基于PLC的高楼恒压供水系统设计
基于PLC的恒压供水系统的设计
![基于PLC的恒压供水系统的设计](https://img.taocdn.com/s3/m/f826b20f68eae009581b6bd97f1922791688be22.png)
基于PLC的恒压供水系统的设计随着科技的发展和社会的进步,人们对水资源的利用和管理越来越重视。
恒压供水系统是一种能够在不同用水量下保持供水压力稳定的系统,广泛应用于工业、农业和民用领域。
本文将介绍基于PLC的恒压供水系统的设计,通过PLC控制系统实现对供水系统的智能控制和优化运行。
恒压供水系统是通过控制水泵的运行来维持供水管网中的压力稳定,当用户用水量变化时,系统能够自动调节水泵的运行状态,以保持供水压力在设定范围内。
恒压供水系统一般由水泵、压力传感器、PLC控制系统等组成。
当供水管网中的压力低于设定值时,PLC 控制系统将启动水泵,当压力达到设定值时,控制系统将停止水泵的运行。
1. 系统传感器的选择恒压供水系统中需要使用压力传感器来检测供水管网中的压力情况,传感器的选择直接影响到系统的准确性和稳定性。
一般情况下,可以选择高精度的压力传感器,通过其测量得到的压力信号输入PLC控制系统,以便系统根据压力变化进行自动调节。
2. PLC控制系统的设计PLC(Programmable Logic Controller)是一种用于工业控制的可编程逻辑控制器,具有良好的稳定性和灵活性,适用于恒压供水系统的设计。
设计PLC控制系统时,首先需要明确系统的控制逻辑和运行流程,然后编写相应的控制程序并进行调试。
3. 水泵的选型和布置恒压供水系统中的水泵是系统的核心部件,其选型和布置直接影响系统的运行效果。
在选型时,需要考虑供水管网的水质、用水量、管网布局等因素,以确保水泵能够满足系统的要求。
水泵的布置也需要符合水力平衡原则,确保供水管网的水流畅通。
恒压供水系统中的水泵一般是多台联动运行的,通过PLC控制系统实现水泵的智能联动是设计的重点。
在控制系统中,需要考虑水泵的启停逻辑、联动方式、切换条件等,以便系统能够根据实际压力需求进行自动调节。
5. 系统的远程监控和报警设计恒压供水系统在运行过程中需要进行实时监控和故障报警,以确保系统的安全可靠运行。
基于PLC变频恒压供水控制系统设计
![基于PLC变频恒压供水控制系统设计](https://img.taocdn.com/s3/m/bf2dc34ef68a6529647d27284b73f242326c314d.png)
基于PLC变频恒压供水控制系统设计PLC变频恒压供水控制系统的设计供水系统是一种常见的工业和建筑领域常用的系统。
PLC变频恒压供水控制系统是一种可以控制和调节水泵的电气控制系统,以实现恒压供水的目的。
下面将介绍一个基于PLC变频恒压供水控制系统的设计。
设计目标:1.实现恒定的供水压力,不受进水压力和水流量的波动影响。
2.实现多台水泵的协调运行,实现水泵的均衡负荷运行,延长水泵寿命。
3.实现故障自动检测和报警,提高供水系统的可靠性。
系统组成:1.传感器:使用压力传感器和流量传感器来感知进水压力和供水流量。
2.PLC:使用可编程逻辑控制器(PLC)来实现逻辑控制和运算。
3.变频器:使用变频器来控制水泵的转速,从而实现恒扬程供水控制。
4.水泵:使用多台水泵来实现供水。
系统工作原理:1.系统启动:当水泵系统运行时,PLC会控制最初的启动过程,按照设定的启动顺序依次启动水泵,避免同时启动造成的电网冲击。
2.进水压力检测:系统通过压力传感器检测进水压力,当进水压力小于设定的最小进水压力时,PLC会自动启动水泵,以提供足够的进水压力。
3.恒压供水控制:PLC通过控制变频器,改变水泵的转速来实现供水流量和压力的稳定。
当供水压力低于设定的最小供水压力时,PLC会增加水泵的转速以提供足够的供水压力;当供水压力高于设定的最大供水压力时,PLC会降低水泵的转速以避免过高的压力。
4.水泵协调运行:通过PLC控制,多台水泵可以根据供水流量需求实现均衡负载运行,避免其中一台水泵长时间运行。
系统优势:1.系统能够自动检测供水压力,保持恒定的供水压力,避免由于进水压力和水流量的波动而导致的供水压力变化。
2.系统能够实现多台水泵的协调运行,避免单一水泵长时间运行而导致的设备损坏。
3.系统具有快速故障检测和报警功能,及时发现水泵等设备的故障,减少停机时间。
总结:基于PLC变频恒压供水控制系统的设计可以实现恒定的供水压力,提高供水系统的稳定性和可靠性。
基于PLC的高楼恒压供水控制系统的设计
![基于PLC的高楼恒压供水控制系统的设计](https://img.taocdn.com/s3/m/c708ceb2fab069dc502201ab.png)
课题名称基于PLC的高楼恒压供水控制系统的设计姓名:王镇日期:2011年11月10日目录摘要 (1)关键词 (1)1.引言 (1)2 恒压供水的特点................................................‥ (5)2系统结构图 (5)3软件部分 (6)3.1PLC程序 (6)3.2I\O分配表 (10)3.3 变频器参数设定 (10)4 控制电路图 (11)4.1 主电路图 (11)4.2 控制电路图 (11)5 主要器件的选择 (12)5.1MD-W 恒压供水压力传感器的介绍 (12)5.2PLC的特点 (13)6变频器的特点 (14)7系统要实现的功能有 (15)7.1 手动运行 (15)7.2 自动运行 (16)7.3 特殊情况 (16)8 这个系统的优越性 (16)总结 (17)基于PLC的高楼恒压供水控制系统的设计摘要:建设节约型社会,合理开发、节约利用和有效保护水资源是一项艰巨任务。
居民生活用水具有时间集中,用水量变化较大的特点,而采用原供水系统存在成本高,可靠性低,水资源浪费和管网系统待完善的问题。
为此采用变频器与可编程控制器(PLC)构成控制系统,优化控制泵组的调速运行,自动调整泵组的运行台数,完成供水压力的闭环控制,提出用自来水水压供水与水泵提水相结合的方式,并配以变频器、PLC、压力传感器、溢流阀等将管网的压力,通过压力传感器把数据传给PLC,PLC优化控制泵组的调速运行,并自动调整泵组的运行台数,完成供水压力的闭环控制,使水管中的压力始终保持在合适的范围。
PLC恒压供水的优点在于当管网流量变化时,能达到稳定供水压力和节能、安全、供水高品质等优点。
关键词:变频器;PLC;恒压供水;1.引言现在的恒压供水应以经济合理,技术先进,供水安全可靠为原则。
传统的供水方式(包括水箱/水塔供水和气压供水)。
水箱/水塔供水称为重力供水,具有供水压力比例恒定和储水的功能。
基于plc的恒压供水系统的设计
![基于plc的恒压供水系统的设计](https://img.taocdn.com/s3/m/44e46a61a88271fe910ef12d2af90242a895aba9.png)
基于plc的恒压供水系统的设计(恒压供水系统的原理及电气控制要求。
Plc在机电系统中的应用和工作原理。
西门子变频器的工作原理MM440。
Plc编程原理及程序设计方法。
电器原理图,接线图。
)一.恒压供水系统的原理1.系统介绍生产生活中的用水量常随时间而变化,季节、昼夜相差很大。
用水和供水的不平衡集中体砚在水压上,用水多而供水少则水压低,用水少而供水多则水压高。
以前大多采用传统的水塔、高位水箱或气压罐式增压设备容易造成二次污染,同时也增大了水泵的轴功率和能量损耗。
随着电力电子技术的发展变频调速技术广泛应用于送水泵站、加压站、工业给水、小区和高楼供水等供水等领域.相对于传统的技术而言,它具有节能效益明显、保护功能完善、控制灵活方便等优点。
恒压供水控制系统的基本控制策略是:采用电动机调速装置与可编程控制器(PLC)构成控制系统,进行优化控制泵组的调速运行,并自动调整泵组的运行台数,完成供水压力的闭环控制,在管网流量变化时达到稳定供水压力和节约电能的目的。
系统的控制目标是总管的出水压力及系统设定的给水压力值与反馈的总管压力实际值进行比较,其差值输入CPU 运算处理后,发出控制指令,控制泵电动机的投运台数和运行变量泵电动机的转速,从而达到给水总管压力稳定在设定的压力值上。
恒压供水系统由PLC控制器,变频器,触摸屏显示器,压力变送器,水位变送器,软启动器,水泵电机组,电机保护装置以及其他电控设备等构成,如图1所示。
图1 恒压供水系统示意图2.系统构成系统采用了S7-200型PLC (14个输人点,10个输出点)、MM440型变频器、压力传感器及其他控制设备。
系统构成如图2所示。
图2 系统构成图压力传感器将用户管网水压信号变成电信号(4一20mA),送给变频器内部PID控制器,PID控制器根据压力设定值与实际检测值进行PID运算,并给出信号控制水泵电动机的电压和频率。
当用水量较少时,1#泵在变频器控制下变频运行.如需水量加大,压力传感器在管网端测的水压偏小,则变频器输出频率上升,直到50Hz。
基于PLC的楼宇恒压供水系统设计_毕业设计论文
![基于PLC的楼宇恒压供水系统设计_毕业设计论文](https://img.taocdn.com/s3/m/440f44dc6137ee06eff9181f.png)
毕业设计论文基于PLC的楼宇变频器恒压供水系统设计摘要随着社会经济的迅速发展,人们对供水质量和供水系统可靠性的要求不断提高,再加上目前能源紧缺,利用先进的自动化技术、控制技术以及通讯技术,设计高性能、高节能、能适应不同领域的恒压供水系统成为必然趋势。
本设计是针对居民生活用水/消防用水而设计的。
由变频器、PLC组成控制系统,调节水泵的输出流量。
电动机泵组由三台水泵并联而成,由变频器或工频电网供电,根据供水系统出口水压和流量来控制变频器电动机泵组之间的切换及速度,使系统运行在最合理的状态,保证按需供水。
本文介绍了采用PLC控制的变频调速供水系统,由PLC进行逻辑控制,由变频器进行压力调节。
通过PLC控制变频与工频切换,实现闭环自动调节恒压供水。
运行结果表明,该系统具有压力稳定,结构简单,工作可靠等优点。
关键词:恒压供水,PLC(可编程序控制器),变频器,变频调速。
目录1绪论 (1)1.1 变频器恒压供水产生的背景和意义 (1)1.2变频恒压供水系统理论分析 (5)1.2.1变频恒压供水系统节能原理 (5)1.2.2 变频恒压控制理论模型 (7)1.3恒压供水控制系统构成 (7)2 变频恒压供水系统设计 (12)2.1 设计任务及要求 (12)2.2 系统主电路设计 (13)2.3 系统工作过程.............................................................................................. 错误!未定义书签。
3 器件的选型及介绍 (1)3.1 变频器简介 (1)3.1.1 变频器的基本结构与分类 (1)3.1.2 变频器的控制方式 (1)3.2 变频器选型 (3)3.2.1 变频器的控制方式 (3)3.2.2 变频器容量的选择 (3)3.2.3 变频器主电路外围设备选择 (5)3.3 可编程控制器(PLC) (7)3.3.2 PLC的工作原理 (8)3.3.3 PLC及压力传感器的选择 (9)4 PLC编程及变频器参数设置 (10)4.1 PLC的I/O接线图 (10)4.2 PLC程序 (10)5.系统安装 (13)5.1 PLC安装位置确定 (13)5.2 变频器的安装 (14)5.2.1 变频器的安装环境 (14)5.2.2 安装方式 (14)5.3 变频器和电机的距离确定电缆和布线方法 (14)5.4 系统安装图 (15)6.设计预期与结果分析 (17)6.1设计预期 (17)6.2结果分析 (17)参考文献 (18)致谢 (19)附录 (19)1绪论1.1 变频器恒压供水产生的背景和意义1.1.1供水方案的确定众所周知,水是生产生活中不可缺少的重要组成部分,在节水节能己成为时代特征的现实条件下,我们这个水资源和电能短缺的国家,长期以来在市政供水、高层建筑供水、工业生产循环供水等方面技术一直比较落后,自动化程度低。
《基于PLC恒压变频供水系统的设计与实现》范文
![《基于PLC恒压变频供水系统的设计与实现》范文](https://img.taocdn.com/s3/m/1a8128680a4c2e3f5727a5e9856a561252d321ac.png)
《基于PLC恒压变频供水系统的设计与实现》篇一一、引言随着现代工业和城市化的快速发展,供水系统的稳定性和效率成为了关键性的问题。
恒压供水系统作为解决这一问题的有效手段,已经得到了广泛的应用。
其中,基于PLC(可编程逻辑控制器)的恒压变频供水系统以其高效、稳定、智能的特点,在供水领域得到了极大的关注。
本文将详细介绍基于PLC恒压变频供水系统的设计与实现。
二、系统设计1. 系统架构设计本系统主要由三部分组成:PLC控制器、变频器和供水泵站。
其中,PLC控制器负责接收压力传感器传来的信号,通过运算处理后,控制变频器调节供水泵的转速,从而达到恒压供水的目的。
2. PLC控制器设计PLC控制器是本系统的核心部分,它需要接收压力传感器的实时数据,对数据进行处理和计算,然后发出控制指令。
此外,还需要具有与其他设备通信的能力。
在设计过程中,应充分考虑PLC的稳定性、可扩展性、抗干扰能力等因素。
3. 变频器与供水泵站设计变频器是连接PLC控制器和供水泵站的桥梁,它接收PLC 的控制指令,调节供水泵的转速。
供水泵站则负责实际的供水任务。
在设计过程中,应考虑泵站的布局、管道的设计、泵的选型等因素,以确保整个系统的稳定性和效率。
三、系统实现1. 硬件实现硬件部分主要包括PLC控制器、变频器、压力传感器、供水泵站等设备的选型和安装。
在选型过程中,应充分考虑设备的性能、价格、维护等因素。
安装过程中,应遵循相关的安全规范,确保系统的稳定性和安全性。
2. 软件实现软件部分主要包括PLC程序的编写和调试。
在编写过程中,应充分考虑系统的控制逻辑、数据处理、通信协议等因素。
在调试过程中,应对系统进行反复测试和优化,确保系统的稳定性和准确性。
四、系统测试与运行1. 系统测试在系统安装完成后,应进行系统测试。
测试过程中,应检查各部分的连接是否正常,系统运行是否稳定,数据是否准确等。
如果发现问题,应及时进行排查和修复。
2. 系统运行经过测试后,系统可以正式投入运行。
《2024年基于PLC的变频恒压供水系统的设计》范文
![《2024年基于PLC的变频恒压供水系统的设计》范文](https://img.taocdn.com/s3/m/e433d79dab00b52acfc789eb172ded630a1c9806.png)
《基于PLC的变频恒压供水系统的设计》篇一一、引言随着社会经济的不断发展和人民生活水平的持续提高,对于供水系统的稳定性和可靠性要求越来越高。
传统的供水系统往往存在能耗高、调节不精确等问题。
因此,基于PLC(可编程逻辑控制器)的变频恒压供水系统应运而生,其通过变频技术实现恒压供水,不仅提高了供水的稳定性和可靠性,还大大降低了能耗。
本文将详细介绍基于PLC的变频恒压供水系统的设计。
二、系统设计目标本系统设计的主要目标是实现供水系统的恒压供水,降低能耗,提高供水的稳定性和可靠性。
具体来说,包括以下几点:1. 保持供水压力的稳定性,满足用户需求。
2. 通过变频技术实现电机的节能运行。
3. 实现系统的自动化控制,降低人工干预。
4. 具备故障自诊断和保护功能,确保系统安全稳定运行。
三、系统组成基于PLC的变频恒压供水系统主要由以下几部分组成:1. 水泵:负责供水的动力来源,采用变频电机实现调速。
2. PLC控制器:负责整个系统的控制,包括压力采集、电机控制、故障诊断等功能。
3. 压力传感器:实时监测供水压力,将压力信号转换为电信号供PLC控制器处理。
4. 变频器:接收PLC控制器的指令,控制电机的运行速度,实现恒压供水。
5. 其他辅助设备:包括管网、阀门、过滤器等,保证供水的正常运行。
四、系统设计流程1. 需求分析:根据实际需求,确定系统的功能、性能指标等。
2. 硬件选型:选择合适的水泵、PLC控制器、压力传感器、变频器等硬件设备。
3. 系统布线:根据硬件设备的布局,进行合理的布线设计,确保系统的稳定性和可靠性。
4. 程序设计:编写PLC控制程序,实现压力采集、电机控制、故障诊断等功能。
5. 系统调试:对系统进行整体调试,确保系统的各项功能正常运行。
6. 运行维护:对系统进行定期检查和维护,确保系统的长期稳定运行。
五、系统实现1. 压力采集:通过压力传感器实时监测供水压力,将压力信号转换为电信号供PLC控制器处理。
基于PLC的恒压供水系统的设计
![基于PLC的恒压供水系统的设计](https://img.taocdn.com/s3/m/8c71078c6037ee06eff9aef8941ea76e58fa4a99.png)
基于PLC的恒压供水系统的设计1. 引言1.1 背景介绍恒压供水系统是一种能够保持管网压力恒定的供水系统,其特点是在用户用水量变化时能够自动调节工作状态,保持供水压力恒定。
随着城市建设的发展和人们对供水质量和供水压力要求的提高,恒压供水系统在城市供水系统中得到了广泛的应用。
在传统的供水系统中,因为管网压力波动大,用户在高峰时段可能会出现供水压力不足的情况,影响用户的用水体验。
而恒压供水系统通过在系统中增加变频器或调速器等设备,能够根据用户用水量的变化实时调节泵的运行状态,从而保持管网的压力稳定,提高供水系统的稳定性和可靠性。
恒压供水系统的设计和应用对于提高城市供水系统的运行效率和水质保障具有重要意义。
基于PLC的恒压供水系统能够更加智能化地控制供水系统的运行,提高系统的运行效率和稳定性。
研究基于PLC 的恒压供水系统的设计对于推动供水系统的智能化和可持续发展具有重要的意义。
1.2 研究意义恒压供水系统作为现代生活中不可或缺的设备,其稳定可靠的运行对于保障用户正常生活和生产经营具有重要意义。
传统的恒压供水系统存在着一些问题,如压力波动大、能耗高、维护成本高等。
对于基于PLC的恒压供水系统的研究具有重要的意义。
通过对基于PLC的恒压供水系统进行研究和设计,不仅可以提升系统的性能和可靠性,还可以为恒压供水系统的发展带来新的技术突破和创新,推动相关领域的发展。
本文旨在探讨基于PLC技术的恒压供水系统的设计原理和方法,为相关研究和应用提供参考和借鉴。
1.3 研究目的研究目的是为了探索基于PLC的恒压供水系统设计的有效性和可行性。
通过对恒压供水系统的原理和特点进行分析,以及PLC在恒压供水系统中的应用情况进行研究,我们可以更好地理解恒压供水系统的设计要求和实施步骤。
通过对基于PLC的恒压供水系统的硬件设计和软件设计进行详细的讨论,可以为工程师和研究人员提供实用的设计方案和技术支持。
通过本研究,我们希望能够总结出基于PLC的恒压供水系统设计的优势和特点,为未来的恒压供水系统设计和研究提供参考和借鉴。
《PLC实现恒压变频供水系统的设计》范文
![《PLC实现恒压变频供水系统的设计》范文](https://img.taocdn.com/s3/m/b1a8a33b26d3240c844769eae009581b6ad9bd6d.png)
《PLC实现恒压变频供水系统的设计》篇一一、引言随着工业自动化和智能化水平的不断提高,PLC(可编程逻辑控制器)在工业控制领域的应用越来越广泛。
恒压变频供水系统作为现代建筑和工业生产中的重要组成部分,其稳定性和可靠性对于保障供水系统的正常运行至关重要。
本文将详细介绍如何利用PLC实现恒压变频供水系统的设计。
二、系统设计目标本系统设计的主要目标是实现恒压供水,即通过PLC控制变频器,使水泵电机运行在最佳状态,以保持供水压力的恒定。
同时,系统应具备自动化、智能化、高效率和低能耗的特点,确保供水的稳定性和可靠性。
三、系统组成恒压变频供水系统主要由PLC控制器、变频器、水泵电机、压力传感器、水管网等部分组成。
其中,PLC控制器是系统的核心,负责接收压力传感器的信号,根据设定的压力值控制变频器,从而调节水泵电机的运行状态。
四、PLC控制策略1. 压力采集:通过压力传感器实时采集供水系统的压力信号,并将其传输给PLC控制器。
2. 压力设定:在PLC控制器中设定目标压力值,与实际采集的压力值进行比较。
3. 变频控制:根据压力差值,PLC控制器输出控制信号给变频器,调节水泵电机的运行频率,使供水压力接近目标压力值。
4. 故障诊断与保护:PLC控制器具备故障诊断与保护功能,当系统出现故障时,能及时切断电源,保护设备安全。
五、系统实现1. 硬件选型与配置:根据系统需求,选择合适的PLC控制器、变频器、水泵电机和压力传感器等设备,并进行合理的配置。
2. PLC编程:根据控制策略,编写PLC程序,实现压力的实时采集、比较、控制和故障诊断与保护等功能。
3. 系统调试:对系统进行整体调试,确保各部分设备正常运行,达到恒压供水的目标。
4. 运行维护:定期对系统进行巡检和维护,确保系统的稳定性和可靠性。
六、系统优势1. 自动化程度高:通过PLC控制,实现供水的自动化,减少人工干预,提高工作效率。
2. 节能环保:根据实际需求调节水泵电机的运行状态,降低能耗,减少对环境的影响。
基于plc控制的恒压供水系统设计
![基于plc控制的恒压供水系统设计](https://img.taocdn.com/s3/m/4c76c500e97101f69e3143323968011ca300f76a.png)
基于PLC的恒压供水系统任务设计书基于PLC的恒压供水系统任务设计书一、系统概述众所周知,水是生产生活中不可缺少的重要组成部分,在节水节能己成为时代特征的现实条件下,我们这个水资源和电能短缺的国家,长期以来在市政供水、高层建筑供水、工业生产循环供水等方面技术一直比较落后,自动化程度低。
主要表现在用水高峰期,水的供给量常常低于需求量,出现水压降低供不应求的现象,而在用水低峰期,水的供给量常常高于需求量,出现水压升高供过于求的情况,此时将会造成能量的浪费,同时有可能导致水管爆破和用水设备的损坏。
在此情况下,我们小组讨论并设计了该“基于PLC的恒压供水系统”。
本文根据中国城市小区的供水要求,设计了一套基于PLC的变频调速恒压供水系统。
变频恒压供水系统由可编程控制器、变频器、水泵机组、压力传感器等构成。
本系统包含三台水泵电机,它们组成变频循环运行方式。
采用变频器实现对三相水泵电机的软启动和变频调速,运行切换采用“先启先停”的原则。
压力传感器检测当前水压信号,送入PLC与设定值比较后进行PID运算,从而控制变频器的输出电压和频率,进而改变水泵电机的转速来改变供水量,最终保持管网压力稳定在设定值附近。
二、总体方案设计PLC控制变频恒压供水系统主要有变频器、可编程控制器、压力变送器和现场的水泵机组一起组成一个完整的闭环调节系统,该系统的控制流程图如图1所示:图1变频恒压供水系统控制流程图从图中可看出,系统可分为:执行机构、信号检测机构、控制机构三大部分,具体为:(l) 执行机构:执行机构是由一组水泵组成,它们用于将水供入用户管网,其中由一台变频泵和两台工频泵构成,变频泵是由变频调速器控制、可以进行变频调整的水泵,用以根据用水量的变化改变电机的转速,以维持管网的水压恒定;工频泵只运行于启、停两种工作状态,用以在用水量很大(变频泵达到工频运行状态都无法满足用水要求时)的情况下投入工作。
(2) 信号检测机构:在系统控制过程中,需要检测的信号包括管网水压信号、水池水位信号和报警信号。
《2024年基于PLC的变频恒压供水系统的设计》范文
![《2024年基于PLC的变频恒压供水系统的设计》范文](https://img.taocdn.com/s3/m/c6d1d5a9f80f76c66137ee06eff9aef8941e480f.png)
《基于PLC的变频恒压供水系统的设计》篇一一、引言随着社会的进步与工业的发展,供水和节水系统的高效性和稳定性日益成为社会关注的焦点。
为满足人们日益增长的用水需求和实现水资源的高效利用,我们设计了一种基于PLC(可编程逻辑控制器)的变频恒压供水系统。
此系统在控制与调节供水量、稳定水压方面表现优异,并实现了较高的自动化程度。
二、系统概述基于PLC的变频恒压供水系统,主要包括水源、供水设备、PLC控制器、变频器等部分。
该系统能够实时监测水压,并根据实际需求调整电机转速,以实现恒压供水。
同时,PLC控制器对整个系统进行集中控制,确保系统的稳定运行。
三、系统设计1. 硬件设计(1) 水泵:系统中的主要设备,负责供水和调节水压。
(2) PLC控制器:作为系统的核心,负责接收传感器信号,发出控制指令。
(3) 变频器:连接水泵和PLC,根据PLC的指令调整电机转速。
(4) 传感器:实时监测水压、流量等参数,并将数据传输给PLC。
(5) 其他辅助设备:如阀门、管道等。
2. 软件设计(1) 数据采集:PLC通过传感器实时采集水压、流量等数据。
(2) 数据处理:PLC对采集的数据进行处理,判断是否需要调整电机转速。
(3) 控制输出:PLC根据处理结果,向变频器发出控制指令,调整电机转速。
(4) 故障诊断:系统具有故障自诊断功能,当设备出现故障时,能够及时报警并停止运行。
四、系统功能1. 恒压供水:系统能够实时监测水压,并根据实际需求调整电机转速,以实现恒压供水。
2. 节能环保:通过变频技术,根据实际需求调整电机转速,实现节能环保。
3. 自动化程度高:PLC控制器对整个系统进行集中控制,实现较高的自动化程度。
4. 故障自诊断:系统具有故障自诊断功能,当设备出现故障时,能够及时报警并停止运行,保证系统的稳定性和安全性。
五、实施与应用该系统可广泛应用于居民小区、办公楼、工厂等需要供水的场所。
通过实时监测水压、流量等参数,调整电机转速,实现恒压供水,满足人们的用水需求。
基于PLC的恒压供水系统的研究和设计
![基于PLC的恒压供水系统的研究和设计](https://img.taocdn.com/s3/m/d86b4840bb1aa8114431b90d6c85ec3a86c28b5a.png)
基于PLC的恒压供水系统的研究和设计**一、系统需求分析**恒压供水系统是为了满足用户在不同用水量下,均能维持恒定的供水压力而设计的。
系统需求主要包括:1. 恒定的供水压力,确保用户在任何时候都能获得稳定的供水。
2. 自动调节功能,根据用水量的变化自动调整水泵的转速或运行台数。
3. 安全可靠,确保系统在故障发生时能够及时切换备用设备,保障供水不中断。
4. 易于维护,系统的结构和控制逻辑应简单明了,方便后期维护和管理。
**二、PLC选型与配置**考虑到系统的需求,我们选用具有强大控制能力和稳定性能的PLC作为控制核心。
PLC的具体配置包括:1. CPU模块:选择运算速度快、内存容量大的模块,以满足复杂的控制逻辑和数据处理需求。
2. I/O模块:根据传感器和执行器的数量及类型,选择合适的I/O 模块。
3. 通信模块:确保PLC能够与其他设备进行通信,如触摸屏、上位机等。
**三、传感器与执行器**传感器用于监测供水系统的各种参数,如压力、流量等;执行器则负责执行PLC发出的控制命令,如调节水泵的转速或启停。
1. 传感器选择:选择高精度、高稳定性的压力传感器和流量传感器。
2. 执行器选择:选择能够精确控制水泵转速的变频器或能够切换水泵运行的接触器。
**四、恒压控制算法**恒压控制算法是系统的核心,我们采用PID算法进行恒压控制。
PID算法能够根据实时的压力反馈值与目标压力值之间的偏差,计算出相应的控制量,从而调整水泵的转速或运行台数,实现恒压供水。
**五、系统硬件设计**系统硬件设计包括电气控制柜的设计、传感器的安装位置选择、执行器的接线方式等。
1. 电气控制柜设计:合理布局PLC、I/O模块、电源等元器件,确保系统的稳定性和可靠性。
2. 传感器安装位置选择:选择能够准确反映供水压力的位置进行安装,如水泵出口、用户端等。
3. 执行器接线方式:根据执行器的类型和PLC的输出类型,选择合适的接线方式,确保控制命令能够准确传达给执行器。
基于PLC的恒压供水系统的设计
![基于PLC的恒压供水系统的设计](https://img.taocdn.com/s3/m/dc5e8b21dcccda38376baf1ffc4ffe473368fdee.png)
基于PLC的恒压供水系统的设计恒压供水系统是一种实现供水自动控制和恒定水压的系统,其中PLC(可编程逻辑控制器)是系统的核心控制设备。
本文将介绍基于PLC的恒压供水系统的设计。
需要明确恒压供水系统的工作原理。
恒压供水系统通过感应水压信号,实时检测并调节水泵的运行状态,以保持恒定的水压。
当水压下降时,PLC将接收到水压信号,并根据预设的控制逻辑,自动启停水泵。
当水压恢复到设定的压力范围内时,PLC会停止水泵的运行。
1. 系统布局设计:首先需要对供水系统的布局进行设计。
包括水泵的位置安排、水源与供水管道的连接方式等。
通过合理的布局设计,可以确保供水系统的稳定运行。
2. PLC选型和安装:根据实际需求选择合适的PLC设备,并进行安装。
选型时需要考虑PLC的输入输出点数量,通信接口等因素。
安装时需要按照PLC的安装手册进行操作,确保PLC设备的正常运行。
3. 传感器的选择和安装:恒压供水系统的关键是实时检测水压信号。
需要选择合适的传感器来感应水压信号,并将信号输入到PLC中。
一般可以选择压力传感器或液位传感器作为水压信号的检测装置。
安装传感器时需要遵循传感器的安装手册,确保传感器的准确度和可靠性。
4. PLC程序编写:根据系统需求,编写PLC程序。
程序的编写需要根据实际情况设置水压的设定值、水泵的启停逻辑等控制策略。
编写完程序后,需要进行PLC程序的调试和测试,确保程序的正确性和稳定性。
5. 系统调试和优化:系统调试是确保恒压供水系统正常运行的关键步骤。
调试过程中需要检查各个设备的连接情况、信号传输的准确性等。
同时还需要对恒压供水系统进行性能优化,例如设置合理的启停控制逻辑,调整设定的水压范围等,以提高供水系统的稳定性和节能效果。
6. 系统运行和维护:系统调试完成后,可以正式启动恒压供水系统的运行。
在系统运行过程中,需要定期检查和维护系统设备,保持设备的正常运行。
同时也需要注意系统的安全性,定期检查阀门、电气连接等,确保供水系统的安全运行。
高楼恒压供水的PLC 控制系统设计
![高楼恒压供水的PLC 控制系统设计](https://img.taocdn.com/s3/m/3c5e8d0df61fb7360a4c6597.png)
第一章绪论1.1 关于高楼恒压供水恒压供水是指用户段不管用水量的大小, 总保持管网水压基本恒定, 这样既可满足各部位的用户对水的需求, 又不使电动机空转造成电能的浪费。
高楼恒压供水通常是采用固定在建筑物上的给水塔或楼顶高位水箱,以自来水局部加压的形式供水,这种气压供水可以取代任何高度的水塔或楼顶高位水箱,水质亦不易污染,占地面积亦小。
建筑给排水是与人民生活、生产活动、卫生安全有密切关系的学科。
在日常常生活中,如果供水系统的水压不稳定,会导致不良后果。
例如对居民用水而言,水压过高,会导致管路泄露和水源流失严重;水压过低,用户用水会导致供水不足。
对于消防用水而言,水压不稳定,会影响灭火质量。
因此,保持供水压力的稳定是很有必要的。
恒压供水系统是指用户端不管用水量大小,总保持管网中水压基本恒定。
随着微机技术及变频技术的发展,设备简单、投资少、可靠性高、抗干扰能力强的控制系统将是高楼恒压供水系统研究的方向。
1.2 PLC的概述1.2.1 PLC的简介国际电工委员会(IEC)于1987年对PLC定义如下: PLC是专为在工业环境下应用而设计的一种数字运算操作的电子装置,是带有存储器,可以编制程序的控制器。
它能够存储和执行指令,进行逻辑运算,顺序控制,定时,计数和算术等操作,并通过数字式和模拟式的输入输出,控制各种类型的机械和生产过程。
PLC及其有关的外围设备,都应按易于与工业控制系统形式一体,易于拓展其功能的原则设计。
事实上,PL C就是以嵌入式CPU为核心,配以输入,输出等模块,可以方便的用于工业控制领域的装置。
PLC与机器人,计算机帮助设计与制造一起作为现代工业的三大支柱。
1.2.2 PLC的基本结构PLC实质上是一种工业控制用的专用计算机,PLC系统与微型计算机结构基本相同,也是由硬件系统和软件系统两大部分组成。
(1)通用型PLC的硬件结构通用型PLC的硬件基本结构如图1.1所示,它是一种通用的可编程控制器,主要由中央处理单元CPU、存储器、输入/输出(I/O)模块及电源组成。
《基于PLC恒压变频供水系统的设计与实现》范文
![《基于PLC恒压变频供水系统的设计与实现》范文](https://img.taocdn.com/s3/m/1e2c09b4988fcc22bcd126fff705cc1755275f3d.png)
《基于PLC恒压变频供水系统的设计与实现》篇一一、引言随着现代工业和城市化进程的快速发展,供水系统的稳定性和效率问题越来越受到关注。
恒压变频供水系统作为一种先进的供水技术,通过精确控制水泵的转速和输出,实现了水压的稳定供应。
本文将详细介绍基于PLC(可编程逻辑控制器)的恒压变频供水系统的设计与实现过程。
二、系统设计1. 需求分析在系统设计阶段,首先需要对供水系统的需求进行详细分析。
包括供水范围、水压要求、水泵数量及功率等。
同时,还需考虑系统的稳定性、可维护性及节能性等因素。
2. 硬件设计硬件设计是恒压变频供水系统的基础。
主要包括PLC控制器、变频器、水泵、压力传感器等设备。
其中,PLC控制器负责整个系统的控制与协调,变频器用于调节水泵的转速,压力传感器则用于实时监测水压。
3. 软件设计软件设计是实现恒压变频供水系统的关键。
通过PLC编程,实现对水泵的转速、输出及水压的精确控制。
同时,还需设计友好的人机界面,方便操作人员对系统进行监控与操作。
三、系统实现1. PLC编程PLC编程是实现恒压变频供水系统的核心。
通过编写梯形图或指令表,实现对水泵的转速、输出及水压的精确控制。
在编程过程中,需充分考虑系统的稳定性、响应速度及节能性等因素。
2. 硬件连接与调试将PLC控制器、变频器、水泵、压力传感器等设备连接起来,进行系统调试。
确保各设备之间能够正常通信,并实现精确的控制与协调。
3. 人机界面开发开发友好的人机界面,方便操作人员对系统进行监控与操作。
人机界面应具有直观、易操作、信息丰富等特点,能够实时显示水压、水泵状态等信息。
四、系统测试与优化1. 系统测试在系统测试阶段,需要对恒压变频供水系统进行全面的测试,包括稳定性测试、响应速度测试、节能性测试等。
确保系统能够满足实际需求。
2. 参数优化根据测试结果,对系统的参数进行优化,以提高系统的性能和稳定性。
优化过程中,需充分考虑系统的实际运行情况及外界环境因素。
基于PLC的高层小区变频恒压供水系统
![基于PLC的高层小区变频恒压供水系统](https://img.taocdn.com/s3/m/bedc7c5d0a1c59eef8c75fbfc77da26924c59661.png)
基于PLC的高层小区变频恒压供水系统基于PLC的高层小区变频恒压供水系统随着城市化进程的不断推进,高层建筑的数量不断增加,给城市供水系统带来了巨大的挑战。
传统的水泵供水系统无法满足高层建筑对水压稳定性的要求,因此需要一种能够实现恒压供水的系统。
基于PLC的高层小区变频恒压供水系统应运而生。
PLC,即可编程逻辑控制器,是一种可编程的电子设备,被广泛应用于工业自动化领域。
利用PLC技术,可以实现对供水系统的精确控制和监测。
在高层建筑的供水系统中,传统的变频器提供了恒压供水的解决方案。
PLC技术在高层小区变频恒压供水系统中的应用具有以下优势。
首先,PLC可以通过编程实现系统的自动化控制。
传统的变频器需要手动调节频率和压力,而PLC可以根据预设的逻辑控制代码自动调节水泵的运行状态,实现供水系统的智能化操作。
其次,PLC具有较好的稳定性和可靠性。
PLC系统通常由多个模块组成,每个模块都具有自己的功能,当一个模块发生故障时,其他模块仍然能够正常工作,保证了整个供水系统的可用性。
再次,PLC技术可以实现对供水系统的远程监控和故障诊断。
通过网络连接,PLC可以实时收集供水系统的运行数据,并将其发送到控制中心。
一旦系统出现异常情况,PLC可以立即向操作员发出报警信息,便于及时处理问题。
基于PLC的高层小区变频恒压供水系统的工作原理如下。
首先,PLC通过传感器收集到水泵进出口的压力和水位数据。
根据这些数据,PLC计算出当前的供水压力,并与预设的恒压值进行比较。
如果当前的供水压力低于预设的恒压值,PLC会启动水泵,并根据计算得到的频率决定其运行速度。
然后,PLC根据水泵的运行状态和供水压力的变化情况,通过比较当前的压力与上一次的压力,判断供水系统是否存在异常。
如果出现故障,PLC会立即发出报警并停止水泵的运行,以避免进一步损坏系统。
最后,PLC可以通过通信模块将供水系统的运行数据发送到控制中心,供操作员进行监控和管理。
基于plc恒压供水系统毕业设计
![基于plc恒压供水系统毕业设计](https://img.taocdn.com/s3/m/25e2fc4624c52cc58bd63186bceb19e8b8f6ec9e.png)
基于plc恒压供水系统毕业设计恒压供水系统是一种自动化控制系统,通过控制水泵电机的启停,实现恒定的水压。
本文通过PLC控制器控制水泵电机的启停和压力传感器的反馈,实现一个基于PLC的恒压供水系统。
一、系统组成恒压供水系统由水源装置、水泵、管道、压力传感器、PLC控制器等组成。
系统功能是稳定的将水泵输出的水流量保持在一个恒定的水压力范围内,以满足供水的需要,并且应具备系统自我检测及保护等功能。
二、系统工作原理当水压力低于给定的最小值时,PLC控制器发出启动水泵的指令,水泵开始工作,向管路供水,并通过压力传感器反馈实时的压力数据,当压力达到设定最大值时,PLC控制器发出停止水泵的指令,水泵停止工作。
当用户需求水量变化时,系统通过控制水泵的启停以及输出水流量的调节,保持水压在给定范围内,从而实现恒压供水。
三、系统硬件设计(1)PLC选型本系统采用FX3U系列的三菱PLC。
FX3U系列PLC具有较高的性能、可靠性和处理速度,对于高性能、高可靠性的自动化系统来说非常适合。
(2)水泵及电机选型根据所需供水量及水压,选用起动电流较小、继电容较小型号的水泵,同时配合相应容量的交流电机,在保证水压的同时,提高系统的效率。
(3)压力传感器选型压力传感器是系统中关键的一部分,它将水管路的实时压力转化为具有一定精度和稳定性的电信号,供PLC控制器处理。
本系统中采用的压力传感器是0-1MPa的压力传感器,精度为0.5。
(4)PLC控制器电路设计PLC控制器电路包括输入电路和输出电路两部分。
输入电路用于控制水泵的启动和停止,其中启动信号来自压力传感器,停止信号来自电源控制。
输出电路用于控制水泵电机的正反转动及其调速,其中正转和调速信号由PLC控制器发出,反转信号由相应的感应器反馈。
系统软件运用了Fx-Work中的三种编程语言:LD、ST和FBD。
其中LD程序用于控制水泵启动和停止的输入信号,ST程序用于控制水泵电机的正反转动和调速,FBD程序用于实现数据处理、数据采集和数据分析功能。
基于PLC的恒压供水系统的设计
![基于PLC的恒压供水系统的设计](https://img.taocdn.com/s3/m/dd6f2ce4c0c708a1284ac850ad02de80d4d8066d.png)
基于PLC的恒压供水系统的设计一、系统概述恒压供水系统是一种保持供水压力恒定的供水系统,并且可以根据水压的变化自动调整水泵的转速以维持恒定的水压。
本文设计的系统采用了PLC控制系统作为控制核心,通过检测压力传感器反馈的水压信号,然后根据设定的压力值来控制水泵的转速。
本系统的优点是具有压力恒定、节能、便于维护、易于操作等特点。
二、系统硬件设计本系统硬件设计包括水泵、压力传感器、PLC控制器、电源和电线等。
1、水泵:采用变频水泵,可以根据PLC发送的调节水泵转速的信号来控制水泵的转速,保持水压恒定。
2、压力传感器:传感器采用,具有高精度、高可靠性、长使用寿命等特点,通过监测水管中的水压,并将反馈的水压信号发送到PLC控制器。
3、PLC控制器:本系统采用网口式PLC,具有高性能、可靠性高、扩展功能强等特点,定时读取压力传感器反馈的水压信息,并与事先设定的压力值对比,然后根据变频器的功率输出,输出控制信号来实现对水泵的转速的调节。
4、电源:恒压供水系统的电源使用交流电源,电源频率为50Hz,可供给水泵、PLC控制器和压力传感器等设备使用。
三、系统流程控制PLC控制系统根据实际情况,设计了以下控制流程:1、水泵启动时间控制:与恒压供水系统反应快慢的一个重要原因,是水泵的启动时间,如果水泵启动时间过长,则水压下降会比较明显,影响水的正常使用。
系统中启动时间的控制使用定时器软件实现。
2、水泵流量控制:PLC根据监测到的水压信号和设定的压力值,来计算出流量,根据流量来控制水泵的转速,以保持压力稳定。
3、故障报警:当系统出现故障时,PLC控制器会自动停机,并发出故障报警信号,提示用户需要检查系统是否存在故障。
四、系统总结恒压供水系统基于PLC的设计,具有结构简单、自动化控制、操作方便等优点,能够自动控制恒压供水系统的水压,达到节能、节约水资源的目的。
由于PLC控制器具有高性能、可靠性高、控制精度高等优点,可以实现对系统的全面监控和排错,使系统稳定性和可靠性提高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辽宁科技大学毕业设计第I页基于PLC的高楼恒压供水系统设计摘要本文首先根据管网和水泵的运行特性曲线,阐明了供水系统的变频调速节能原理;具体分析了变频恒压供水的原理及系统的组成结构,通过研究和比较,得出结论:变频调速是当今国际上一项效益最高、性能最好、应用最广、最有发展前途的电机调速技术。
因此本文以采用变频器和PLC 组合构成系统的方式,以某居民小区水泵电动机控制系统为对象,逐步阐明如何实现水压恒定供水。
进行了控制系统的主电路设计,控制电路设计。
对输入输出点进行了统计,共有10个输入输出点,根据PLC的选型原则,设备选用了在生产中应用最为广泛的西门子公司生产的S7-200系列(CPU222)的PLC和MM430泵类专用的变频器,利用变频器的本身自有的软启动功能实现水泵电机的启动。
在控制过程中,电控系统由S7-200完成,PID控制由变频器的内置PID控制方式完成,根据控制系统软硬件设计和控制要求,结合变频器的功能参数表预置了相关的参数。
在介绍了PLC的编程方法的基础上,选用了适合初学者的逻辑代数编程,写出了恒压变频供水的逻辑代数,并设计了梯形图,结果表明了设计程序的正确性。
关键词:恒压供水,变频调速,PLC,设计,仿真Tall Building Constant Pressure Water Supply System Based on PLCAbstractIn this paper, pipe network and pumps under the operation of the curve, clarify the water supply system for energy-saving Frequency Control Principle; specific analysis of the frequency of the principle of constant pressure water supply system and the composition of the structure, through research and comparison, concluded: Frequency Control is the highest international one-effectiveness, performance, the best and most widely, the most The future development of the Motor technology. Therefore this paper to adopt the PLC and inverter combination of a systematic approach to a small residential area pump motor control system for the targe.A control system for the main circuit design, control circuit design. The input and output points to the statistics, a total of 13 input and output, the PLC in accordance with the principle of selection, equipment selection in the production of the most widely produced by Siemens S7-200 series (CPU222) of the PLC and pumps for MM430 The converter, In the control process, the electronic control system completed by the S7-200, PID control by the converter built-in PID control manner, in accordance with control system software and hardware design and control requirements, combining the functions of converter table preset parameters of the relevant parameters .Key words:Constant pressure Water Supply ,Variable velocity Variable frequency,PLC,Design,Simulation摘要 (I)Abstract............................................................................................... I I 1 绪论 (1)1.1引言 (1)1.2 本课题产生的背景和意义 (2)1.3 变频恒压供水的现况 (3)1.3.1 国内外变频供水系统现状 (3)1.3.2 变频供水系统应用范围 (3)1.4 本人的主要工作 (4)2 系统的理论分析及控制方案确定 (6)2.1 变频恒压供水系统的理论分析 (6)2.1.1 电动机的调速原理 (6)2.1.2 变频恒压供水系统的节能原理 (7)2.2 恒压供水系统的能耗分析 (10)3 变频恒压供水控制系统硬件的设计 (13)3.1 变频恒压供水控制系统的构成方案 (13)3.2 变频恒压供水系统的控制方案 (14)3.3 供水设备的选择原则 (15)3.4 参数的计算与供水设备选型 (17)3.4.1水泵的参数计算与型号的选择 (17)3.4.2 变频器的选择 (17)3.4.3 压力传感器的选择 (19)3.5 PLC的选型 (20)3.5.1 PLC选型的基本原则 (20)3.5.2 I/O点的分配 (20)3.6 系统硬件线路设计 (21)3.7 PID参数的预置 (24)4 变频恒压供水控制系统软件的设计 (27)4.1 常用编程方法 (27)4.1.1 经验设计法 (27)4.1.2 翻译设计法 (27)4.1.3 逻辑代数设计法 (28)4.2 编程软件的简单介绍 (30)4.3 恒压供水系统梯形图的设计 (31)总结 (36)致谢 (37)参考文献 (38)附录 (39)附录A 初始化程序及PID中断程序梯形图 (39)1 绪论1.1引言水是生命之源,人类生存和发展都离不开水。
在通常的城市及乡镇供水中,基本上都是靠供水站的电动机带动离心水泵,产生压力使管网中的自来水流动,把供水管网中的自来水送给用户。
但供水机泵供水的同时,也消耗大量的能量,如果能在提高供水机泵的效率、确保供水机泵的可靠稳定运行的同时,降低能耗,将具有重要经济意义。
我国供水机泵的特点是数量大、范围广、类型多,在工程规模上也有一定水平,但在技术水平、工程标准以及经济效益指标等方面与国外先进水平相比,还有一定的差距。
随着社会经济的迅速发展,人们对供水质量和供水系统的可靠性要求不断提高。
衡量供水质量的重要标准之一是供水压力是否恒定,因为水压恒定于某些工业或特殊用户是非常重要的,但是用户用水量是经常变动的,因此用水和供水之间的不平衡的现象时有发生,并且集中反映在供水的压力上:用水多而供水少,则供水压力低;用水少而供水多,则供水压力大。
保持管网的水压恒定供水,可使供水和用水之间保持平衡,不但提高了供水的产量和质量,也确保了供水生产以及电机运行的安全可靠性。
变频调速技术以其显著的节能效果和稳定可靠的控制方式,在风机、水泵、空气压缩机、制冷压缩机等高能耗设备上广泛应用。
利用变频技术与自动控制技术相结合,在中小型供水企业实现恒压供水,不仅能达到比较明显的节能效果,提高供水企业的效率,更能有效保证从水系统的安全可靠运行.变频恒水压供水系统集变频技术、电气传动技术、现代控制技术于一体。
采用该系统进行供水可以提高供水系统的稳定性和可靠性,方便地实现供水系统的集中管理与监控;同时可达到良好的节能性,提高供水效率。
所以设计基于变频调速的恒定水压供水系统(简称变频恒压供水,如图1.2),对于提高企业效率以及人民的生活水平,同时降低能耗等方面具有重要的现实意义。
供水主管网供水主管网图1.1传统供水机示意图图1.2 变频供水机示意图1.2 本课题产生的背景和意义我国长期以来在市政供水、高层建筑供水、工业生产循环供水等方面技术一直比较落后,工业自动化程度低。
传统调节供水压力的方式,多采用频繁启/停电机控制和水塔二次供水调节的方式,前者产生大量能耗的,而且对电网中其他负荷造成影响,设备不断启停会影响设备寿命;后者则需要大量的占地与投资。
而变频调速式的运行十分稳定可靠,没有频繁的启动现象,启动方式为软启动,设备运行十分平稳,避免了电气、机械冲击,也没有水塔供水所带来的二次污染的危险。
由此可见,变频调速恒压供水系统具有供水安全、节约能源、节省钢材、节省占地、节省投资、调节能力大、运行稳定可靠的优势,具有广阔的应用前景和明显的经济效益与社会效益。
1.3 变频恒压供水的现况1.3.1 国内外变频供水系统现状变频恒压供水是在变频调速技术的发展之后逐渐发展起来的。
目前国外的恒压供水系统变频器成熟可靠,恒压控制技术先进。
国外变频供水系统在设计时主要采用一台变频器只带一台水泵机组的方式。
这种方式运行安全可靠,变压方式更灵活。
此方式的缺点必是电机数量和变频的数量一样多,投资成本高。
目前国内有不少公司在从事进行变频恒压供水的研制推广,国产变频器主要采用进口元件组装或直接进口国外变频器,结合PLC或PID调节器实现恒压供水,在小容量、控制要求低的变频供水领域,国产变频器发展较快,并以其成本低廉的优势占领了相当部分小容量变频恒压供水市场。
但在大功率大容量变频器上,国产变频器有待于进一步改进和完善。
1.3.2 变频供水系统应用范围变频恒压供水系统在供水行业中的应用,按所使用的范围大致分为三类:(1) 小区供水(加压泵站)变频恒压供水系统这类变频供水系统主要用于包括工厂、小区供水、高层建筑供水、乡村加压站,特点是变频控制的电机功率小,一般在135kW以下,控制系统简单。
由于这一范围的用户群十分庞大,所以是目前国内研究和推广最多的方式。
(2) 国内中小型供水厂变频恒压供水系统这类变频供水系统主要用于中小供水厂或大中城市的辅助供水厂。
这类变频器、电机功率在135kV~320kW之间,电网电压通常为220V或380V。