐标;(2)连接OA,OB,OC,并延长到OA′,OB′,OC′,使OA′,OB′,OC′的长度是OA,OB,OC的2倍.然后顺次连接三点;(3)从网格上可看出三角形的底和高,利用三角形的面积公式计算.【解答】解:(1)画出原点O,x轴、y轴.B(2,1)(2)画出图形△A′B′C′.(3)S=×4×8=16.六、(本题满分12分)21.某乒乓球训练馆准备购买n副某种品牌的乒乓球拍,每副球拍配k(k≥3)个乒乓球.已知A、B两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元.现两家超市正在促销,A超市所有商品均打九折(按原价的90%付费)销售,而B超市买1副乒乓球拍送3个乒乓球.若仅考虑购买球拍和乒乓球的费用,请解答下列问题:(1)如果只在某一家超市购买所需球拍和乒乓球,那么去A超市还是B超市买更合算?(2)当k=12时,请设计最省钱的购买方案.【考点】一元一次不等式的应用.【分析】(1)本题可根据去超市花的总费用=购买球拍的费用+购买乒乓球的费用,列出去A,B超市所需的总费用,然后比较这两个总费用,分别得出不同的自变量的取值范围中哪个超市最合算.(2)可分别计算出只在A超市购买,只在B超市购买和在A,B超市同时购买的三种不同情况下,所需的费用,然后比较出最省钱的方案.【解答】解:(1)由题意,去A超市购买n副球拍和kn个乒乓球的费用为0.9(20n+kn)元,去B超市购买n副球拍和k个乒乓球的费用为[20n+n(k﹣3)]元,由0.9(20n+kn)<20n+n(k﹣3),解得k>10;由0.9(20n+kn)=20n+n(k﹣3),解得k=10;由0.9(20n+kn)>20n+n(k﹣3),解得k<10.∴当k>10时,去A超市购买更合算;当k=10时,去A、B两家超市购买都一样;当3≤k<10时,去B超市购买更合算.(2)当k=12时,购买n副球拍应配12n个乒乓球.若只在A超市购买,则费用为0.9(20n+12n)=28.8n(元);若只在B超市购买,则费用为20n+(12n﹣3n)=29n(元);若在B超市购买n副球拍,然后再在A超市购买不足的乒乓球,则费用为20n+0.9×(12﹣3)n=28.1n(元)显然28.1n<28.8n<29n∴最省钱的购买方案为:在B超市购买n副球拍同时获得送的3n个乒乓球,然后在A超市按九折购买9n个乒乓球.七、(本题满分12分)22.小明和几位同学做手的影子游戏时,发现对于同一物体,影子的大小与光源到物体的距离有关.因此,他们认为:可以借助物体的影子长度计算光源到物体的位置.于是,他们做了以下尝试.(1)如图1,垂直于地面放置的正方形框架ABCD,边长AB为30cm,在其正上方有一灯泡,在灯泡的照射下,正方形框架的横向影子A′B,D′C的长度和为6cm.那么灯泡离地面的高度为180cm.(2)不改变图1中灯泡的高度,将两个边长为30cm的正方形框架按图2摆放,请计算此时横向影子A′B,D′C的长度和为多少?(3)有n个边长为a的正方形按图3摆放,测得横向影子A′B,D′C的长度和为b,求灯泡离地面的距离.(写出解题过程,结果用含a,b,n的代数式表示)【考点】相似三角形的应用.【分析】(1)设灯泡的位置为点P,易得△PAD∽△PA′D′,设出所求的未知数,利用相似三角形的对应边的比等于对应高的比,可得灯泡离地面的高度;(2)同法可得到横向影子A′B,D′C的长度和;(3)按照相应的三角形相似,利用相似三角形的对应边的比等于对应高的比,用字母表示出其他线段,即可得到灯泡离地面的距离.【解答】解:(1)设灯泡离地面的高度为xcm,∵AD∥A′D′,∴∠PAD=∠PA′D′,∠PDA=∠PD′A′.∴△PAD∽△PA′D′.根据相似三角形对应高的比等于相似比的性质,可得,∴=,解得x=180.(2)设横向影子A′B,D′C的长度和为ycm,同理可得∴=,解得y=12cm;(3)记灯泡为点P,如图:∵AD∥A′D′,∴∠PAD=∠PA′D′,∠PDA=∠PD′A′.∴△PAD∽△PA′D′.根据相似三角形对应高的比等于相似比的性质,可得(直接得出三角形相似或比例线段均不扣分)设灯泡离地面距离为x,由题意,得PM=x,PN=x﹣a,AD=na,A′D′=na+b,∴=1﹣=1﹣x=.八、(本题满分14分)23.如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,且AB=3,BC=,直线y=经过点C,交y轴于点G.(1)点C、D的坐标;(2)求顶点在直线y=上且经过点C、D的抛物线的解析式;(3)将(2)中的抛物线沿直线y=平移,平移后的抛物线交y轴于点F,顶点为点E.平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请明理由.【考点】二次函数综合题.【分析】(1)根据题意可得点C的纵坐标为3、2,代入直线解析式可得出点C的横坐标,继而也可得出点D的坐标;(2)先求出顶点坐标为(,),再利用顶点式求出抛物线的解析式;(3)先设抛物线解析式为y=(x﹣m)2+m﹣2,然后分类讨论:①当FG=EG 时,FG=EG=2m,则F(0,2m﹣2),代入解析式得:m2+m﹣2=2m﹣2,求m的值;②当GE=EF时,FG=2m,则F(0,2m﹣2),代入解析式得:m2+m﹣2=2m﹣2,求m的值;③当FG=FE时,不存在.【解答】解:(1)令y=2,2=x﹣2,解得x=4,则OA=4﹣3=1,∴C(4,2),D(1,2);(2)由二次函数对称性得,顶点横坐标为=,令x=,则y=×﹣2=,∴顶点坐标为(,),∴设抛物线解析式为y=a(x﹣)2+,把点D(1,2)代入得,a=,∴解析式为y=(x﹣)2+;(3)设顶点E在直线上运动的横坐标为m,则E(m,m﹣2)(m>0)∴可设解析式为y=(x﹣m)2+m﹣2,①当FG=EG时,FG=EG=2m,则F(0,2m﹣2),代入解析式得:m2+m﹣2=2m﹣2,得m=0(舍去),m=﹣,此时所求的解析式为:y=(x﹣+)2+3﹣;②当GE=EF时,FG=2m,则F(0,2m﹣2),代入解析式得:m2+m﹣2=2m﹣2,解得m=0(舍去),m=,此时所求的解析式为:y=(x﹣)2﹣;③当FG=FE时,不存在.2020年9月20日。
安徽省安庆市桐城中学2023届高三下学期第一次模拟数学试卷(含答案解析)
安徽省安庆市桐城中学2023届高三下学期第一次模拟数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题.....给出下列命题,其中不正确的命题为(①若样本数据1210,,x x x ⋅⋅⋅,的方差为12101,21,,21x x --⋅⋅⋅-的方差为②回归方程为0.60.2ˆ5yx =-时,变量具有负的线性相关关系;③随机变量X 服从正态分布(3,0.64N ,则(23)0.07P X ≤≤=④甲同学所在的某校高三共有5003人,再按简单随机抽样的方法抽取容200的一个样本,则甲被抽到的概率为.A .339B 8.若实数a ,b ,(0,1)c ∈的大小关系是()A .c >b >aB 二、多选题9.如图,在棱长为1的正方体1111ABCD A B C D -中,P 是11B D 上的动点,则()A .直线DP 与1BC 是异面直线B .//CP 平面1A BDC .1A P PB +的最小值是D .当P 与1B 重合时,三棱锥10.在边长为4的正方形ABCD 则下列结论正确的是()A .若点P 在BD 上时,则B .x y +的取值范围为[C .若点P 在BD 上时,D .当P 在线段BD 上时,11.关于函数()sin f x x ⎛=+ ⎝A .()f x 是奇函数C .()f x 的最大值为3212.已知抛物线24x y =的焦点为123,,l l l ,直线12,l l 相交于点D 123,,x x x ,则()A .0DA DB ⋅= C .2||AF BF DF ⋅=三、填空题四、解答题PCD平面QAB(1)证明:平面//(2)设G为QBC△的重心,是否在棱(1)求双曲线E 的方程;(2)设1A 、2A 为双曲线E 实轴的左、右顶点,若过()4,0P 两点,试探究直线1A M 与直线2A N 的交点Q 是否在某条定直线上?若存在,请求出该定直线方程;如不存在,请说明理由.22.已知函数()ln f x x x =-,2(e )xg x x =,其中0x >.(1)分别求函数()f x 和()g x 的极值;(2)讨论函数1()()()h x af x xg x =+的零点个数.参考答案:3.A【分析】首先判断函数的奇偶性,再代入计算故选:A.【点睛】关键点睛:涉及与旋转体有关的组合体,作出轴截面,借助平面几何知识解题是解决问题的关键.8.B【分析】注意到0.80.8e e a a =, 1.21.2e e b b =,e c c =小.后构造()22e e x x x xg x --=-可比较0.820.80.820.8,e e--【详解】由0.8e 0.8e a a =, 1.2e 1.2e b b =, 1.6e c 得0.80.8e e a a =, 1.21.2e e b b =, 1.61.6e e c c =,令()f x 当1x <时,()0f x ¢>,当1x >时,()f x '<在()1,+∞上是减函数,于是()()1.2 1.6f f >又b ,()0,1c ∈,所以b c >;0.80.8 1.60.80.80.80.80.8 1.60.80.820.8e e e e e e e e e a c a c ⨯-=-=-=⨯⨯因为4956252512=>=,所以445522>⨯,()()0.8 1.2f f <,于是()()f a f b <,又a ,()0,1b ∈,所以a b <;综上b a c >>.故选:B .【点睛】关键点睛:本题考查构造函数比较代数式大小,难度较大.对于不好估值的代数式,常通过观察构造适当的函数,利用函数单调性得到大小关系.9.ABD【分析】选项A ,利用平面11BB C C 可说明直线DP 与1BC 是异面直线;选项B ,先证明平面11//CB D 平面1A BD ,再由CP ⊂平面11CB D ,得//CP 平面1A BD ;选项C ,通过作辅助线,将1A P PB +的最小值转化为求BM 的值,在BMN 中,利用勾股定理求出BM 的值;选项D ,认识到当P 与1B 重合时,三棱锥1P A BD -的外接球与正方体的外接球是同一个,利用正方体来求外接球半径.【详解】A 选项,因为直线DP 与平面11BB C C 相交于点1B ,直线1BC 在平面11BB C C 内,所以由线线位置关系知,直线DP 与1BC 是异面直线,故选项A 正确;B 选项,连接1CB ,1CD ,由正方体性质,易知,11//A D BC ,11AD BC =,所以四边形11A BCD 为平行四边形,有11//CD A B ,又1CD ⊄平面1A BD ,1A B ⊂平面1A BD ,所以1//CD 平面1A BD ,同理可证1//CB 平面1A BD ,又1CD ,1CB 都在平面11CB D 内,且相交于点C ,所以平面11//CB D 平面1A BD ,又CP ⊂平面11CB D ,所以//CP 平面1A BD ,故选项B 正确;C 选项,延长1BB 到2B ,使得在21BD 上取点M ,使得1D M 则111A D P MD P ≅ ,有MP PA =故1A P PB MP PB BM +=+≥过点M 作12MN B B ⊥,交1B B 在121B B D 中,因为121B B B D =所以22MN =,122B N =,所以1A P PB +的最小值为2D 选项,当P 与1B 重合时,三棱锥又正方体1111ABCD A B C D -的棱长为正确.故选:ABD.10.AD【分析】根据题意建立平面直角坐标系,然后利用向量的线性坐标运算逐个分析判断即可11.AC【分析】利用函数的奇偶性定义、三角函数的周期性以及函数周期的求法判断周期性研究函数()f x 在区间[]0,π上的最值、以及单调性,判断【详解】由题知,()f x 定义域为R ()ππsin cos 63f x x x ⎛⎫⎛-=-+--+ ⎪ ⎝⎭⎝πππcos sin 262x ⎡⎤⎡⎛⎫⎛=--+--- ⎪ ⎢⎥⎢⎝⎭⎝⎣⎦⎣(ππcos sin 36x x f x ⎛⎫⎛⎫=+-+=- ⎪ ⎪⎝⎭⎝⎭所以()f x 是奇函数,故A 正确;因()ππsin πcos 6f x x ⎛⎫⎛+=++- ⎪ ⎝⎭⎝ππsin cos 63x x ⎛⎫⎛⎫=-+--+ ⎪ ⎪⎝⎭⎝⎭()ππsin cos 63x x f x ⎛⎫⎛⎫=+-+= ⎪ ⎪⎝⎭⎝⎭所以π是()f x 的周期,故B 错;()ππsin cos 63f x x x ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭ππsin cos 63x x ⎛⎫⎛⎫≤+++ ⎪ ⎪⎝⎭⎝⎭分别取AD 、AC 的中点O 、M 由题意知OM ⊥平面ABC ,所以因为AB BC =,所以BM AC ⊥,即18.(1)123n n a -=⨯(2)不存在【分析】(1)由题意知{}n a 为等比数列,取(2)根据题意结合第一问先写出则不存在.【详解】(1)由题意知:如图建立空间直角坐标系,则()2,0,0B ,所以132,,22PC ⎛⎫=- ⎪ ⎪⎝⎭,132,,22AQ ⎛=- ⎝ 因为PC ⊄平面QAB ,AC ⊂平面QAB ,所以又//AB CD ,CD ⊄平面QAB ,AB ⊂因为PC CD C ⋂=,,PC CD ⊂平面PCD ,所以平面//PCD 平面QAB .(2)由点S 在AP 上,设点()0,3,3S m m 所以532,3,366GS m m ⎛⎫=--+ ⎪ ⎪⎝⎭,平面ABCD 设SG 与平面ABCD 所成角为θ,延长CA 与DB 交于1F ,因为则(1tan tan πF AB ACB ∠=-∠令()130BF t t =>,则AB =所以,2211AF AB BF =+=由双曲线的定义可得1AF AF -1224BF BF a -==,则2BF 又因为22AB AF BF =+,即所以,136BF t ==,2BF =由勾股定理可得122c F F ==故221046b c a =-=-=因此,双曲线E 的方程为24x (2)解:若直线l 与x 轴重合,则直线题意,设直线l 的方程为4x my =+,设点联立2243212x my x y =+⎧⎨-=⎩可得(23m由题意可得222320Δ24144m m ⎧-≠⎪⎨=-⎪⎩由韦达定理可得123y y m +=-易知点()12,0A -、()22,0A ,则直线1A M 的方程为11y y my =+联立直线1A M 、2A N 的方程并消去可得()()21126222y my my x x y my my ++==-+1212108632336232my m my m ---==-+-,解得因此,直线1A M 与直线2A N 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为(2)联立直线与圆锥曲线的方程,得到关于(3)列出韦达定理;(4)将所求问题或题中的关系转化为(5)代入韦达定理求解.22.(1)()f x 有极大值1-,无极小值;(2)答案见解析.。
安徽省安庆市桐城联考2023-2024学年九年级上学期第三次月考数学试题
安徽省安庆市桐城联考2023-2024学年九年级上学期第三次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A.05.如图,坡角为30水平线成45︒角沿斜坡照下时,A .15米B .153米6.已知4AB =,点C 在线段AB 上,AC A .51-B .252-7.如图,在平行四边形ABCD 中E 为AB 3cm FH =,6cm EH =,4cm AH =,则A .22cm B .20cm 8.已知抛物线()221114y x m x m =++--(且OA OB =,则m 等于()A .25+B .25-9.如图,点1A ,2A ,3A ,…,n A 在反比例函数n B 在y 轴上,且11212B OA B B A B ∠=∠=∠111B A OA ⊥,2221B A B A ⊥,3323B A B A ⊥A .1个B 二、填空题11.如图,在平面直角坐标系中,已知点(2,)A a 、(4,)A b '12.如果等腰三角形的腰与底边的比是13.如图,在ABC 中,AB AC =相交于点O ,过点C 作CE CD ⊥则2OE AE BD+的值为14.已知二次函数2y x mx =-+(1)当2m =时,二次函数y (2)当12x -≤≤时,二次函数三、计算题四、解答题16.已知:在平面直角坐标系内,ABC 三个顶点的坐标分别为()0,3A 、()3,4B 、()2,2C (正方形网格中每个小正方形的边长均是1个单位长度).(1)画出ABC 向下平移4个单位长度得到的111A B C △,点1C 的坐标是______;(2)以点B 为位似中心,在网格中画出222A B C △,使222A B C △与ABC 位似,且位似比为2:1,点2C 的坐标是______;(3)求22A BC 的面积.五、问答题17.桥洞为抛物线形,水面宽6AB =米,桥洞顶点C 到水面的距离为3米,(1)求这个桥洞所在抛物线的解析式.(1)AD AB=________;(2)若2DG =,求CD 长.19.如图,抛物线2y ax =C ,连接BC .(1)求该抛物线的解析式;(2)点P 是线段BC 下方抛物线上的一个动点(不与点行线交BC 于M ,交x 轴于20.如图,在ABC 中,点B 以2cm /s 的速度运动,Q 分别从A ,B 同时出发,(1)填空:BP =cm ,BQ =cm (2)当t 为何值时,PBQ 的面积为(3)是否存在某一时间t ,使得 在,请说明理由.21.如图,在矩形ABCD 中,AB 上滑动,(点P 与A ,D 不重合(1)当60CPD ∠=︒时,求AE (2)是否存在这样的点P ,使△若不存在,请说明理由.22.在平面直角坐标系中,已知抛物线(1)若抛物线过点3(2,)A -,求该抛物线的解析式(2)当05x ≤≤时,y 的最小值是(3)已知直线29y x =-+与抛物线相等,求a 的值.六、证明题23.(1)如图1,矩形ABCD 且BE CE <,求DE AE.(2)如图2,矩形ABCD ,点的延长线于点F ,连接AF .①求证:ABD EAF △∽△;②若AB AE =,探索四边形ABDF。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年安徽省安庆市桐城市三校联考中考数学模拟试卷一、选择题(共10小题,每小题4分,满分40分)1.﹣4的绝对值是()A.2 B.4 C.﹣4 D.162.已知,则a的取值范围是()A.a≤0 B.a<0 C.0<a≤1 D.a>03.已知反比例函数的图象过点M(﹣1,2),则此反比例函数的表达式为()A.y= B.y=﹣C.y=D.y=﹣4.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是()A.0.5 B.1 C.2 D.45.如图所示,几何体的主(正)视图是()A.B.C.D.6.清明节前,某班分成甲、乙两组去距离学校4km的烈士陵园扫墓.甲组步行,乙组骑自行车,他们同时从学校出发,结果乙组比甲组早20min到达目的地.已知骑自行车的速度是步行速度的2倍,设步行的速度为x km/h,则x满足的方程为()A.﹣=20 B.﹣=20 C.﹣=D.﹣=7.不等式组:的解集用数轴表示为()A.B.C.D.8.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()A.1 B.2 C.3 D.49.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中正确的结论有()A.2个B.3个C.4个D.5个10.已知a,b,c是△ABC的三条边,对应高分别为h a,h b,h c,且a:b:c=4:5:6,那么h a:h b:h c等于()A.4:5:6 B.6:5:4 C.15:12:10 D.10:12:15二、填空题(本大题共4小题,每小题5分,满分20分)11.分解因式:xy2﹣x=______.12.一副三角板,如图所示叠放在一起,则图中∠α的度数是______.13.某种商品的标价为200元,按标价的八折出售,这时仍可盈利25%,则这种商品的进价是______元.14.如图,一块等边三角形的木板,边长为1,现将木板沿水平线翻滚,那么B点从开始至结束所走过的路径长度为______.三、(本大题共2小题,每小题8分,满分16分)15.化简,求值:,其中m=.16.如图,在一次龙卷风中,一棵大树在离地面若干米处折断倒下,B为折断处最高点,树顶A落在离树根C的12米处,测得∠BAC=30°,求BC的长.(结果保留根号)四、(本大题共2小题,每小题8分,满分16分)17.如图,等腰梯形ABCD中,AD∥BC,点E是AD延长线上一点,DE=BC.判断△ACE的形状,并说明理由.18.一个均匀的正方体子,六个面分别标有数字1、2、3、4、5、6,连续抛掷两次,朝上的数字分别为m、n.若把m、n作为点A的横纵坐标,那么点A(m,n)在函数y=2x的图象上的概率是多少?五、解答题(共2小题,满分20分)19.二次函数图象过A、C、B三点,点A的坐标为(﹣1,0),点B的坐标为(4,0),点C 在y轴正半轴上,且AB=OC.(1)求C的坐标;(2)求二次函数的解析式,并求出函数最大值.20.如图,△ABC在方格纸中(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2),并求出B点坐标;(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A′B′C′;(3)计算△A′B′C′的面积S.六、(本题满分12分)21.某乒乓球训练馆准备购买n副某种品牌的乒乓球拍,每副球拍配k(k≥3)个乒乓球.已知A、B两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元.现两家超市正在促销,A超市所有商品均打九折(按原价的90%付费)销售,而B超市买1副乒乓球拍送3个乒乓球.若仅考虑购买球拍和乒乓球的费用,请解答下列问题:(1)如果只在某一家超市购买所需球拍和乒乓球,那么去A超市还是B超市买更合算?(2)当k=12时,请设计最省钱的购买方案.七、(本题满分12分)22.小明和几位同学做手的影子游戏时,发现对于同一物体,影子的大小与光源到物体的距离有关.因此,他们认为:可以借助物体的影子长度计算光源到物体的位置.于是,他们做了以下尝试.(1)如图1,垂直于地面放置的正方形框架ABCD,边长AB为30cm,在其正上方有一灯泡,在灯泡的照射下,正方形框架的横向影子A′B,D′C的长度和为6cm.那么灯泡离地面的高度为______.(2)不改变图1中灯泡的高度,将两个边长为30cm的正方形框架按图2摆放,请计算此时横向影子A′B,D′C的长度和为多少?(3)有n个边长为a的正方形按图3摆放,测得横向影子A′B,D′C的长度和为b,求灯泡离地面的距离.(写出解题过程,结果用含a,b,n的代数式表示)八、(本题满分14分)23.如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,且AB=3,BC=,直线y=经过点C,交y轴于点G.(1)点C、D的坐标;(2)求顶点在直线y=上且经过点C、D的抛物线的解析式;(3)将(2)中的抛物线沿直线y=平移,平移后的抛物线交y轴于点F,顶点为点E.平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请明理由.2016年安徽省安庆市桐城市三校联考中考数学模拟试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.﹣4的绝对值是()A.2 B.4 C.﹣4 D.16【考点】绝对值.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:|﹣4|=4.故选B.2.已知,则a的取值范围是()A.a≤0 B.a<0 C.0<a≤1 D.a>0【考点】二次根式的性质与化简.【分析】等式左边为算术平方根,右边的结果应为非负数,且二次根式有意义,故有a>0,且(1﹣a)≥0.【解答】解:由已知,得a>0,且(1﹣a)≥0;解可得:0<a≤1.故选C.3.已知反比例函数的图象过点M(﹣1,2),则此反比例函数的表达式为()A.y= B.y=﹣C.y=D.y=﹣【考点】待定系数法求反比例函数解析式.【分析】函数经过一定点,将此点坐标代入函数解析式(k≠0),即可求得k的值.【解答】解:设反比例函数的解析式为(k≠0).∵该函数的图象过点M(﹣1,2),∴2=,得k=﹣2.∴反比例函数解析式为y=﹣.故选B.4.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是()A.0.5 B.1 C.2 D.4【考点】垂径定理的应用.【分析】根据题意知,已知弦长和弓形高,求半径(直径).根据垂径定理和勾股定理求解.【解答】解:设半径为r,过O作OE⊥AB交AB于点D,连接OA、OB,则AD=AB=×0.8=0.4米,设OA=r,则OD=r﹣DE=r﹣0.2,在Rt△OAD中,OA2=AD2+OD2,即r2=0.42+(r﹣0.2)2,解得r=0.5米,故此输水管道的直径=2r=2×0.5=1米.故选B.5.如图所示,几何体的主(正)视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据三视图画法规则:(1)高平齐:正视图和侧视图的高保持平齐;(2)宽相等:侧视图的宽和俯视图的宽相等;(3)长对正:正视图和俯视图的长对正.【解答】解:由图可得,主视图应该是三列,正方体的数目分别是:1、2、1.故选B.6.清明节前,某班分成甲、乙两组去距离学校4km的烈士陵园扫墓.甲组步行,乙组骑自行车,他们同时从学校出发,结果乙组比甲组早20min到达目的地.已知骑自行车的速度是步行速度的2倍,设步行的速度为x km/h,则x满足的方程为()A.﹣=20 B.﹣=20 C.﹣=D.﹣=【考点】由实际问题抽象出分式方程.【分析】首先表示出骑自行车速度为2xkm/h,再根据时间=路程÷速度表示出去距离学校4km 的烈士陵园扫墓步行所用的时间与骑自行车所用时间,根据时间相差20min可得方程.【解答】解:20min=h,步行的速度为x km/h,则骑自行车速度为2xkm/h,由题意得:﹣=,故选C.7.不等式组:的解集用数轴表示为()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】本题应该先对不等式组进行化简,然后在数轴上分别表示出x的取值范围,它们相交的地方就是不等式组的解集.【解答】解:不等式组可化为:,在数轴上可表示为:故选A.8.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()A.1 B.2 C.3 D.4【考点】全等三角形的判定.【分析】根据全等三角形的判定分别求出以BC为公共边的三角形,以AB为公共边的三角形,以AC为公共边的三角形的个数,相加即可.【解答】解:以BC为公共边的三角形有3个,以AB为公共边的三角形有0个,以AC为公共边的三角形有1个,共3+0+1=4个,故选D.9.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中正确的结论有()A.2个B.3个C.4个D.5个【考点】二次函数图象与系数的关系.【分析】观察图象:开口向下得到a<0;对称轴在y轴的右侧得到a、b异号,则b>0;抛物线与y轴的交点在x轴的上方得到c>0,所以abc<0;当x=﹣1时图象在x轴下方得到y=a﹣b+c=0,即a+c=b;对称轴为直线x=1,可得x=2时图象在x轴上方,则y=4a+2b+c>0;利用对称轴x=﹣=1得到a=﹣b,而a﹣b+c<0,则﹣b﹣b+c<0,所以2c<3b;开口向下,当x=1,y有最大值a+b+c,得到a+b+c>am2+bm+c,即a+b>m(am+b)(m≠1).【解答】解:开口向下,a<0;对称轴在y轴的右侧,a、b异号,则b>0;抛物线与y轴的交点在x轴的上方,c>0,则abc<0,所以①不正确;当x=﹣1时图象在x轴下方,则y=a﹣b+c=0,即a+c=b,所以②不正确;对称轴为直线x=1,则x=2时图象在x轴上方,则y=4a+2b+c>0,所以③正确;x=﹣=1,则a=﹣b,而a﹣b+c=0,则﹣b﹣b+c=0,2c=3b,所以④不正确;开口向下,当x=1,y有最大值a+b+c;当x=m(m≠1)时,y=am2+bm+c,则a+b+c>am2+bm+c,即a+b>m(am+b)(m≠1),所以⑤正确.故选:A.10.已知a,b,c是△ABC的三条边,对应高分别为h a,h b,h c,且a:b:c=4:5:6,那么h a:h b:h c等于()A.4:5:6 B.6:5:4 C.15:12:10 D.10:12:15【考点】三角形的面积.【分析】设a=4k,b=5k,c=6k,根据三角形的面积公式得到S△ABC=ah a=bh b=ch c=4kh a=5kh b=6kh c,即可得到结论.【解答】解:∵a:b:c=4:5:6,∴设a=4k,b=5k,c=6k,∴S△ABC=ah a=bh b=ch c=4kh a=5kh b=6kh c,∴h a:h b:h c=15:12:10,故选C.二、填空题(本大题共4小题,每小题5分,满分20分)11.分解因式:xy2﹣x= x(y﹣1)(y+1).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:xy2﹣x,=x(y2﹣1),=x(y﹣1)(y+1).故答案为:x(y﹣1)(y+1).12.一副三角板,如图所示叠放在一起,则图中∠α的度数是75°.【考点】三角形内角和定理.【分析】根据三角板的常数以及三角形的一个外角等于与它不相邻的两个内角的和求出∠1的度数,再根据直角等于90°计算即可得解.【解答】解:如图,∠1=45°﹣30°=15°,∠α=90°﹣∠1=90°﹣15°=75°.故答案为:75°13.某种商品的标价为200元,按标价的八折出售,这时仍可盈利25%,则这种商品的进价是128 元.【考点】一元一次方程的应用.【分析】设每件的进价为x元,根据八折出售可获利25%,根据:进价=标价×8折﹣获利,可得出方程:200×80%﹣25%x=x,解出即可.【解答】解:设每件的进价为x元,由题意得:200×80%=x(1+25%),解得:x=128,故答案为:128.14.如图,一块等边三角形的木板,边长为1,现将木板沿水平线翻滚,那么B点从开始至结束所走过的路径长度为.【考点】弧长的计算;等边三角形的性质.【分析】B点从开始至结束所走过的路径长度为两段弧长,一段是以点C为圆心,BC为半径,圆心角为120°,第二段是以A为圆心,AB为半径,圆心角为120°的两段弧长,依弧长公式计算即可.【解答】解:从图中发现:B点从开始至结束所走过的路径长度为两段弧长即第一段=,第二段=.故B点从开始至结束所走过的路径长度=+=.三、(本大题共2小题,每小题8分,满分16分)15.化简,求值:,其中m=.【考点】分式的化简求值.【分析】先根据分式的混合运算法则把分式化简,再把m=代入求解即可求得答案.【解答】解:原式=,=,=,=,=,=.∴当m=时,原式=.16.如图,在一次龙卷风中,一棵大树在离地面若干米处折断倒下,B为折断处最高点,树顶A落在离树根C的12米处,测得∠BAC=30°,求BC的长.(结果保留根号)【考点】解直角三角形的应用.【分析】在三角形ABC中,根据tan∠BAC=,再由∠BAC=30°,代入即可得出答案.【解答】解:∵BC⊥AC,∴∠BCA=90°在直角△ABC中,∵tan,∴BC=ACtan∠BAC=12×tan30°=12×=4米.四、(本大题共2小题,每小题8分,满分16分)17.如图,等腰梯形ABCD中,AD∥BC,点E是AD延长线上一点,DE=BC.判断△ACE的形状,并说明理由.【考点】等腰梯形的性质.【分析】根据AD∥BC,得到∠BCD=∠CDE,又因为DE=BC,所以△BCD≌△EDC;根据全等三角形对应边相等得到BD=CE,又因为等腰梯形的对角线相等,所以AC=CE,所以是等腰三角形.【解答】解:△ACE是等腰三角形.理由如下:∵AD∥BC,∴∠BCD=∠EDC,在△BCD和△EDC中,∵,∴△BCD≌△EDC(SAS)∴BD=CE,∵等腰梯形的对角线相等,所以AC=CE,∴△ACE是等腰三角形.18.一个均匀的正方体子,六个面分别标有数字1、2、3、4、5、6,连续抛掷两次,朝上的数字分别为m、n.若把m、n作为点A的横纵坐标,那么点A(m,n)在函数y=2x的图象上的概率是多少?【考点】一次函数图象上点的坐标特征;概率公式.【分析】列举出所有情况,让点A(m,n)在函数y=2x的图象上的情况数除以总情况数即为所求的概率.【解答】解:根据题意,以(m,n)为坐标的点A共有36个,而只有(1,2),(2,4),(3,6)三个点在函数y=2x图象上,所以,所求概率是,即:点A在函数y=2x图象上的概率是.五、解答题(共2小题,满分20分)19.二次函数图象过A、C、B三点,点A的坐标为(﹣1,0),点B的坐标为(4,0),点C 在y轴正半轴上,且AB=OC.(1)求C的坐标;(2)求二次函数的解析式,并求出函数最大值.【考点】待定系数法求二次函数解析式;二次函数的最值.【分析】(1)根据A.B两点的坐标及点C在y轴正半轴上,且AB=OC.求出点C的坐标为(0,5);(2)设二次函数的解析式为y=ax2+bx+c,把A、B、C三点的坐标代入解析式,可求出a、b、c的值.【解答】解:(1)∵A(﹣1,0),B(4,0)∴AO=1,OB=4,AB=AO+OB=1+4=5,∴OC=5,即点C的坐标为(0,5);(2)解法1:设图象经过A、C、B三点的二次函数的解析式为y=ax2+bx+c由于这个函数图象过点(0,5),可以得到C=5,又由于该图象过点(﹣1,0),(4,0),则:,解方程组,得∴所求的函数解析式为y=﹣x2+x+5∵a=﹣<0∴当x=﹣=时,y有最大值==;解法2:设图象经过A、C、B二点的二次函数的解析式为y=a(x﹣4)(x+1)∵点C(0,5)在图象上,∴把C坐标代入得:5=a(0﹣4)(0+1),解得:a=﹣,∴所求的二次函数解析式为y=﹣(x﹣4)(x+1)∵点A,B的坐标分别是点A(﹣1,0),B(4,0),∴线段AB的中点坐标为(,0),即抛物线的对称轴为直线x=∵a=﹣<0∴当x=时,y有最大值y=﹣=.20.如图,△ABC在方格纸中(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2),并求出B点坐标;(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A′B′C′;(3)计算△A′B′C′的面积S.【考点】作图-位似变换;三角形的面积.【分析】(1)A点的坐标为(2,3)所以原点O的坐标就在A点左2个格,下3个格的点上.由此建立直角坐标系,读出B点坐标;(2)连接OA,OB,OC,并延长到OA′,OB′,OC′,使OA′,OB′,OC′的长度是OA,OB,OC的2倍.然后顺次连接三点;(3)从网格上可看出三角形的底和高,利用三角形的面积公式计算.【解答】解:(1)画出原点O,x轴、y轴.B(2,1)(2)画出图形△A′B′C′.(3)S=×4×8=16.六、(本题满分12分)21.某乒乓球训练馆准备购买n副某种品牌的乒乓球拍,每副球拍配k(k≥3)个乒乓球.已知A、B两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元.现两家超市正在促销,A超市所有商品均打九折(按原价的90%付费)销售,而B超市买1副乒乓球拍送3个乒乓球.若仅考虑购买球拍和乒乓球的费用,请解答下列问题:(1)如果只在某一家超市购买所需球拍和乒乓球,那么去A超市还是B超市买更合算?(2)当k=12时,请设计最省钱的购买方案.【考点】一元一次不等式的应用.【分析】(1)本题可根据去超市花的总费用=购买球拍的费用+购买乒乓球的费用,列出去A,B超市所需的总费用,然后比较这两个总费用,分别得出不同的自变量的取值范围中哪个超市最合算.(2)可分别计算出只在A超市购买,只在B超市购买和在A,B超市同时购买的三种不同情况下,所需的费用,然后比较出最省钱的方案.【解答】解:(1)由题意,去A超市购买n副球拍和kn个乒乓球的费用为0.9(20n+kn)元,去B超市购买n副球拍和k个乒乓球的费用为[20n+n(k﹣3)]元,由0.9(20n+kn)<20n+n(k﹣3),解得k>10;由0.9(20n+kn)=20n+n(k﹣3),解得k=10;由0.9(20n+kn)>20n+n(k﹣3),解得k<10.∴当k>10时,去A超市购买更合算;当k=10时,去A、B两家超市购买都一样;当3≤k<10时,去B超市购买更合算.(2)当k=12时,购买n副球拍应配12n个乒乓球.若只在A超市购买,则费用为0.9(20n+12n)=28.8n(元);若只在B超市购买,则费用为20n+(12n﹣3n)=29n(元);若在B超市购买n副球拍,然后再在A超市购买不足的乒乓球,则费用为20n+0.9×(12﹣3)n=28.1n(元)显然28.1n<28.8n<29n∴最省钱的购买方案为:在B超市购买n副球拍同时获得送的3n个乒乓球,然后在A超市按九折购买9n个乒乓球.七、(本题满分12分)22.小明和几位同学做手的影子游戏时,发现对于同一物体,影子的大小与光源到物体的距离有关.因此,他们认为:可以借助物体的影子长度计算光源到物体的位置.于是,他们做了以下尝试.(1)如图1,垂直于地面放置的正方形框架ABCD,边长AB为30cm,在其正上方有一灯泡,在灯泡的照射下,正方形框架的横向影子A′B,D′C的长度和为6cm.那么灯泡离地面的高度为180cm .(2)不改变图1中灯泡的高度,将两个边长为30cm的正方形框架按图2摆放,请计算此时横向影子A′B,D′C的长度和为多少?(3)有n个边长为a的正方形按图3摆放,测得横向影子A′B,D′C的长度和为b,求灯泡离地面的距离.(写出解题过程,结果用含a,b,n的代数式表示)【考点】相似三角形的应用.【分析】(1)设灯泡的位置为点P,易得△PAD∽△PA′D′,设出所求的未知数,利用相似三角形的对应边的比等于对应高的比,可得灯泡离地面的高度;(2)同法可得到横向影子A′B,D′C的长度和;(3)按照相应的三角形相似,利用相似三角形的对应边的比等于对应高的比,用字母表示出其他线段,即可得到灯泡离地面的距离.【解答】解:(1)设灯泡离地面的高度为xcm,∵AD∥A′D′,∴∠PAD=∠PA′D′,∠PDA=∠PD′A′.∴△PAD∽△PA′D′.根据相似三角形对应高的比等于相似比的性质,可得,∴=,解得x=180.(2)设横向影子A′B,D′C的长度和为ycm,同理可得∴=,解得y=12cm;(3)记灯泡为点P,如图:∵AD∥A′D′,∴∠PAD=∠PA′D′,∠PDA=∠PD′A′.∴△PAD∽△PA′D′.根据相似三角形对应高的比等于相似比的性质,可得(直接得出三角形相似或比例线段均不扣分)设灯泡离地面距离为x,由题意,得PM=x,PN=x﹣a,AD=na,A′D′=na+b,∴=1﹣=1﹣x=.八、(本题满分14分)23.如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,且AB=3,BC=,直线y=经过点C,交y轴于点G.(1)点C、D的坐标;(2)求顶点在直线y=上且经过点C、D的抛物线的解析式;(3)将(2)中的抛物线沿直线y=平移,平移后的抛物线交y轴于点F,顶点为点E.平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请明理由.【考点】二次函数综合题.【分析】(1)根据题意可得点C的纵坐标为3、2,代入直线解析式可得出点C的横坐标,继而也可得出点D的坐标;(2)先求出顶点坐标为(,),再利用顶点式求出抛物线的解析式;(3)先设抛物线解析式为y=(x﹣m)2+m﹣2,然后分类讨论:①当FG=EG时,FG=EG=2m,则F(0,2m﹣2),代入解析式得: m2+m﹣2=2m﹣2,求m的值;②当GE=EF时,FG=2m,则F(0,2m﹣2),代入解析式得: m2+m﹣2=2m﹣2,求m的值;③当FG=FE时,不存在.【解答】解:(1)令y=2,2=x﹣2,解得x=4,则OA=4﹣3=1,∴C(4,2),D(1,2);(2)由二次函数对称性得,顶点横坐标为=,令x=,则y=×﹣2=,∴顶点坐标为(,),∴设抛物线解析式为y=a(x﹣)2+,把点D(1,2)代入得,a=,∴解析式为y=(x﹣)2+;(3)设顶点E在直线上运动的横坐标为m,则E(m, m﹣2)(m>0)∴可设解析式为y=(x﹣m)2+m﹣2,①当FG=EG时,FG=EG=2m,则F(0,2m﹣2),代入解析式得: m2+m﹣2=2m﹣2,得m=0(舍去),m=﹣,此时所求的解析式为:y=(x﹣+)2+3﹣;②当GE=EF时,FG=2m,则F(0,2m﹣2),代入解析式得: m2+m﹣2=2m﹣2,解得m=0(舍去),m=,此时所求的解析式为:y=(x﹣)2﹣;③当FG=FE时,不存在.。