广平县第二高级中学2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广平县第二高级中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 过点),2(a M -,)4,(a N 的直线的斜率为2
1
-,则=||MN ( ) A .10 B .180 C .36 D .56
2. 函数
y=+
的定义域是( )
A .{x|x ≥﹣1}
B .{x|x >﹣1且x ≠3}
C .{x|x ≠﹣1且x ≠3}
D .{x|x ≥﹣1且x ≠3}
3. 如图,正方体ABCD ﹣A 1B 1C 1D 1的棱线长为1,线段B 1D 1上有两个动点E ,F ,且
EF=,则下列结论
中错误的是( )
A .AC ⊥BE
B .EF ∥平面ABCD
C .三棱锥A ﹣BEF 的体积为定值
D .异面直线A
E ,B
F 所成的角为定值
4. 已知直线l :2y kx =+过椭圆)0(122
22>>=+b a b y a x 的上顶点B 和左焦点F ,且被圆
224x y +=截得的弦长为L
,若5
L ≥e 的取值范围是( ) (A ) ⎥⎦⎤
⎝⎛550, ( B )
0⎛ ⎝
⎦ (C ) ⎥⎦⎤ ⎝⎛5530, (D ) ⎥⎦⎤
⎝
⎛5540, 5. 已知条件p :|x+1|≤2,条件q :x ≤a ,且p 是q 的充分不必要条件,则a 的取值范围是( ) A .a ≥1 B .a ≤1 C .a ≥﹣1
D .a ≤﹣3
6. 在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2﹣b 2
=bc ,
sinC=2
sinB ,则A=( )
A .30°
B .60°
C .120°
D .150° 7.
为得到函数
的图象,只需将函数y=sin2x 的图象( )
A .向左平移个长度单位
B .向右平移个长度单位
C .向左平移
个长度单位
D .向右平移
个长度单位
8. 若双曲线C :x 2﹣=1(b >0)的顶点到渐近线的距离为,则双曲线的离心率e=( )
A .2
B .
C .3
D .
9. 已知圆C :x 2
+y 2
﹣2x=1,直线l :y=k (x ﹣1)+1,则l 与C 的位置关系是( ) A .一定相离 B .一定相切
C .相交且一定不过圆心
D .相交且可能过圆心
10.如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形.则该几何体表面积等于( )
A .12+
B .12+23π
C .12+24π
D .12+π
11.下列语句所表示的事件不具有相关关系的是( )
A .瑞雪兆丰年
B .名师出高徒
C .吸烟有害健康
D .喜鹊叫喜
12.如图,在等腰梯形ABCD 中,AB=2DC=2,∠DAB=60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED 、EC 向上折起,使A 、B 重合于点P ,则P ﹣DCE 三棱锥的外接球的体积为( )
A .
B .
C .
D .
二、填空题
13.圆心在原点且与直线2x y +=相切的圆的方程为_____ .
【命题意图】本题考查点到直线的距离公式,圆的方程,直线与圆的位置关系等基础知识,属送分题.
14.定义:分子为1且分母为正整数的分数叫做单位分数.我们可以把1拆分为无穷多个不同的单位分数之和.例
如:1=++,1=+++,1=++++,…依此方法可得:
1=++
+++
+
+
+
+
+
+
+
,其中m ,n ∈N *
,则m+n= .
15.某种产品的加工需要 A ,B ,C ,D ,E 五道工艺,其中 A 必须在D 的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有 种.(用数字作答)
16.已知函数f (x )=
有3个零点,则实数a 的取值范围是 .
17.若函数f (x )=log a x (其中a 为常数,且a >0,a ≠1)满足f (2)>f (3),则f (2x ﹣1)<f (2﹣x )的解集是 .
18.下列四个命题申是真命题的是 (填所有真命题的序号) ①“p ∧q 为真”是“p ∨q 为真”的充分不必要条件;
②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等; ③在侧棱长为2,底面边长为3的正三棱锥中,侧棱与底面成30°的角;
④动圆P 过定点A (﹣2,0),且在定圆B :(x ﹣2)2+y 2=36的内部与其相内切,则动圆圆心P 的轨迹为一个椭圆.
三、解答题
19.(本小题满分12分)若二次函数()()2
0f x ax bx c a =++≠满足()()+12f x f x x -=,
且()01f =.
(1)求()f x 的解析式; (2)若在区间[]1,1-上,不等式()2f x x m >+恒成立,求实数m 的取值范围.
20.(本题满分15分)
已知抛物线C 的方程为2
2(0)y px p =>,点(1,2)R 在抛物线C 上.
(1)求抛物线C 的方程;
(2)过点(1,1)Q 作直线交抛物线C 于不同于R 的两点A ,B ,若直线AR ,BR 分别交直线:22l y x =+于
M ,N 两点,求MN 最小时直线AB 的方程.
【命题意图】本题主要考查抛物线的标准方程及其性质以及直线与抛物线的位置关系等基础知识,意在考查运算求解能力.
21.已知椭圆
:
的长轴长为,
为坐标原点.
(Ⅰ)求椭圆C 的方程和离心率; (Ⅱ) 设动直线与y 轴相交于点,点
关于直线的对称点
在椭圆
上,求
的最小值.
22.已知cos (+θ)=﹣,
<θ<,求的值.
23.从某中学高三某个班级第一组的7名女生,8名男生中,随机一次挑选出4名去参加体育达标测试. (Ⅰ)若选出的4名同学是同一性别,求全为女生的概率; (Ⅱ)若设选出男生的人数为X ,求X 的分布列和EX .
24.在ABC ∆中已知2a b c =+,2
sin sin sin A B C =,试判断ABC ∆的形状.
广平县第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】D
【解析】
考点:1.斜率;2.两点间距离.
2.【答案】D
【解析】解:由题意得:
,
解得:x≥﹣1或x≠3,
故选:D.
【点评】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.
3.【答案】D
【解析】解:∵在正方体中,AC⊥BD,∴AC⊥平面B1D1DB,BE⊂平面B1D1DB,∴AC⊥BE,故A正确;∵平面ABCD∥平面A1B1C1D1,EF⊂平面A1B1C1D1,∴EF∥平面ABCD,故B正确;
∵EF=,∴△BEF的面积为定值×EF×1=,又AC⊥平面BDD1B1,∴AO为棱锥A﹣BEF的高,∴三棱
锥A﹣BEF的体积为定值,故C正确;
∵利用图形设异面直线所成的角为α,当E与D1重合时sinα=,α=30°;当F与B1重合时tanα=,∴异面
直线AE、BF所成的角不是定值,故D错误;
故选D.
4. 【答案】 B
【解析】依题意,2, 2.b kc ==
设圆心到直线l 的距离为d ,则L =≥
解得216
5
d ≤。
又因为
d =2116,15k ≤+解得2
14k ≥。
于是222
222211c c e a b c k
===++,所以2
40,5e <≤解得0e <≤故选B . 5. 【答案】A
【解析】解:由|x+1|≤2得﹣3≤x ≤1,即p :﹣3≤x ≤1,
若p 是q 的充分不必要条件, 则a ≥1, 故选:A .
【点评】本题主要考查充分条件和必要条件的判断,比较基础.
6. 【答案】A 【解析】解:∵sinC=2
sinB ,∴c=2
b ,
∵a 2﹣b 2
=
bc ,∴cosA=
=
=
∵A 是三角形的内角 ∴A=30° 故选A .
【点评】本题考查正弦、余弦定理的运用,解题的关键是边角互化,属于中档题.
7.【答案】A
【解析】解:∵,
只需将函数y=sin2x的图象向左平移个单位得到函数的图象.
故选A.
【点评】本题主要考查诱导公式和三角函数的平移.属基础题.
8.【答案】B
【解析】解:双曲线C:x2﹣=1(b>0)的顶点为(±1,0),
渐近线方程为y=±bx,
由题意可得=,
解得b=1,c==,
即有离心率e==.
故选:B.
【点评】本题考查双曲线的离心率的求法,注意运用点到直线的距离公式,考查运算能力,属于基础题.
9.【答案】C
【解析】
【分析】将圆C方程化为标准方程,找出圆心C坐标与半径r,利用点到直线的距离公式表示出圆心到直线的距离d,与r比较大小即可得到结果.
【解答】解:圆C方程化为标准方程得:(x﹣1)2+y2=2,
∴圆心C(1,0),半径r=,
∵≥>1,
∴圆心到直线l的距离d=<=r,且圆心(1,0)不在直线l上,
∴直线l与圆相交且一定不过圆心.
故选C
10.【答案】C
【解析】解:根据几何体的三视图,得;
该几何体是一半圆台中间被挖掉一半圆柱,
其表面积为
S=[×(2+8)×4﹣2×4]+[×π•(42﹣12)+×(4π×﹣π×)+×8π]
=12+24π. 故选:C .
【点评】本题考查了空间几何体三视图的应用问题,也考查了空间想象能力与计算能力的应用问题,是基础题目.
11.【答案】D
【解析】解:根据两个变量之间的相关关系,
可以得到瑞雪兆丰年,瑞雪对小麦有好处,可能使得小麦丰收,
名师出高徒也具有相关关系, 吸烟有害健康也具有相关关系,
故选D .
【点评】本题考查两个变量的线性相关关系,本题解题的关键是根据实际生活中两个事物之间的关系确定两个变量之间的关系,本题是一个基础题.
12.【答案】C
【解析】解:易证所得三棱锥为正四面体,它的棱长为1,
故外接球半径为,外接球的体积为
,
故选C .
【点评】本题考查球的内接多面体,球的体积等知识,考查逻辑思维能力,是中档题.
二、填空题
13.【答案】222x y +=
【解析】由题意,圆的半径等于原点到直线2x y +=的距离,所以
r d ==
=222x y +=.
14.【答案】 33 .
【解析】解:∵1=+++++
+
+
+
+
+
+
+
,
∵2=1×2, 6=2×3, 30=5×6, 42=6×7,
56=7×8, 72=8×9, 90=9×10, 110=10×11, 132=11×12,
∴1=+++++
+
+++
+
+
+
=(1﹣)+++(﹣
)+
,
+=
=﹣+
﹣=
, ∴m=20,n=13, ∴m+n=33, 故答案为:33
【点评】本题考查的知识点是归纳推理,但本题运算强度较大,属于难题.
15.【答案】 24
【解析】解:由题意,B 与C 必须相邻,利用捆绑法,可得=48种方法,
因为A 必须在D 的前面完成,所以完成加工该产品的不同工艺的排列顺序有48÷2=24种,
故答案为:24.
【点评】本题考查计数原理的应用,考查学生的计算能力,比较基础.
16.【答案】 (,1) .
【解析】解:∵函数f (x )=
有3个零点,
∴a >0 且 y=ax 2
+2x+1在(﹣2,0)上有2个零点,
∴,
解得<a <1,
故答案为:(,1).
17.【答案】(1,2).
【解析】解:∵f(x)=log a x(其中a为常数且a>0,a≠1)满足f(2)>f(3),
∴0<a<1,x>0,
若f(2x﹣1)<f(2﹣x),
则,
解得:1<x<2,
故答案为:(1,2).
【点评】本题考查了对数函数的性质,考查函数的单调性问题,是一道基础题.
18.【答案】①③④
【解析】解:①“p∧q为真”,则p,q同时为真命题,则“p∨q为真”,
当p真q假时,满足p∨q为真,但p∧q为假,则“p∧q为真”是“p∨q为真”的充分不必要条件正确,故①正确;
②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等或互补;故②错误,
③设正三棱锥为P﹣ABC,顶点P在底面的射影为O,则O为△ABC的中心,∠PCO为侧棱与底面所成角
∵正三棱锥的底面边长为3,∴CO=
∵侧棱长为2,∴
在直角△POC中,tan∠PCO=
∴侧棱与底面所成角的正切值为,即侧棱与底面所成角为30°,故③正确,
④如图,设动圆P和定圆B内切于M,则动圆的圆心P到两点,即定点A(﹣2,0)和定圆的圆心B(2,0)的距离之和恰好等于定圆半径,
即|PA|+|PB|=|PM|+|PB|=|BM|=6>4=|AB|. ∴点P 的轨迹是以A 、B 为焦点的椭圆, 故动圆圆心P 的轨迹为一个椭圆,故④正确, 故答案为:①③④
三、解答题
19.【答案】(1)()2
=+1f x x x -;(2)1m <-.
【解析】
试题分析:(1)根据二次函数()()2
0f x ax bx c a =++≠满足()()+12f x f x x -=,利用多项式相等,即
可求解,a b 的值,得到函数的解析式;(2)由[]()1,1,x f x m ∈->恒成立,转化为2
31m x x <-+,设
()2g 31x x x =-+,只需()min m g x <,即可而求解实数m 的取值范围.
试题解析:(1) ()()20f x ax bx c a =++≠ 满足()01,1f c ==
()()()()2
212,112f x f x x a x b x ax bx x +-=+++--=,解得1,1a b ==-,
故()2
=+1f x x x -.
考点:函数的解析式;函数的恒成立问题.
【方法点晴】本题主要考查了函数解析式的求解、函数的恒成立问题,其中解答中涉及到一元二次函数的性质、多项式相等问题、以及不等式的恒成立问题等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,推理与运算能力,以及转化与化归思想,试题有一定的难度,属于中档试题,其中正确把不等式的恒成立问题转化为函数的最值问题是解答的关键.
20.【答案】(1)2
4y x =;(2)20x y +-=.
【解析】(1)∵点(1,2)R 在抛物线C 上,2
2212p p =⨯⇒=,…………2分
即抛物线C 的方程为24y x =;…………5分
21.【答案】
【解析】【知识点】圆锥曲线综合椭圆
【试题解析】(Ⅰ)因为椭圆C:,
所以,,
故,解得,
所以椭圆的方程为.
因为,
所以离心率.
(Ⅱ)由题意,直线的斜率存在,设点,则线段的中点的坐标为,
且直线的斜率,
由点关于直线的对称点为,得直线,
故直线的斜率为,且过点,
所以直线的方程为:,
令,得,则,
由,得,
化简,得.
所以
.
当且仅当,即时等号成立.
所以的最小值为.
22.【答案】
【解析】解:∵<θ<,∴+θ∈(,),
∵cos(+θ)=﹣,∴sin(+θ)=﹣=﹣,
∴sin(+θ)=sinθcos+cosθsin=(cosθ+sinθ)=﹣,
∴sinθ+cosθ=﹣,①
cos(+θ)=cos cosθ﹣sin sinθ=(cosθ﹣cosβ)=﹣,
∴cosθ﹣sinθ=﹣,②
联立①②,得cosθ=﹣,sinθ=﹣,
∴==
==.
【点评】本题考查函数值的求法,是中档题,解题时要认真审题,注意三角函数诱导公式、加法定理和同角三角函数关系式的合理运用.
23.【答案】
【解析】解:(Ⅰ)若4人全是女生,共有C 74=35种情况;若4人全是男生,共有C 84
=70种情况;
故全为女生的概率为
=.…
(Ⅱ)共15人,任意选出4名同学的方法总数是C 154
,选出男生的人数为X=0,1,2,3,4…
P (X=0)==;P (X=1)==;P (X=2)==;
P (X=3)==;P (X=4)==.…
X
EX=0×
+1×
+2×
+3×
+4×
=
.…
【点评】本题考查离散型随机变量的分布列、期望及古典概型的概率加法公式,正确理解题意是解决问题的基础.
24.【答案】ABC ∆为等边三角形. 【解析】
试题分析:由2
sin sin sin A B C =,根据正弦定理得出2
a bc =,在结合2a
b
c =+,可推理得到a b c ==,即可可判定三角形的形状.
考点:正弦定理;三角形形状的判定.。