连山区第二中学校2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
连山区第二中学校2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 某几何体的三视图如图所示,则该几何体的体积为( ) A .16163π-
B .32163π-
C .1683π-
D .3283
π-
【命题意图】本题考查三视图、圆柱与棱锥的体积计算,意在考查识图能力、转化能力、空间想象能力. 2. 定义新运算⊕:当a ≥b 时,a ⊕b=a ;当a <b 时,a ⊕b=b 2,则函数f (x )=(1⊕x )x ﹣(2⊕x ),x ∈[﹣2,2]的最大值等于( ) A .﹣1 B .1 C .6
D .12
3. 若⎩⎨⎧≥<+=-)2(,2)
2(),2()(x x x f x f x 则)1(f 的值为( )
A .8
B .8
1 C .
2 D .21
4. 已知不等式组⎪⎩
⎪
⎨⎧≥+≤+≥-1210y x y x y x 表示的平面区域为D ,若D 内存在一点00(,)P x y ,使001ax y +<,则a 的取值
范围为( )
A .(,2)-∞
B .(,1)-∞
C .(2,)+∞
D .(1,)+∞ 5. 已知向量=(2,﹣3,5)与向量=(3,λ,)平行,则λ=( )
A .
B .
C .﹣
D .﹣
6. 设集合M={x|x >1},P={x|x 2﹣6x+9=0},则下列关系中正确的是( )
A .M=P
B .P ⊊M
C .M ⊊P
D .M ∪P=R
7. 已知双曲线﹣
=1的右焦点与抛物线y 2=12x 的焦点重合,则该双曲线的焦点到其渐近线的距离等于
( )
A .
B .
C .3
D .5
8. 下列命题的说法错误的是( ) A .若复合命题p ∧q 为假命题,则p ,q 都是假命题
B .“x=1”是“x 2﹣3x+2=0”的充分不必要条件
C .对于命题p :∀x ∈R ,x 2+x+1>0 则¬p :∃x ∈R ,x 2+x+1≤0
D .命题“若x 2﹣3x+2=0,则x=1”的逆否命题为:“若x ≠1,则x 2﹣3x+2≠0”
9. 已知圆C 1:x 2
+y 2
=4和圆C 2:x 2
+y 2
+4x ﹣4y+4=0关于直线l 对称,则直线l 的方程为( ) A .x+y=0 B .x+y=2 C .x ﹣y=2 D .x ﹣y=﹣2 10.下列函数中,为奇函数的是( ) A .y=x+1 B .y=x 2 C .y=2x D .y=x|x|
11.若复数
2b i
i
++的实部与虚部相等,则实数b 等于( ) (A ) 3 ( B ) 1 (C ) 13 (D ) 12
-
12.方程1x -=表示的曲线是( )
A .一个圆
B . 两个半圆
C .两个圆
D .半圆
二、填空题
13.设数列{a n }的前n 项和为S n ,已知数列{S n }是首项和公比都是3的等比数列,则{a n }的通项公式a n = .
14.【徐州市2018届高三上学期期中】已知函数
(为自然对数的底数),若
,则实数 的取值范围为______.
15.设x ∈(0,π),则f (x )=cos 2x+sinx 的最大值是 .
16.设向量=(1,﹣3),=(﹣2,4),=(﹣1,﹣2),若表示向量4,4﹣2,2(﹣),的
有向线段首尾相接能构成四边形,则向量的坐标是 .
17.函数y=f (x )的图象在点M (1,f (1))处的切线方程是y=3x ﹣2,则f (1)+f ′(1)= .
18.若执行如图3所示的框图,输入,则输出的数等于。
三、解答题
19.在直角坐标系xOy中,已知一动圆经过点(2,0)且在y轴上截得的弦长为4,设动圆圆心的轨
迹为曲线C.
(1)求曲线C的方程;111]
(2)过点(1,0)作互相垂直的两条直线,,与曲线C交于A,B两点与曲线C交于E,F两点,
线段AB,EF的中点分别为M,N,求证:直线MN过定点P,并求出定点P的坐标.
20.在直角坐标系xOy中,曲线C1的参数方程为C1:为参数),曲线C2:=1.(Ⅰ)在以O为极点,x轴的正半轴为极轴的极坐标系中,求C1,C2的极坐标方程;
(Ⅱ)射线θ=(ρ≥0)与C1的异于极点的交点为A,与C2的交点为B,求|AB|.
21.已知在△ABC中,A(2,4),B(﹣1,﹣2),C(4,3),BC边上的高为AD.
(1)求证:AB⊥AC;
(2)求向量.
22.(本小题满分10分)已知函数f(x)=|x-a|+|x+b|,(a≥0,b≥0).
(1)求f(x)的最小值,并求取最小值时x的范围;
(2)若f(x)的最小值为2,求证:f(x)≥a+b.
23.已知P(m,n)是函授f(x)=e x﹣1图象上任一于点
(Ⅰ)若点P关于直线y=x﹣1的对称点为Q(x,y),求Q点坐标满足的函数关系式
(Ⅱ)已知点M(x0,y0)到直线l:Ax+By+C=0的距离d=,当点M在函数
y=h(x)图象上时,公式变为,请参考该公式求出函数ω(s,t)=|s﹣e x﹣1﹣1|+|t﹣ln(t﹣1)|,(s∈R,t>0)的最小值.
24.已知{}n a 是等差数列,{}n b 是等比数列,n S 为数列{}n a 的前项和,111a b ==,且3336b S =,
228b S =(*n N ∈).
(1)求n a 和n b ; (2)若1n n a a +<,求数列11n n a a +⎧
⎫
⎨⎬⎩⎭
的前项和n T .
连山区第二中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】D
【解析】由三视图知几何体为一个底面半径为2高为4的半圆柱中挖去一个以轴截面为底面高为2的四棱锥,因此该几何体的体积为21132
244428233
V =π⨯⨯-⨯⨯⨯=π-,故选D . 2. 【答案】C 【解析】解:由题意知
当﹣2≤x ≤1时,f (x )=x ﹣2,当1<x ≤2时,f (x )=x 3
﹣2,
又∵f (x )=x ﹣2,f (x )=x 3﹣2在定义域上都为增函数,∴f (x )的最大值为f (2)=23
﹣2=6.
故选C .
3. 【答案】B 【解析】
试题分析:()()3
1
1328
f f -===
,故选B 。
考点:分段函数。
4. 【答案】A
【解析】解析:本题考查线性规划中最值的求法.平面区域D 如图所示,先求z ax y =+的最小值,当12
a ≤时,12a -≥-
,z ax y =+在点1,0A ()
取得最小值a ;当12a >时,12a -<-,z ax y =+在点11
,33
B ()取得最小值1133a +.若D 内存在一点00(,)P x y ,使001ax y +<,则有z ax y =+的最小值小于1,∴121a a ⎧
≤
⎪⎨⎪<⎩或
12
111
a a ⎧>⎪⎪⎨
⎪+<⎪,∴2a <,选A .
【解析】解:∵向量=(2,﹣3,5)与向量=(3,λ,)平行,
∴==,
∴λ=﹣.
故选:C.
【点评】本题考查了空间向量平行(共线)的问题,解题时根据两向量平行,对应坐标成比例,即可得出答案.
6.【答案】B
【解析】解:P={x|x=3},M={x|x>1};
∴P⊊M.
故选B.
7.【答案】A
【解析】解:抛物线y2=12x的焦点坐标为(3,0)
∵双曲线的右焦点与抛物线y2=12x的焦点重合
∴4+b2=9
∴b2=5
∴双曲线的一条渐近线方程为,即
∴双曲线的焦点到其渐近线的距离等于
故选A.
【点评】本题考查抛物线的性质,考查时却显得性质,确定双曲线的渐近线方程是关键.
8.【答案】A
【解析】解:A.复合命题p∧q为假命题,则p,q至少有一个命题为假命题,因此不正确;
B.由x2﹣3x+2=0,解得x=1,2,因此“x=1”是“x2﹣3x+2=0”的充分不必要条件,正确;
C.对于命题p:∀x∈R,x2+x+1>0 则¬p:∃x∈R,x2+x+1≤0,正确;
D.命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”,正确.
故选:A.
【解析】【分析】由题意可得圆心C 1和圆心C 2,设直线l 方程为y=kx+b ,由对称性可得k 和b 的方程组,解方程组可得.
【解答】解:由题意可得圆C 1圆心为(0,0),圆C 2的圆心为(﹣2,2),
∵圆C 1:x 2+y 2=4和圆C 2:x 2+y 2
+4x ﹣4y+4=0关于直线l 对称,
∴点(0,0)与(﹣2,2)关于直线l 对称,设直线l 方程为y=kx+b ,
∴
•k=﹣1且
=k •
+b ,
解得k=1,b=2,故直线方程为x ﹣y=﹣2, 故选:D . 10.【答案】D
【解析】解:由于y=x+1为非奇非偶函数,故排除A ; 由于y=x 2为偶函数,故排除B ;
由于y=2x
为非奇非偶函数,故排除C ; 由于y=x|x|是奇函数,满足条件, 故选:D .
【点评】本题主要考查函数的奇偶性的判断,属于基础题.
11.【答案】C
【解析】
b +i 2+i =(b +i)(2-i)(2+i)(2-i)=2b +15+2-b 5i ,因为实部与虚部相等,所以2b +1=2-b ,即b =1
3.故选C.
12.【答案】A 【解析】
试题分析:由方程1x -=2
2
1x -=,即22(1)(1)1x y -++=,所
以方程表示的轨迹为一个圆,故选A. 考点:曲线的方程.
二、填空题
13.【答案】
.
【解析】解:∵数列{S n }是首项和公比都是3的等比数列,∴S n =3n
. 故a 1=s 1=3,n ≥2时,a n =S n ﹣s n ﹣1=3n
﹣3
n ﹣1
=2•3n ﹣1,
故a n=.
【点评】本题主要考查等比数列的通项公式,等比数列的前n项和公式,数列的前n项的和Sn与第n项an 的关系,属于中档题.
14.【答案】
【解析】令,则
所以为奇函数且单调递增,因此
即
点睛:解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内
15.【答案】.
【解析】解:∵f(x)=cos2x+sinx=1﹣sin2x+sinx=﹣+,
故当sinx=时,函数f(x)取得最大值为,
故答案为:.
【点评】本题主要考查三角函数的最值,二次函数的性质,属于基础题.
16.【答案】(﹣2,﹣6).
【解析】解:向量4,4﹣2,2(﹣),的有向线段首尾相接能构成四边形,
则向量=﹣[4+4﹣2+2(﹣)]=﹣(6+4﹣4)=﹣[6(1,﹣3)+4(﹣2,4)﹣4(﹣1,﹣2)]=﹣(2,6)=(﹣2,﹣6),
故答案为:(﹣2,﹣6).
【点评】本题考查了向量的多边形法则、向量坐标运算、线性运算,考查了计算能力,属于基础题.17.【答案】4.
【解析】解:由题意得f′(1)=3,且f(1)=3×1﹣2=1
所以f(1)+f′(1)=3+1=4.
故答案为4.
【点评】本题主要考查导数的几何意义,要注意分清f (a )与f ′(a ).
18.【答案】
【解析】由框图的算法功能可知,输出的数为三个数的方差,
则。
三、解答题
19.【答案】(1) 24y x =;(2)证明见解析;(3,0). 【解析】
(2)易知直线,的斜率存在且不为0,设直线的斜率为,11(,)A x y ,22(,)B x y , 则直线:(1)y k x =-,1212
(
,)22
x x y y M ++, 由24,(1),
y x y k x ⎧=⎨=-⎩得2222
(24)0k x k x k -++=, 2242(24)416160k k k ∆=+-=+>,
考点:曲线的轨迹方程;直线与抛物线的位置关系. 【易错点睛】导数法解决函数的单调性问题:(1)当)(x f 不含参数时,可通过解不等式)0)((0)(''<>x f x f 直接得到单调递增(或递减)区间.(2)已知函数的单调性,求参数的取值范围,应用条件),(),0)((0)(''b a x x f x f ∈≤≥恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意参数的取值是)('x f 不恒等于的参数的范围.
20.【答案】
【解析】解:(Ⅰ)曲线
为参数)可化为普通方程:(x ﹣1)2+y 2=1,
由
可得曲线C 1的极坐标方程为ρ=2cos θ,曲线C 2的极坐标方程为ρ2(1+sin 2θ)=2.
(Ⅱ)射线
与曲线C 1的交点A 的极径为,
射线
与曲线C 2的交点B 的极径满足,解得,
所以
.
21.【答案】
【解析】解 (1)∵=(﹣1,﹣2)﹣(2,4)=(﹣3,﹣6),
=(4,3)﹣(2,4)=(2,﹣1),
=﹣3×2+(﹣6)×(﹣1)=0,
∴AB⊥AC.
(2)=(4,3)﹣(﹣1,﹣2)=(5,5).
设=λ=(5λ,5λ)
则=+=(﹣3,﹣6)+(5λ,5λ)=(5λ﹣3,5λ﹣6),
由AD⊥BC得5(5λ﹣3)+5(5λ﹣6)=0,
解得λ=,
∴=(,﹣).
【点评】本题考查向量的垂直与共线的应用,向量的数量积的应用,考查计算能力.
22.【答案】
【解析】解:(1)由|x-a|+|x+b|≥|(x-a)-(x+b)|
=|a+b|得,
当且仅当(x-a)(x+b)≤0,即-b≤x≤a时,f(x)取得最小值,
∴当x∈[-b,a]时,f(x)min=|a+b|=a+b.
(2)证明:由(1)知a+b=2,
(a+b)2=a+b+2ab≤2(a+b)=4,
∴a+b≤2,
∴f(x)≥a+b=2≥a+b,
即f(x)≥a+b.
23.【答案】
【解析】解:(1)因为点P,Q关于直线y=x﹣1对称,所以.
解得.又n=e m﹣1,所以x=1﹣e(y+1)﹣1,即y=ln(x﹣1).
(2)ω(s,t)=|s﹣e x﹣1﹣1|+|t﹣ln(t﹣1)﹣1|
=
,
令u (s )
=
.
则u (s ),v (t )分别表示函数y=e
x ﹣1,y=ln (t ﹣1)图象上点到直线x ﹣y ﹣1=0的距离. 由(1)知,u min (s )=v min (t ).
而f ′(x )=e
x ﹣1,令f ′(s )=1得s=1,所以u min (s )
=.
故.
【点评】本题一方面考查了点之间的轴对称问题,同时利用函数式的几何意义将问题转化为点到直线的距离,然后再利用函数的思想求解.体现了解析几何与函数思想的结合.
24.【答案】(1)21n a n =-,12n n b -=或1(52)3n a n =
-,16n n b -=;(2)21
n n +. 【解析】
试题解析:(1)设{}n a 的公差为d ,{}n b 的公比为, 由题意得2(33)36,(2)8,q d q d ⎧+=⎨+=⎩解得2,2,d q =⎧⎨=⎩或2,36.
d q ⎧=-⎪⎨⎪=⎩ ∴21n a n =-,12n n b -=或1(52)3
n a n =-,16n n b -=. (2)若+1n n a a <,由(1)知21n a n =-,
∴
111111()(21)(21)22121
n n a a n n n n +==--+-+, ∴111111(1)2335212121n n T n n n =-+-++-=-++…. 考点:1、等差数列与等比数列的通项公式及前项和公式;2、裂项相消法求和的应用.。