《数字电子技术基础》核心知识总结
数字电子技术基础知识点总结
数字电子技术基础知识点总结篇一:《数字电子技术》复习知识点《数字电子技术》重要知识点汇总一、主要知识点总结和要求1.数制、编码其及转换:要求:能熟练在10进制、2进制、8进制、16进制、8421Bcd、格雷码之间进行相互转换。
举例1:(37.25)10=()2=()16=()8421Bcd解:(37.25)10=(100101.01)2=(25.4)16=(00110111.00100101)8421Bcd 2.逻辑门电路:(1)基本概念1)数字电路中晶体管作为开关使用时,是指它的工作状态处于饱和状态和截止状态。
2)TTL门电路典型高电平为3.6V,典型低电平为0.3V。
3)oc门和od门具有线与功能。
4)三态门电路的特点、逻辑功能和应用。
高阻态、高电平、低电平。
5)门电路参数:噪声容限VnH或VnL、扇出系数no、平均传输时间tpd。
要求:掌握八种逻辑门电路的逻辑功能;掌握oc门和od门,三态门电路的逻辑功能;能根据输入信号画出各种逻辑门电路的输出波形。
举例2:画出下列电路的输出波形。
解:由逻辑图写出表达式为:Y?a?Bc?a?B?c,则输出Y见上。
3.基本逻辑运算的特点:与运算:见零为零,全1为1;或运算:见1为1,全零为零;与非运算:见零为1,全1为零;或非运算:见1为零,全零为1;异或运算:相异为1,相同为零;同或运算:相同为1,相异为零;非运算:零变1,1变零;要求:熟练应用上述逻辑运算。
4.数字电路逻辑功能的几种表示方法及相互转换。
①真值表(组合逻辑电路)或状态转换真值表(时序逻辑电路):是由变量的所有可能取值组合及其对应的函数值所构成的表格。
②逻辑表达式:是由逻辑变量和与、或、非3种运算符连接起来所构成的式子。
③卡诺图:是由表示变量的所有可能取值组合的小方格所构成的图形。
④逻辑图:是由表示逻辑运算的逻辑符号所构成的图形。
⑤波形图或时序图:是由输入变量的所有可能取值组合的高、低电平及其对应的输出函数值的高、低电平所构成的图形。
数字电子技术基础知识点
数字电子技术基础知识点数字电子技术是现代电子领域中的重要分支,广泛应用于计算机、通信、控制系统等领域。
掌握数字电子技术的基础知识点对于从事电子工程技术的人员来说是至关重要的。
本文将介绍数字电子技术的基础知识点,帮助读者更好地了解和掌握这一领域的基础概念。
一、二进制系统在数字电子技术中,二进制系统是最基本的数制系统。
二进制系统由0和1两个数字构成,是一种适合于电子系统处理的数制系统。
在二进制系统中,每位数字称为一个比特(bit),8个比特组成一个字节(byte)。
通过不同的排列组合,可以表示各种不同的数字和字符。
二、逻辑门逻辑门是数字电路的基本组成单元,用于实现逻辑运算。
常见的逻辑门包括与门、或门、非门等。
与门实现逻辑与运算,只有所有输入信号都为高电平时输出才为高电平;或门实现逻辑或运算,只要有一个输入信号为高电平输出就为高电平;非门实现逻辑非运算,对输入信号取反输出。
三、触发器触发器是数字电路中的存储元件,用于存储和延时信号。
常见的触发器包括RS触发器、D触发器、JK触发器等。
RS触发器由两个输入端和两个输出端组成,输入端用于控制信号的写入和清零,输出端用于输出存储的数据。
四、计数器计数器是一种特殊的触发器,用于实现计数功能。
计数器可以按照一定的规则递增或递减输出信号。
常见的计数器包括二进制计数器、BCD计数器等。
计数器在数字电子技术中被广泛应用于时序控制、频率测量等领域。
五、编码器和解码器编码器用于将输入信号编码为特定的代码,解码器用于将代码解码为特定的输出信号。
常见的编码器和解码器包括十进制编码器、十六进制编码器、BCD解码器等。
编码器和解码器在数字电子系统中扮演着重要的角色,用于数据传输和控制信号的处理。
六、存储器存储器是数字电子系统中的重要组成部分,用于存储程序和数据。
常见的存储器包括随机存储器(RAM)、只读存储器(ROM)、闪存等。
存储器按照数据访问速度和可擦写性能不同分为不同的类型,适用于不同的应用场景。
《数字电子技术基础》核心知识总结
10 Y=A ⊕ B
解:由功能表可写出逻辑表达式
11 Y=A
Z A S 1 S 0 B ( A B ) S 1 S 0 ( A B A B ) S 1 S 0 A S 1 S 0 A S 1 S 0 B A S 1 S 0 B S 1 S 0 A B S 1 S 0 A B 1 S 0 S A S 1 S 0
将S1S0A与A2A1A0对应,并将Z变换成数据选择器输出的形式
精品课件
ZABS1S0 AS1S0BS1S0ABS1S0 ABS1S0 AS1S0
B(AS1S0)AS1S0B(AS1S0)B(AS1S0)B(AS1S0) B(AS1S0)(AS1S0)
0(S1S0 A)B(S1S0A)0(S1S0 A)1(S1S0A)B(S1S0 A) B(S1S0A)1(S1S0A)0(S1S0A)
第一章:总结:数值转换示意图 二进制
展开求和
整数:除2取余 小数:乘2取整
分组替代
替代
十进制
展开求和
整数:除16取余 小数:乘16取整 (或先转换成二进制)
精品课件
十六进制
返回
第二章: 逻辑代数的基本公式和常用公式
2.3.1 基本公 表式2.3.1为逻辑代数的基本公式,也叫布尔恒等式
10 1 0 , 0 1
用加法器设计组合逻辑电路
特殊具有运算关系的函数
用译码器设计组合逻辑电路 (所有的逻辑函数)
步骤:1.写出所求逻辑函数最小项表达式。 2.把逻辑函数变换为与非与非式 3.对照比较函数输入变量与译码器输入脚的对应情况, 4.按照求出的表达式连接电路,画电路连线图。
注意: 一片138译码器可以实现多个三变量的输出函数,只能是
数电基本知识点总结
数电基本知识点总结一、数字电子学概述数字电子学是研究数字系统中的信号处理和信息表示的学科。
它主要关注二进制数字信号的传输、处理和存储。
数字电子学的基础是逻辑运算,这些运算是构建更复杂数字系统的基本元素。
二、数制和编码1. 数制- 二进制数制:使用0和1两个数字表示所有数值的数制,是数字电子学的基础。
- 八进制数制:使用0到7八个数字表示数值,常用于简化二进制数的表示。
- 十进制数制:使用0到9十个数字表示数值,是日常生活中最常用的数制。
- 十六进制数制:使用0到9和A到F十六个数字表示数值,常用于计算机编程中。
2. 编码- ASCII编码:用于表示文本字符的一种编码方式。
- 二进制编码:将数据转换为二进制形式进行存储和传输。
- 格雷码:一种二进制数系统,用于减少错误的可能性。
三、基本逻辑门1. 与门(AND)- 逻辑表达式:A∧B- 输出为真(1)仅当所有输入都为真。
2. 或门(OR)- 逻辑表达式:A∨B- 输出为真(1)只要至少有一个输入为真。
3. 非门(NOT)- 逻辑表达式:¬ A- 输出为真(1)当输入为假(0)时。
4. 异或门(XOR)- 逻辑表达式:A⊕B- 输出为真(1)当输入不相同时。
四、组合逻辑组合逻辑是指输出仅依赖于当前输入的逻辑电路。
这些电路不包含存储元件,因此没有记忆功能。
1. 逻辑门的组合- 通过基本逻辑门的组合,可以构建更复杂的逻辑函数。
2. 多级逻辑- 多个逻辑门按层次结构连接,形成复杂的逻辑电路。
3. 逻辑表达式简化- 使用布尔代数规则简化逻辑表达式,优化电路设计。
五、时序逻辑时序逻辑电路的输出不仅依赖于当前的输入,还依赖于过去的输入(即电路的历史状态)。
1. 触发器(Flip-Flop)- 基本的时序逻辑元件,能够存储一位二进制信息。
2. 计数器(Counter)- 顺序记录输入脉冲的数量,常用于定时和计数。
3. 寄存器(Register)- 由一系列触发器组成,用于存储多位二进制信息。
数字电子技术基础知识点总结
时序逻辑电路分析的一般步骤 :
1. 观察电路的结构,确定电路是同步时序逻辑电路还是 异步时序逻辑电路,是米里型电路还是莫尔型电路。
2. 根据给定的时序电路图,写出下列各逻辑方程式:
(1) 写出各触发器的时钟方程。 (2) 写出时序逻辑电路的输出方程。 (3) 写出各触发器的驱动方程。 (4) 将各触发器的驱动方程代入其特性方程,求得各触发器的次态方 程.
Rb
1
20kΩ
+VCC( +12V ) RC 1kΩ
3
VO
β=50
2
(a)
(b)
(c)
R b1
1
15kΩ
R b2 51kΩ
+VCC (+12V ) RC 1kΩ
V
3
O
β=50
2
5V
R b1
1
15kΩ R b2
51kΩ
+VCC (+15V ) RC 2kΩ
V
3
O
β=50
2
-3V (d)
-3V (e)
基本定律和恒等式
第四章 触发器
基本要求 1.熟练掌握各类触发器的逻辑功能(功能表、特性方 程、状态转换图、驱动表)。 2. 熟练掌握各种不同结构的触发器的触发特点,并能 够熟练画出工作波形。 3.熟悉触发器的主要参数。 4.熟悉各类触发器间的相互转换。 5.了解各类触发器的结构和工作原理。
1 写出图示各电路的状态方程。
5. 根据逻辑函数 表达式画出逻辑 电路图。
第三章 组合逻辑模块及其应用
基本要求 1.熟练掌握译码器、编码器、数据选择器、数值比 较器的逻辑功能及常用中规模集成电路的应用。 2.熟练掌握半加器、全加器的逻辑功能,设计方法。 3.正确理解以下基本概念:
数字电子技术基础知识
1 数字电子技术基础知识1.1 学习要求(1)了解数字电路的特点以及数制和编码的概念。
(2)掌握逻辑代数的基本运算法则、基本公式、基本定理和化简方法。
(3)能够熟练地运用真值表、逻辑表达式、波形图和逻辑图表示逻辑函数,并会利用卡诺图化简逻辑函数。
1.2 学习指导本章重点:(1)逻辑函数各种表示方法之间的相互转换。
(2)逻辑函数的化简及变换。
本章难点:(1)逻辑函数各种表示方法之间的相互转换。
(2)逻辑函数的化简及变换。
本章考点:(1)逻辑函数各种表示方法之间的相互转换。
(2)逻辑函数的化简及变换。
1.2.1 数字电路概述1.数字信号与数字电路在数值上和时间上均连续的信号称为模拟信号,对模拟信号进行传输、处理的电子线路称为模拟电路。
在数值上和时间上均不连续的信号称为数字信号,对数字信号进行传输、处理的电子线路称为数字电路。
数字电路的特点:(1)输入和输出信号均为脉冲信号,一般高电平用1表示,低电平用0表示。
(2)电子元件工作在开关状态,即要么饱和,要么截止。
(3)研究的目标是输入与输出之间的逻辑关系,而不是大小和相位关系。
(4)研究的工具是逻辑代数和二进制计数法。
2.数制及其转换(1)数制基数和权:一种数制所具有的数码个数称为该数制的基数,该数制的数中不同位置上数码的单位数值称为该数制的位权或权。
十进制:基数为10,采用的10个数码为0~9,进位规则为“逢十进一”,从个位起各位的权分别为100、101、102、…10n -1。
二进制:基数为2,只有0和1两个数码,进位规则为“逢二进一”,从个位起各位的权分别为20、21、22、…2n -1。
16进制:基数为16,采用的16个数码为0~9、A~F ,进位规则为“逢十六进一”,从个位起各位的权分别为160、161、162、…16n -1。
(2)数制之间的转换其他进制转换为十进制:采用多项式求和法,即将其他进制的数根据基数和权展开为多项式,求出该多项式的和,即得相应的十进制数。
数字电子技术基础
数字电子技术基础数字电子技术基础数字电子技术是指使用数字电子技术进行数字信号的处理和转换的技术的总称,是现代电子技术中的一项基础技术。
它是利用数字电子技术的基本原理和基本方法,设计、制造、操作和应用数字电路和数字系统的技术,包括数字电路设计、数字信号处理、数字通信和组合逻辑电路等内容。
数字电子技术在计算机、通信、控制、测量、影像等领域发挥着重要作用。
1. 数字电子技术基础概述数字电子技术是指用离散的符号代表连续的声、光、电等信息的技术。
它的产生和发展是在人们对模拟电子技术进行了深入的研究之后,参考生物神经网络的原理,发现采用离散的二进制数码或多进制数码能够代替复杂的模拟系统,并用数字电路来实现这些数码的处理。
数字电子技术在应用方面的主要优点是:信号处理精度高,可靠性强,设计灵活、方便,可扩展性强,同时也具有良好的适应性和交互性。
2. 数字信号处理数字信号处理(DSP,Digital Signal Processing)是指使用数字技术进行信号的数字化、处理、转换、储存、传输和显示的技术。
它具有信号处理精度高、处理速度快、抗干扰能力强、具有灵活性和可靠性等特点。
数字信号处理的原理和方法包括线性系统的分析、非线性系统的分析、数字信号的代数转换、数字滤波器、功率谱分析和数字处理器等。
数字信号处理在通信、图像、音频、视频、雷达、医学、地震等领域都有广泛的应用。
3. 数字通信数字通信是指用数字信号进行交换和传输信息的技术。
数字通信在传输质量、传输效率和传输容量方面都有明显的优势。
数字通信的主要技术包括调制解调器、通道编码、信道等效和信号检测等。
4. 组合逻辑电路组合逻辑电路是由输入线、输出线和一些逻辑门组成,它的输出是根据输入信号和逻辑门的状态所产生的输出。
组合逻辑电路常用的逻辑门包括与门、或门、非门、异或门等。
组合逻辑电路也常用于大规模数字集成电路和可编程逻辑器件中。
5. 计算机计算机是数字电子技术的典型代表,它将数字信号处理的原理和方法应用到计算机结构、系统软件和应用软件等方面。
数电基本知识点总结
数电基本知识点总结随着现代电子技术的快速发展和广泛应用,数字电子技术已经成为新时代中不可或缺的重要组成部分。
数字电子技术作为电子技术的一个分支,已经成为电子科学研究的主要方向之一,在现代应用中也扮演着重要的角色。
数字电子技术的基本知识点包括数字电路、数字信号处理等。
本文将对这些基本知识点进行总结。
一、数字电路数字电路是计算机硬件、通信系统以及灯胆等各种电子器件的基本组成部分,是数字电子技术的基础。
数字电路包括组合逻辑电路和时序逻辑电路两种。
组合逻辑电路根据输入信号产生输出信号,其中不需要考虑时序。
时序逻辑电路则是由组合逻辑模块和时钟模块组成的,处理输入信号时需要考虑时序。
数字电路有以下基本知识点:1.逻辑运算数字电路中的逻辑运算包括与、或、非、异或等逻辑运算。
其中与运算是指各输入信号同时为1时,输出为1;或运算是指各输入信号中有一个或多个为1时,输出为1;非运算是指输入信号为1时,输出为0,反之亦然;异或运算是指各输入信号不相同时输出为1,否则输出为0。
2.编码器编码器是将不同的输入信号映射为不同的输出信号的电路。
常用的编码器有BCD编码器、八位编码器和十六位编码器等。
3.译码器译码器是将不同的输入信号转换为不同的输出信号,按照特定的规则进行转换。
译码器是数字电路的重要组成部分。
常用的译码器有BCD译码器、八位译码器和十六位译码器等。
4.计数器计数器是可以计数的电路,也是数字电路中经常使用的模块之一。
计数器可以按照一定的规则计数,并可以将计数结果反馈给其他电路模块使用。
计数器包括同步计数器和异步计数器等。
5.时序电路时序电路是根据特定的时序要求来设计的数字电路。
时序电路有微处理器、时钟电路等。
二、数字信号处理数字信号处理是应用数字电子技术的一个重要方向,将模拟信号转换为数字信号,并对其进行数字处理和分析。
数字信号处理有以下几个基本知识点:1.采样定理采样定理是数字信号处理中最基本的知识点之一。
其核心思想是:一个信号能够以完全的方式重构,只需要一定的采样频率。
数字电子技术基础总复习要点
数字电子技术基础总复习要点数字电子技术基础总复习要点一、填空题第一章1、变化规律在时间上和数量上都是离散是信号称为数字信号。
2、变化规律在时间或数值上是连续的信号称为模拟信号。
3、不同数制间的转换。
4、反码、补码的运算。
5、8421码中每一位的权是固定不变的,它属于恒权代码。
6、格雷码的最大优点就在于它相邻两个代码之间只有一位发生变化。
第二章1、逻辑代数的基本运算有与、或、非三种。
2、只有决定事物结果的全部条件同时具备时,结果才发生。
这种因果关系称为逻辑与,或称逻辑相乘。
3、在决定事物结果的诸条件中只要有任何一个满足,结果就会发生。
这种因果关系称为逻辑或,也称逻辑相加。
4、只要条件具备了,结果便不会发生;而条件不具备时,结果一定发生。
这种因果关系称为逻辑非,也称逻辑求反。
5、逻辑代数的基本运算有重叠律、互补律、结合律、分配律、反演律、还原律等。
举例说明。
6、对偶表达式的书写。
7、逻辑该函数的表示方法有:真值表、逻辑函数式、逻辑图、波形图、卡诺图、硬件描述语言等。
8、在n变量逻辑函数中,若m为包含n个因子的乘积项,而且这n个变量均以原变量或反变量的形式在m中出现一次,则称m为该组变量的最小项。
9、n变量的最小项应有2n个。
10、最小项的重要性质有:①在输入变量的任何取值下必有一个最小项,而且仅有一个最小项的值为1;②全体最小项之和为1;③任意两个最小项的乘积为0;④具有相邻性的两个最小项之和可以合并成一项并消去一对因子。
11、若两个最小项只有一个因子不同,则称这两个最小项具有相邻性。
12、逻辑函数形式之间的变换。
(与或式—与非式—或非式--与或非式等)13、化简逻辑函数常用的方法有:公式化简法、卡诺图化简法、Q-M法等。
14、公式化简法经常使用的方法有:并项法、吸收法、消项法、消因子法、配项法等。
15、卡诺图化简法的步骤有:①将函数化为最小项之和的形式;②画出表示该逻辑函数的卡诺图;③找出可以合并的最小项;④选取化简后的乘积项。
数字电子技术知识点汇总
数字电子技术知识点汇总引言概述:数字电子技术是一门基础性学科,涉及数字信号的产生、传输、处理和存储等方面。
随着现代科技的迅速发展,数字电子技术已经成为了许多领域的核心技术,包括计算机科学、通信技术、嵌入式系统、控制系统等等。
本文将对数字电子技术的知识点进行汇总和详细介绍,以帮助读者更好地理解和应用这一重要学科。
正文内容:一、数字信号和模拟信号1.1数字信号与模拟信号的基本概念1.2数字信号与模拟信号的特点1.3数字信号的采样和量化1.4模拟信号的离散化和数字化二、数字电路的基础知识2.1逻辑门和布尔代数2.2码制和编码技术2.3数字电路的基本组成2.4数字电路的时序逻辑与组合逻辑2.5数字电路的可靠性和容错技术三、数字系统的设计与实现3.1数字系统的层次结构和组成原则3.2组合逻辑电路的设计方法3.3时序逻辑电路的设计方法3.4状态机的设计与实现3.5FPGA和CPLD的应用四、数字信号处理技术4.1数字信号的基本运算和变换4.2数字滤波器的设计与实现4.3数字信号的储存与读取4.4声音和图像的数字化处理4.5数字信号处理器(DSP)的应用五、数字系统测试与调试5.1数字系统测试的基本概念和方法5.2组合逻辑电路的测试与调试5.3时序逻辑电路的测试与调试5.4集成电路的测试与调试5.5数字系统故障的排查与修复总结:数字电子技术是一门极为重要的学科,广泛应用于现代科技的各个领域。
本文对数字信号和模拟信号、数字电路的基础知识、数字系统的设计与实现、数字信号处理技术以及数字系统的测试与调试等方面的知识点进行了详细的阐述。
通过学习这些知识点,读者可以更好地理解和应用数字电子技术,提高自己在相关领域的能力和竞争力。
在数字化时代的今天,掌握数字电子技术是每个科技工作者必不可少的素质,希望本文能够对读者起到一定的指导和帮助作用。
数字电子技术知识点汇总-数字电子技术基础知识点总结
《数字电子技术》重要知识点汇总一、主要知识点总结和要求1.数制、编码其及转换:要求:能熟练在10进制、2进制、8进制、16进制、8421BCD 、格雷码之间进行相互转换。
举例1:(37.25)10= ( )2= ( )16= ( )8421BCD 解:(37.25)10= ( 100101.01 )2= ( 25.4 )16= ( 00110111.00100101 )8421BCD 2.逻辑门电路: (1)基本概念1)数字电路中晶体管作为开关使用时,是指它的工作状态处于饱和状态和截止状态。
2)TTL 门电路典型高电平为3.6 V ,典型低电平为0.3 V 。
3)OC 门和OD 门具有线与功能。
4)三态门电路的特点、逻辑功能和应用。
高阻态、高电平、低电平。
5)门电路参数:噪声容限V NH 或V NL 、扇出系数N o 、平均传输时间t pd 。
要求:掌握八种逻辑门电路的逻辑功能;掌握OC 门和OD 门,三态门电路的逻辑功能;能根据输入信号画出各种逻辑门电路的输出波形。
举例2:画出下列电路的输出波形。
解:由逻辑图写出表达式为:C B A C B A Y ++=+=,则输出Y 见上。
3.基本逻辑运算的特点:与 运 算:见零为零,全1为1;或 运 算:见1为1,全零为零; 与非运算:见零为1,全1为零;或非运算:见1为零,全零为1; 异或运算:相异为1,相同为零;同或运算:相同为1,相异为零; 非 运 算:零 变 1, 1 变 零; 要求:熟练应用上述逻辑运算。
4. 数字电路逻辑功能的几种表示方法及相互转换。
①真值表(组合逻辑电路)或状态转换真值表(时序逻辑电路):是由变量的所有可能取值组合及其对应的函数值所构成的表格。
②逻辑表达式:是由逻辑变量和与、或、非3种运算符连接起来所构成的式子。
③卡诺图:是由表示变量的所有可能取值组合的小方格所构成的图形。
④逻辑图:是由表示逻辑运算的逻辑符号所构成的图形。
数电知识点总结(整理版)
数电知识点总结(整理版).doc数电知识点总结(整理版)一、引言数字电子技术是电子工程领域的一个重要分支,它涉及使用数字信号处理电子设备中的信息。
本文档旨在总结数字电子学的核心知识点,以帮助学生和专业人士复习和掌握这一领域的基础。
二、数字逻辑基础数字信号数字信号是离散的,可以是二进制(0和1)或多电平信号。
逻辑门基本的逻辑门包括与门(AND)、或门(OR)、非门(NOT)、异或门(XOR)和同或门(NAND)。
逻辑运算逻辑运算是数字电路中的基本操作,包括布尔代数和逻辑表达式的简化。
三、组合逻辑电路多输入逻辑门如四输入与门、或门,以及更复杂的逻辑功能。
编码器和解码器编码器将输入信号转换为二进制代码,解码器则相反。
加法器用于执行二进制加法运算的电路。
比较器比较两个二进制数的大小。
四、时序逻辑电路触发器基本的存储单元,可以存储一位二进制信息。
寄存器由多个触发器组成的电路,用于存储多位二进制信息。
计数器用于计数事件的时序电路。
移位寄存器可以按顺序移动存储的数据。
五、存储器RAM(随机存取存储器)可以读写的数据存储器。
ROM(只读存储器)存储固定数据的存储器,内容在制造时写入。
PROM(可编程ROM)用户可以编程的只读存储器。
EEPROM(电可擦可编程ROM)可以通过电信号擦除和重新编程的存储器。
六、数字系统设计设计流程包括需求分析、逻辑设计、电路设计、仿真、实现和测试。
硬件描述语言如VHDL和Verilog,用于设计和模拟数字电路。
仿真工具用于在实际硬件实现之前测试电路设计的工具。
七、数字信号处理采样将模拟信号转换为数字信号的过程。
量化将连续的信号值转换为有限数量的离散值。
编码将采样和量化后的信号转换为数字代码。
八、数模转换和模数转换数模转换器(DAC)将数字信号转换为模拟信号的设备。
模数转换器(ADC)将模拟信号转换为数字信号的设备。
九、数字通信基础调制在发送端,将数字信号转换为适合传输的形式。
解调在接收端,将接收到的信号转换回原始的数字信号。
数电基本知识点总结
数电基本知识点总结一、数字信号1.1 数字信号的概念数字信号是由一系列离散的数值组成的信号,它可以使用二进制形式表示。
在数字电子技术中,数字信号是处理的对象,通过数字信号的处理可以实现各种功能和应用。
1.2 数字信号的特点数字信号具有以下特点:1)离散性:数字信号是由一系列离散的数值组成的,相邻的数值之间有间隔。
2)可靠性:数字信号的传输和处理相对容易,不易受到噪声和干扰的影响,具有较高的可靠性。
3)易处理:数字信号可以进行数学运算和逻辑运算,易于进行处理和分析。
1.3 数字信号的表示数字信号可以使用二进制、八进制、十进制、十六进制等形式进行表示,其中,二进制是最常用的表示形式。
在数字电子技术中,常用的是二进制形式。
1.4 数字信号的产生数字信号可以通过模拟信号的采样和量化来进行产生。
采样是对模拟信号进行时间间隔的离散取样,量化是对采样后的信号进行幅度离散化。
1.5 数字信号的传输数字信号可以通过数字通信系统进行传输,数字通信系统可以利用数字调制、解调技术来实现数字信号的传输和接收。
数字通信系统在通信领域中有着重要的应用。
1.6 数字信号的处理数字信号可以通过数字信号处理技术进行处理,包括滤波、变换、编码、解码等操作,可以实现对信号的提取、分析和处理。
二、数字电路2.1 数字电路的概念数字电路是由数字元器件构成的电路,用来进行数字信号的处理和运算。
数字电路可以实现逻辑运算、数学运算、存储等功能。
2.2 数字电路的分类数字电路按照其功能可以分为组合逻辑电路和时序逻辑电路。
组合逻辑电路是由逻辑门构成的,其输出仅依赖于当前的所有输入;时序逻辑电路则包含了时序逻辑元件,其输出还依赖于其先前的输入。
2.3 逻辑门逻辑门是数字电路的基本组成单元,用来进行逻辑运算。
常见的逻辑门有与门、或门、非门、异或门等,它们通过对输入信号进行逻辑运算得到输出信号。
2.4 组合逻辑电路组合逻辑电路由多个逻辑门组成,它的输出仅依赖于当前的输入信号。
数字电子技术基础(整理笔记)
第一章数字逻辑基础1.1 数字电路概述1.1.1 数字电路与模拟电路电子电路根据其处理的信号不同可以分为模拟电子电路和数字电子电路。
1.模拟信号和模拟电路模拟信号:在时间上和数值上都是练习变化的信号。
模拟电路:处理模拟信号的电子电路。
2.数字信号和数字电路数字信号:在时间上和数值上都是离散(变化不连续)的信号。
数字电路:处理数字信号的电子电路。
3.数字电路的特点①数字电路内部的晶体管(包括单、双极型)主要工作在饱和导通或截止状态;模拟电路内部的晶体管主要工作在放大状态。
②数字电路的信号只有两种状态:高电平和低电平,分别对应于(或代表)二进制数中的1和0,表示信号的有或无,便于数据处理。
③数字电路结构相对简单,功耗较低,便于集成。
④数字电路抗干扰能力强。
其原因是利用脉冲信号的有无传递1和0的数字信息,高低电平间容差较大,幅度较小的干扰不足以改变信号的有无状态。
⑤数字电路不仅能完成数值运算,而且还能进行逻辑运算和比较判断,从而在计算机系统中得到广泛应用。
4.数字电路的分类①按电路的组成结构可分为分列元件电路和集成电路。
②按数字电路集成度可分为小规模、中规模、大规模和超大规模集成电路。
③按集成电路内部器件可分为双极型和单级型。
④按电路的逻辑功能可分为组合逻辑和时序逻辑电路。
1.1.2脉冲波形参数数字电路信号中,研究的对象是一些不连续的突变的电信号,作用时间很短,所以也称为脉冲信号。
脉冲信号波形形状很多,主要有方波、矩形波、三角波、锯齿波等。
①脉冲幅度Um。
脉冲电压变化的最大值,即脉冲波从波底至波顶之间的电压。
②上升时间t r。
脉冲波前沿从0.1Um上升到0.9Um所需的时间。
③下降时间t f。
脉冲波后沿从0.9Um下降到0.1Um所需的时间。
④脉冲宽度t w。
脉冲波从上升沿的0.5Um至下降沿0.5Um所需的时间。
⑤脉冲周期T。
在周期性脉冲信号中,任意两个相邻脉冲上升沿(或下降沿)之间的时间间隔。
⑥重复频率f(单位:Hz)。
数字电子技术课本重点考点
离散时间系统
重点包括离散时间系统的基本概念和 性质,如线性性、时不变性、因果性 等。
信号变换
重点包括离散傅里叶变换(DFT)和 快速傅里叶变换(FFT)的基本原理 和应用。
THANKS
感谢观看
高速化
随着通信技术的发展,数字电子技术正朝着高速化方向发展,以提 高信号传输速率和数据处理能力。
集成化
随着集成电路制造工艺的进步,数字电子技术正朝着集成化方向发 展,以实现更小尺寸、更低功耗和更高可靠性的数字系统。
智能化
数字电子技术正与人工智能、机器学习等技术相结合,实现智能化信 号处理和自动化控制。
详细描述
移位器是数字电路中的一种运算单元,用于对二进制 位进行移位操作。
编码器和译码器
总结词
详细描述
总结词
详细描述
编码器是数字电路中的 一种组合逻辑电路,用 于将输入的多个信号转 换为二进制代码。
编码器将输入信号转换 为相应的二进制代码, 输出的二进制代码表示 输入信号的具体状态。 了解编码器的种类和工 作原理,如二进制编码 器、二-十进制编码器 等。
合成法
混合法
结合解析法和合成法,先对系统进行 整体功能分析,然后根据功能分解为 若干个子系统,分别进行设计,最后 再将子系统集成。
根据系统的整体功能,设计出能实现 该功能的整体结构,再逐步细化各个 部分,最终完成整个系统的设计。
数字系统设计流程
系统需求分析
明确系统的功能需求、性能指标和限制条件。
系统设计
逻辑门电路
重点包括与门、或门、非门、 与非门、或非门等基本逻辑门 电路的工作原理和特性。
触发器
重点包括RS触发器、D触发器 、JK触发器等的工作原理和特
数字电子技术》知识点
《数字电子技术》知识点第1章数字逻辑基础1.数字信号、模拟信号的定义2.数字电路的分类3.数制、编码其及转换要求:能熟练在10进制、2进制、8进制、16进制、8421BCD之间进行相互转换。
举例1:()10= ( )2= ( )16= ( )8421BCD解:()10= 2= ( 16= 8421BCD4.基本逻辑运算的特点与运算:见零为零,全1为1;或运算:见1为1,全零为零;与非运算:见零为1,全1为零;或非运算:见1为零,全零为1;异或运算:相异为1,相同为零;同或运算:相同为1,相异为零;非运算:零变1,1变零;要求:熟练应用上述逻辑运算。
5.数字电路逻辑功能的几种表示方法及相互转换。
①真值表(组合逻辑电路)或状态转换真值表(时序逻辑电路):是由变量的所有可能取值组合及其对应的函数值所构成的表格。
②逻辑表达式:是由逻辑变量和与、或、非3种运算符连接起来所构成的式子。
③卡诺图:是由表示变量的所有可能取值组合的小方格所构成的图形。
④逻辑图:是由表示逻辑运算的逻辑符号所构成的图形。
⑤波形图或时序图:是由输入变量的所有可能取值组合的高、低电平及其对应的输出函数值的高、低电平所构成的图形。
⑥状态图(只有时序电路才有):描述时序逻辑电路的状态转换关系及转换条件的图形称为状态图。
要求:掌握这五种(对组合逻辑电路)或六种(对时序逻辑电路)方法之间的相互转换。
6.逻辑代数运算的基本规则①反演规则:对于任何一个逻辑表达式Y,如果将表达式中的所有“·”换成“+”,“+”换成“·”,“0”换成“1”,“1”换成“0”,原变量换成反变量,反变量换成原变量,那么所得到的表达式就是函数Y的反函数Y(或称补函数)。
这个规则称为反演规则。
②对偶规则:对于任何一个逻辑表达式Y,如果将表达式中的所有“·”换成“+”,“+”换成“·”,“0”换成“1”,“1”换成“0”,而变量保持不变,则可得到的一个新的函数表达式Y',Y'称为函Y 的对偶函数。
电子行业数字电子技术基础总结
电子行业数字电子技术基础总结引言数字电子技术是指利用数字信号进行操作和传输的电子技术。
在现代电子行业中,数字电子技术已经成为了大部分电子设备和系统的核心。
本文将对数字电子技术在电子行业中的基础知识进行总结。
一、数字电子技术概述1.1 数字信号与模拟信号在电子领域中,信号可以分为两类:模拟信号和数字信号。
模拟信号是连续变化的信号,可以用无限个连续的值来表示。
而数字信号是离散的信号,通过一系列离散的数值来表示。
数字电子技术主要处理的就是数字信号。
1.2 数字电子技术的优势数字电子技术相对于模拟电子技术有许多优势。
首先,数字电子技术的抗干扰能力更强。
数字信号的传输和处理过程中可以通过差错检测和纠正技术来提高传输的可靠性。
其次,数字电子技术运算更快、精度更高。
数字信号的处理可以利用现代计算机等高速数字芯片来实现,能够提供更高的计算速度和更精确的结果。
二、数字电子技术的基本元件2.1 逻辑门逻辑门是数字电子技术中的基本元件之一,它能够根据输入信号的逻辑关系生成输出信号。
典型的逻辑门包括与门、或门、非门、异或门等。
逻辑门的输出信号通常只有两种状态:高电平和低电平,分别表示1和0。
2.2 触发器触发器是一种能够存储和传输信息的数字电子元件。
它可以在时钟脉冲的作用下,将输入信号的状态存储起来,并在下一个时钟脉冲到来时传输到输出端。
触发器在数字电路设计中有着广泛的应用,是构建存储器和寄存器等重要元件的基础。
2.3 计数器计数器是一种能够对输入脉冲进行计数的数字电子元件。
它可以根据输入脉冲的个数,按照一定的规则输出相应的计数结果。
计数器在数字电路设计中常用于频率分频、时序控制等方面。
三、数字电子技术的应用3.1 通信领域在通信领域中,数字电子技术的应用非常广泛。
数字信号处理技术可以提高通信系统的抗干扰性能和传输速率。
数字调制技术可以将信号转换为数字形式进行传输,同时可以实现多路复用和频谱利用率的提高。
数字信号压缩技术可以有效地利用传输带宽,提高通信效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
展开求和
整数:除2取余 分组替代 替代 小数:乘2取整
十进制
展开求和 整数:除16取余 小数:乘16取整 (或先转换成二进制)
A
十六进制
返1回
第二章: 逻辑代数的基本公式和常用公式
2.3.1 基本公式 表2.3.1为逻辑代数的基本公式,也叫布尔恒等式
10 1 0 , 0 1
M=1,相减,Y3Y2Y1Y0=P3P2P1P0 - Q3Q2Q1Q0
减一个数等于加这个数的补码,补码等于反码+1,故
Y3Y2Y1Y0=P3P2P1P0- Q3Q2Q1Q0 =P3P2P1P0+[Q3Q2Q1Q0]补
= P3P2P1P0+Q3Q2Q1Q0 +1
引进中间变量Z
M 输出
Q3
0 1
Z=Q Z=Q
将两式比较,可知:令D0=0,D1=B,D2=0,D4=1, D4=B D5=B,D6=1, D7=0,A2=S1, A1=S0,A0=A,则Z=Y。
A
8
将两式比较,可知:令D0=0,D1=B,D2=0,D4=1, D4=B D5=B,D6=1, D7=0,A2=S1, A1=S0,A0=A,则Z=Y。
用加法器设计组合逻辑电路
特殊具有运算关系的函数
用译码器设计组合逻辑电路 (所有的逻辑函数)
步骤:1.写出所求逻辑函数最小项表达式。
2.把逻辑函数变换为与非与非式
3.对照比较函数输入变量与译码器输入脚的对应情况,
4.按照求出的表达式连接电路,画电路连线图。
注意:
一片138译码器可以实现多个三变量的输出函数,只能是三变
分离出多余变量,将余下的变量分别有序地加到数据选择器的数
据输入端。
3.对照比较所求逻辑函数式和数据选择器的输出表达式确定选择 器输入变量的表达式或取值。
4.按照求出的表达式或取值连接电路,画电路连线图。
注意:
一个数据选择器只能用来实现一个多输入变量的单输出逻辑函
A
6
数。
4.22.用8选1数据选择器设计一个函数发生器, S1S0 输出 00 Y=AB
3. P210 4.3
A
3
第三章 组合逻辑电路总结
主要内容 ※组合逻辑电路的分析方法(已知逻辑图,分析逻辑功能。) ※组合逻辑电路的设计方法(已知逻辑问题,画出逻辑图。) ※五种常用的组合逻辑电路(编码器,译码器,数据选择器,
加法器,数值比较器) ※竞争冒险现象(原因,判断,消除) 重点掌握 ※掌握组合逻辑电路的分析方法和设计方法。 ※了解5种组合电路的内部结构、工作原理。 ※掌握5种组合逻辑电路的功能、使用方法。 (包括基本使用方法 和级联扩展,会分析和设计电路。) ※掌握用译码器,数据选择器,加法器设计组合逻辑电路的方法。 ※掌握竞争冒险现象的的概念,掌A 握判断方法,了解消除方法。4
7 A(B C) AB AC 17 A BC ( A B)( A C ) 分配律
8 A B B A 18 A B B A
摩根定理
9 A A
还原律
A
2
1. (27.5)10 =( ) 2 =( )8421BCD
2. Y(A,B,C)=AB+BC+AC
画出真值表 电路图 最小项和的标准形式 最大项积的标准形式 与非与非式 或非或非式
0
B
& 1
D0
D1
Hale Waihona Puke D2D4CC4512
D4 D5
YZ
D6
D7
A
A0
S0 S1
A1 A2
A
9
4.24 试用4位并行加法器74LS283设计一个加/减运算电路。当控制
信号M=0时它将两个输入的4位二进制数相加,而M=1时它将两个
输入的4位二进制数相减。允许附加必要的门电路。 解:分析题意,M=0,相加,Y3Y2Y1Y0=P3P2P1P0+Q3Q2Q1Q0
Y D 0 (A 2 A 1 A 0 ) D 1 (A 2 A 1 A 0 ) D 2 (A 2 A 1 A 0 ) D 3 (A 2 A 1 A 0 ) D 4 (A 2 A 1 A 0 ) D 5 (A 2 A 1 A 0 ) D 6 (A 2 A 1 A 0 ) D 7 (A 2 A 1 A 0 )
01 互反
1 0A 0
11 1 A 1
常量与变
2 1 A A
12 0 A A
量的关系
3 AA A
13 A A A
重叠律
4 AA 0
14 A A 1
互补律
5 AB BA
15 A B B A
交换律
6 A(BC ) ( AB)C 16 A (B C) ( A B) C 结合律
将S1S0A与A2A1A0对应,并将Z变换成数据选择器输出的形式
A
7
ZABS1S0 AS1S0BS1S0ABS1S0 ABS1S0 AS1S0
B(AS1S0)AS1S0B(AS1S0)B(AS1S0)B(AS1S0) B(AS1S0)(AS1S0)
0(S1S0A)B(S1S0A)0(S1S0A)1(S1S0A)B(S1S0A) B(S1S0A)1(S1S0A)0(S1S0A)
量,如果是四变量,则需2片138扩展成4-16译码器。
A
5
用数据选择器设计组合逻辑电路(所有的逻辑函数)
步骤:1.写出所求逻辑函数最小项表达式。
2.根据上述函数包含的变量数,选定数据选择器。 当逻辑函数的变量个数与数据选择器选择输入端个数相等时,
可直接用数据选择器来实现所要实现的逻辑函数。 当逻辑函数的变量个数多于数据选择器选择输入端数目时,应
Z MQMQ M Q
它的功能表如表所示。 01 Y=A+B
10 Y=A ⊕ B
解:由功能表可写出逻辑表达式
11 Y=A
Z A S 1 S 0 B ( A B ) S 1 S 0 ( A B A B ) S 1 S 0 A S 1 S 0 A S 1 S 0 B A S 1 S 0 B S 1 S 0 A B S 1 S 0 A B 1 S 0 S A S 1 S 0
采用8选1数据选择器CC4512,其输出表达式:
Y D 0 (A 2 A 1 A 0 ) D 1 (A 2 A 1 A 0 ) D 2 (A 2 A 1 A 0 ) D 3 (A 2 A 1 A 0 ) D 4 (A 2 A 1 A 0 ) D 5 (A 2 A 1 A 0 ) D 6 (A 2 A 1 A 0 ) D 7 (A 2 A 1 A 0 )