丛枝菌根真菌对植物营养代谢与 生长影响的研究进展

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第33卷第3期浙江师范大学学报(自然科学版)Vol.33,No.3
2010年9月 JournalofZhejiangNormalUniversity(Nat.Sci.) Sep.2010
文章编号:1001-5051(2010)03-0303-07
丛枝菌根真菌对植物营养代谢与
生长影响的研究进展磁
吉春龙, 田萌萌, 马继芳, 金海如
(浙江师范大学化学与生命科学学院,浙江金华 321004)
摘 要:综述了国内外有关丛枝菌根(AM)真菌对于改善植株水分代谢与碳素营养,促进植株对N,P等矿质
营养吸收及其运转途径与机制的研究进展,提出了AM真菌研究中存在的问题,以期今后加强对AM真菌的
深入研究,进而提高植物对矿质元素的吸收转运效率,增强植株的代谢能力.可以预见,AM真菌作为一种经
济而有效的生物肥料,将广泛应用于农业生产与生态农业中,带来不可估量的经济效益和生态效益.
关键词:丛枝菌根真菌;生长效应;矿质营养;碳;氮;磷
中图分类号:S144 文献标识码:A
Advancesintheresearchesontheeffectsofarbuscularmycorrhizalfungi
onplantnutritionmetabolismandgrowtheffects
JIChunlong, TIANMengmeng, MAJifang, JINHairu
(CollegeofChemistryandLifeScience,ZhejiangNormalUniversity,JinhuaZhejiang 321004,China)
Abstract:Itwassummarizedthedomesticandforeignliteraturesabouttheimprovementsofplantwatermetab-olismandcarbonnutrition,thepromotionofuptakeandtranslocationofinorganicnutritionofN,Pthroughthecolonizationoffungi.ItwasputforwardtheproblemsinthestudiesofAMfungisothatitwouldprovidethesolidrationalestostrengthentheresearchesontheAMfungiandtoenhancetheefficiencyoftheuptakeandtranslocationofinorganicnutritionandtheabilityofplantnutritionmetabolisminthefuture.ItwaspredictedthattheAMfungi,asoneeconomiceffectivebiologicalfertilizer,wouldbewidespreadandappliedinagricul-turalproductionandtheecologicalagriculture,andbringinestimableeconomicefficiencyandecologybenefit.Keywords:AMfungi;growtheffect;inorganicnutrition;C;N;P
菌根是自然界中一种普遍的植物共生现象,它是土壤菌根真菌与高等植物根系形成的共生联合体[1].丛枝菌根(AM)真菌是一类能够与80%以上陆地植物形成共生关系的内生菌根真菌[2].近年来,有关AM真菌对植物营养代谢及其生长效应影响的研究逐渐成为国内外学者关注与讨论
磁收文日期:2009-10-22;修订日期:2010-04-28
 基金项目:国家自然科学基金资助项目(30970101);浙江省科技厅计划项目(2006C22009) 作者简介:吉春龙(1984-),男,江西赣州人,硕士研究生.研究方向:植物生物技术.
 通讯作者:金海如.E-mail:hrjin@zjnu.cn
的热点.本文总结概述了植物通过AM真菌获取不同营养元素的途径、机制及其对植物生长效应影响的研究进展.
1 AM真菌与植物水分营养及其生长效应1.1 AM真菌与植物水分营养的关系
1914年Briggs首次提出“泡囊丛枝菌根(VA)能从土壤中吸收束缚水”的观点,之后,
George等[3]发现菌根对水流经土壤-植物-大气连续有正效应.近年来,国内外科研人员普遍认为AM真菌能促进植物对水分的吸收利用,改善植株的水分代谢,尤其在水分胁迫环境下,菌株能通过AM真菌菌丝桥梁[4]的作用,把根系中难以吸收的土壤水分连接起来,从而使植株维持较高的蒸腾速率,降低叶面温度,获得较非菌根植株更高的光合效率和水分利用率.据报道:干旱条件下的油蒿[5]菌根植株叶片相对含水量和束缚水/自由水显著提高,水分饱和亏降低;正常水分状况下君迁子[6]接种株叶片束缚水含量与对照株相比提高了12.5%~20.6%,显著增强了离体叶片的保水力,而在干旱胁迫下接种株则推迟15.4~32.2h出现萎蔫,复水后又提前10~15min恢复正常.此外,Morte等[7]在对向日葵接种AM真菌后发现,干旱条件下向日葵蒸腾速率与气孔导度分别较对照增强92%与45%,而正常水分状况下则分别增强40%与14%,说明水分胁迫条件下AM真菌对于改善植株水分状况所起的作用更为显著.由此可见,AM真菌能明显改善植株的水分营养状况,菌根植株水分代谢活动强于非菌根植株.1.2 AM真菌促进植物水分代谢的途径或机制AM真菌促进植物根系吸收水分、提高植物水分利用率与抗旱性的主要原因是:首先,外生菌丝增加了植物根系与土壤接触与吸收的面积,能通过生理干燥区把较深土层中的水分传送给处于干旱胁迫中的植株,供给植株稳定的水分[2].其次,菌根真菌可以改善或稳定土壤的结构,提高菌根对水分的吸附利用.例如,Rillig等[8]研究发现,AM真菌分泌的球囊霉素(Glomalin)糖蛋白能促进水分稳定的土壤团聚体的形成,这可能是菌根植株提高水分利用率的重要原因.第三,调节植物内源激素的平衡状况,改善植株水分营养.李晓林等[3]、Dutra等[9]研究认为:AM可以通过调节植物矿质营养状况及内源激素平衡等间接地改善植
物水分代谢,提高植株对水分的利用率,增强其抗
旱性.杨蓉等[10]的实验也发现,沙田柚组培苗接
种AM真菌后能显著降低其叶片脱落酸(ABA)激
素含量增加的速度,减轻植株受水分胁迫的程度,
从而提高植株吸收利用水分的效率.最后,AM真
菌可以提高植株细胞渗透性、叶片保护酶活性等
与抗旱性相关的生理生化指标,增强植株对水分
的吸收利用率,改善植株的水分营养状况.例如:
油蒿[5]、柠条锦鸡儿[11]、柑橘嫁接苗红肉脐橙/
枳[12]、赤霞珠扦插苗[13]等接种植株叶片保护
酶———超氧化物歧化酶(SOD)、过氧化物酶
(POD)、过氧化氢酶(CAT)等活性增强,丙二醛(MDA)含量与相对电导率降低,能更好地清除因干旱胁迫产生的对细胞有害的过量活性氧或超氧
自由基(O2,H2O2,-OH,O-.2),减少或缓解其对细胞的损害,抑制膜脂过氧化的进程和程度.此
外,长寿沙田柚[14]、油蒿[5]、柠条锦鸡儿[11]接种
后植株叶片中可溶性糖或蛋白质、脯氨酸含量均
高于非菌根株,提高了干旱胁迫下接种植株叶片
细胞的渗透势,有利于增强植株的抗旱性,改善植
株对水分的利用效率.
2 AM真菌与植物碳素营养及其生长效应2.1 AM真菌与植物碳素营养的关系
大量实验表明,在适当的条件下植株接种一
定量的AM真菌能在一定程度上改善植物的碳素
营养代谢,接种植株其外观状态和各项生理生化
指标较不接种植株好,主要体现在以下几个方面.
2.1.1 单叶面积或单株叶面积与叶绿素含量与非接菌株相比,接菌植株单叶面积或单株叶面积、叶绿素含量明显增加.例如:徐敏等[15]发现,接种AM真菌后,姜的单叶面积、单株叶面积与不接种植株在幼苗期比例为140%和139%,收获期的比例为116%和114%,表明接种植株单叶面积或单株叶面积较不接种植株高,增加了植株的光合作用面积;江龙等[16]在接种AM真菌后的烟苗中发现,烟苗叶片中叶绿素含量显著增加;而赵金莉等[5]在对油蒿接种后发现,在同一水分条件下,不仅油蒿叶绿素总含量明显优于对照株,而且植株中叶绿素a/b值亦显著提高,也就是说接种AM真菌增加了叶片叶绿素a和叶绿素b含量
403浙江师范大学学报(自然科学版) 2010年 
值的差距.
2.1.2 光合速率、蒸腾速率与碳水化合物含量研究表明,与对照相比,接菌植株的光合速率、蒸腾速率有一定程度或显著的提高,其中气孔阻力减小,碳水化合物含量明显增加.例如:与非接菌株相比,接菌黄瓜[17]的光合速率与蒸腾速率提高了24.8%与11.7%;而水分胁迫条件下沙田柚[10]实验组和对照组幼苗叶片的光合速率比移栽时分别增加了3.9和3.5倍,表明沙田柚接种
AM真菌后有利于提高其水分胁迫阶段叶片的光合速率;李敏等[18]发现,大田条件下的西瓜经Glomusversiforme,G.mosseae和Gigaspora.rosea处理后其植株叶片净光合速率分别比对照增加44.5%,41.4%和45.7%;而大豆[19]在接种G.versiforme后光合速率由对照的50.4mg/(dm2・h)增加到63.7mg/(dm2・h).此外,由于植株光合速率的提高,植株叶片、根系与果实中可溶性糖含量或总糖含量均比非接菌株高.例如:接种后油蒿[5]、长寿沙田柚[14]、黄瓜[20]与黄檗[21]等叶片中的可溶性糖含量与对照相比明显地高,且黄檗在接种G.diaphanum后对其光合速率的促进作用最大,比对照高出2.5倍左右,在光合速率提高的基础上可溶性糖含量均比对照提高4倍以上,而黄瓜[20]等果实中的可溶性糖含量也比对照高得多.
2.2 AM真菌改善植株碳素营养的途径与机制大量实验表明,AM真菌通过改善作物的光合参数提高植株叶片光合速率与光合能力,间接获得与对照相比更多的可溶性糖或淀粉等碳水化合物,进而改善或促进植物的碳素营养.当然,AM真菌自身是异养型的微生物,须从寄主根系内直接获得由光合作用产生的简单碳水化合物才能生存[22].因此,植株在感染AM真菌之初,由于菌根真菌与植物之间争夺有限的碳水化合物,从而抑制了双方的生长和发育,但随着菌根的形成和生长,共生菌根增强了宿主植物叶片对CO2的吸收和固定,植物产生的碳水化合物积累增加,碳素营养得到改善,补偿了AM真菌对碳营养的消耗[23].
菌根植物的生长取决于真菌对宿主植物提供的营养物质的增加(这是促进因素)和真菌本身对碳水化合物的消耗(这是减弱因素)之间的平衡.
3 AM真菌与植物氮素营养及其生长效应3.1 AM真菌与植物氮素营养的关系
研究表明,AM真菌能促进植物对氮素的吸收与转移,改善作物氮素营养或氮代谢,提高作物产量与品质.例如:贺学礼等[24]发现,草莓在接种G.mosseae后,植株根和叶的N含量与对照相比显著提高,其中在灭菌条件下根和叶的N含量分别提高了32.7%和22.6%,而在非灭菌条件下则分别提高了44.8%和26.2%.田间大棚条件下的黄瓜[25]在接种G.versiforme和G.mosseae+G.traradices后,其果实氨基酸含量分别比对照提高了47.66%和23.19%,而蛋白质含量则提高了17.67%~34.79%.毕国昌等[26]发现,柑橘幼苗接种地表球囊菌后植株根系和地上部分的氮含量显著高于对照苗,并且叶部和根部各种氨基酸的含量比对照苗高一倍左右.温室盆栽条件下AM真菌可以促进大丽花、孔雀草[27]与彩叶草[28]等花卉植物和小车前、尖喙珑牛儿苗[29]等短命植物对氮素的吸收与利用.对西瓜、黄瓜、芋头和菜豆品质的影响研究结果则表明,AM真菌能显著提高这些蔬菜氨基酸、粗蛋白等营养成分的含量,接种G.mosseae可分别增加芋头粗蛋白19%、氨基酸总量24%,黄瓜粗蛋白40%[30].以上表明,AM真菌向宿主植物转移氮素,对促进植株的生长与改善体内氮素营养代谢具有重要作用与贡献.
3.2 AM真菌改善植物氮素营养的途径与机制实验表明,AM真菌能明显改善植株的氮素营养与代谢.以下就AM真菌促进植株对氮素吸收与利用,改善植物氮素营养或代谢的一般途径与机制作进一步阐述.
3.2.1 AM菌丝增加了宿主植物根系吸收面积AM真菌根外菌丝不仅能有效拓展植物根系与土壤的接触面积,而且能将吸收范围延伸至植物根系直接吸收土壤营养而形成的营养匮乏区之外.例如,Ames等[31]利用15N标记实验证明AM真菌菌丝可以从根外数厘米处的土壤中吸收NH+4,并运输至根部.此外,AM真菌菌丝扩大了根系与土壤的接触位点,相对增强了对土壤中易被吸附固定的氨态氮的吸收与利用,并在土壤水分状况与硝态氮含量相对稳定的条件下增加了对
503
 第3期 吉春龙,等:丛枝菌根真菌对植物营养代谢与生长影响的研究进展
硝态氮的吸收[32].
3.2.2 AM真菌提高了豆科植物固氮酶活性,增加根瘤量
大量实验表明,双接种AM真菌和固氮微生
物的豆科植物既形成菌根,也形成根瘤,是三位一
体的共生体系,可以为植物生长提供充足的氮素,
从两方面改善其氮素营养状况[22].一方面,15N标记实验表明AM真菌能提高硝酸还原酶的活性,
促进根系从土壤中直接吸收转运无机氮或某些有
机氮,增强豆科植物氮代谢的有效性及其运转率,
从而改善其氮素营养状况[33].另一方面,AM真菌
通过间接改善豆科植物磷素营养,保证根瘤生长
对磷素营养的需求,从而增加根瘤植物对土壤氮
素的吸收利用.相应地,根瘤为AM真菌的生长提
供充足的氮源,促进AM真菌菌丝体的生长发育,
并提高其侵染率,增加菌根对土壤氮的吸收.例
如:李晓林等[34]用三室结构研究AM真菌菌丝对
三叶草固氮能力的影响时发现,在根室土壤中施
用P50mg/kg后,根瘤数和固氮酶活性都较高.
李淑敏等[35]也发现,与单接蚕豆株相比,双接种
蚕豆植株高,根瘤数和根瘤质量显著增加,同时菌
根促染率提高了12.0%,根际土壤酸性和碱性磷
酸酶活性分别由0.69和0.39μmol/(g・h)增加
到1.30和0.54μmol/(g・h),同时对磷和氮的
吸收速率分别提高了50.9%和22.0%,而对有机
磷与氮的吸收则分别增加了63.9%和44.8%.
3.2.3 AM真菌对不同形态氮素吸收转运的途径
AM真菌根外菌丝不仅对不同形态氮源氮素(包括无机与有机氮类)的吸收具有较大的选择性,而且在吸收与同化机制或途径等方面也有着明显的差异.文献[36]利用AM真菌与毛根农杆菌质粒DNA转化的胡萝卜根建立的双重培养系统,通过15NH+4标记实验发现菌丝吸收的氮素90%以上储存于精氨酸,并证明了精氨酸是AM真菌吸收与利用氮的载体.
据文献[37]报道,关于对无机氮的吸收利
用,AM真菌菌丝在植物吸收铵态氮中具有重要
的作用,而对NO-3中N吸收的意义不大.例如,Johansen等[38]发现根内球囊霉G.intraradices在分别含有15NH+4与15NO-3的基质中培养后,前者其根外菌丝谷氨酸(Glu)、谷氨酰胺(Gln)、天冬酰胺(Asn)、天冬氨酸(Asp)和丙氨酸(Ala)等含量丰富的游离氨基酸具有更高水平的15N丰度.当NH+4和NO-3并存时,AM真菌优先利用前者,表明AM真菌根外菌丝更容易吸收同化NH+4,在能量上比吸收NO-3更有效.此外,由于NH+4易被土壤吸附固定,移动性小,且少量NH+4积累在植物体内都会造成伤害,因此通过接种或AM真菌侵染,利用其庞大的菌丝网络吸收根系无法吸收的NH+4[39].
AM真菌菌丝还可以吸收利用有机氮,如尿素、甘氨酸(Gly)、Gln和Glu等,其中菌丝对于尿素的吸收速度较其他氨基酸更快.由于土壤中矿物质对氨基酸分子有高的吸附力,降低了植物根系对氨基酸的吸收,因此,研究菌根真菌对氨基酸的吸收具有重要意义[39].李侠等[40]利用空气隔板分室-半液培养系统研究AM真菌根外菌丝吸收传递不同形态氮素的能力时发现,根外菌丝吸收传递不同形态15N的能力为15NH+4>15N-Gln>15N-Gly>15NO-3.
4 AM真菌与植株磷素营养及其生长效应4.1 AM真菌与植物磷素营养的关系
实验表明,AM真菌促进植物生长的效应是由于菌根侵染使植物磷素营养得到改善的结果,菌根植物具有比对照更强的吸收与利用磷素的能力,尤其是在土壤磷供应不足或水分胁迫环境中,这种作用表现得更加明显.例如:Baylis[41]早在1959年就观察到茱萸菌根幼苗在缺磷土壤环境下对磷的吸收效率是未形成菌根幼苗时的3~5倍.Johnson[42]也发现,菌根甜橙植株叶组织磷水平较非菌根植株大3倍,明显提高了其对磷的利用率.相关实验发现,接种AM真菌后的菜豆[30]、芒果[43]实生苗磷的含量与非菌株相比提高了63%与48.47%;而小车前和尖喙陇牛儿苗[29]等短命植物在接种G.mosseae后其株高、生物量及对N,P养分的吸收量等也有明显改善,并推测其改善植株磷素营养是通过提高植物对磷的吸收效率实现的.冯固等[44]在研究了玉米接种AM真菌后对土壤磷的利用时发现,在低磷水平下菌根更能提高植株对于磷素的吸收与利用效率.以上表明,与对照株相比,AM真菌能明显改善植物的磷素营养,提高植株吸收与利用磷的效率.
603浙江师范大学学报(自然科学版) 2010年 
4.2 AM真菌改善植物磷素营养的机制与途径4.2.1 扩大植物根系对土壤磷的有效吸收空间或范围
增加植物对土壤磷吸收范围是AM真菌提高土壤磷空间有效性的首要原因.由于磷在土壤中移动性较小,扩散系数很低,作物根际磷亏缺区一般小于2mm,而根外菌丝能延伸到这个磷亏缺区以外,从距离根系8cm甚至更远处吸收运输磷[2],且三室隔网实验发现白三叶草根外菌丝至少能伸展到根外11.7cm处[45],并引起该范围内土壤有效磷的显著亏缺,从而提高了根系对土壤磷吸收空间的有效性.
4.2.2 改变菌丝际土壤pH,活化难溶性磷酸盐研究表明,pH是影响AM菌丝际能否有效吸收利用土壤磷的重要因素.在缺磷条件下,AM真菌通过分泌质子和有机酸,改变菌丝际的pH以活化土壤中难溶性磷酸盐[46],并促使磷从土壤有机磷酸盐的金属螯合物中释放出来[47],从而增加土壤磷浓度,提高植株的吸磷量.文献[45]利用薄膜在土壤中形成菌丝际空间,研究发现石灰性土壤中pH降低了0.6个单位,并促进了植株对磷的吸收,推测这可能是外生菌丝降低了菌丝室土壤的pH而引起土壤磷酸盐活化的结果.4.2.3 提高土壤有机磷的利用率
研究表明,占土壤全磷含量50%的有机磷必须在各种磷酸酶作用下水解成正磷酸盐后才能被植物利用,AM真菌正是通过活化根系磷酸酶而促进植株对土壤有机磷的利用.例如,宋勇春等[48]在研究菌根际和菌丝际磷酸酶活性与土壤有机磷亏缺关系时,发现施用有机磷能促进菌根根系侵染,提高土壤酸性磷酸酶活性,使菌丝际范围变宽.柑桔[49]枳苗随着菌根侵染率的提高,根系分泌磷酸酶活性增强,植株含磷量增加,推测菌根促进柑桔分泌磷酸酶而增强了其对有机磷肥的吸收.以上表明,菌根植物通过提高表面酸性磷酸酶活性使有机磷水解矿化,提高了AM真菌外菌丝际利用土壤有机磷的能力.
4.2.4 改变植株养分吸收动力学参数
大量实验证实:就生理代谢途径而言,菌根促进植株吸收土壤磷的过程可以用高亲和力(低Km,Vmax)与低亲和力(高Km,Vmax)[50]等养分吸收动力学参数加以描述.在土壤低磷条件下,菌根植株Km低于相应的对照,菌根吸收部位对磷的亲和力比非菌根植物高,其吸磷量与速率往往也高于非菌根植物,这是菌根植物尚能在缺磷土壤上正常生长的原因之一;而在磷素较高浓度范围内,菌根植株最大吸收速率Vmax较高,即根外菌丝扩大了根系吸收面积,增加了更多的吸收点[51].实验发现,在土壤低磷水平下,AM真菌对大豆和三叶草[52]吸磷量的贡献率均在70%左右,而高磷水平下则分别下降了5%和20%~30%.因此,AM真菌在动力学方面能促进植株对磷的吸收,提高对土壤磷的吸收利用效率.
4.2.5 促进磷的运输,增加植物体内磷的储存与利用效率
研究发现,磷在植物体内主要以无机磷形式运输,移运速率为2mm/h,而菌丝由于无隔膜,储存于其中的磷素主要以聚磷酸盐颗粒形式随原生质环流不断地输送给根内丛枝,再由聚磷酸盐分解为简单的无机磷转移给宿主植物,其运输速率可达20mm/h[22,32],是根内运输速率的10倍,且盆栽实验中菌丝吸收的磷量最高可达共生植物体内总磷量的90%[46],这就促使根外菌丝吸收的土壤磷能较迅速地转运到植株体内[1].此外,AM真菌还可以改变植物根系结构,增加植物体内磷的储存量,增强植物的抵抗力与耐受性,提高植株对土壤磷吸收、运输与利用的能力与效率.4.2.6 刺激土壤中其他微生物活动,共同促进磷的吸收
实验表明,AM真菌与溶磷细菌共接种后可以刺激土壤微生物分泌有机酸[53],提高土壤中可溶性磷的浓度,改善植株对磷的吸收,尤其是AM真菌与根瘤菌共接种时能有效地提高植株的生物量和磷的转运效率[54],这也是AM真菌促进根系吸收磷素的原因之一.
5 AM真菌对其他营养元素的吸收及其对植物的生长效应
大量实验表明,AM真菌不仅可以改善植株水分、碳素、氮素和磷素等营养状况及其对植物的生长效应,并且能促进根系对其他矿质元素(如钾离子)的吸收与转运,同时能改善植株的硼、硫、钙、铁、锰、氯等一些中量或微量元素营养状况[2].例如:李晓林等[55]发现,AM真菌能促进小
703
 第3期 吉春龙,等:丛枝菌根真菌对植物营养代谢与生长影响的研究进展
金海棠对锌和铜元素的吸收.与对照相比,接种AM真菌的生姜[15]、芒果[43],以及小车前[29]根、叶的钾含量显著增加,且生姜叶、根内钙、铜和锌含量也有所提高.温室盆栽条件下的黄瓜[20]在苗期接种G.versiforme后能显著提高其干物质质量,增加植株内维生素C和K、Zn、Cu等营养元素的含量;而蚕豆[2]菌根除能增加对磷的吸收之外,还有利于植株对钼的吸收,并且发现菌根植株中钾和镁的含量较对照组高,此外AM真菌与根瘤菌双接种比单接种能更有效地提高寄主植物生物量和钾的积累[21].以上表明,AM真菌能促进根系对土壤中钾素及微量或中量营养元素的吸收转运,满足植株对其他矿质营养的需要.
6 展望
综上所述,与对照相比,菌根植株营养代谢得到明显改善,生物量显著提高,植株抗旱、抗盐碱能力增强,显著改善作物的品质[32].因此,AM菌株可以降低人为施肥的必要,减少农药的使用,在生态环境与生物资源保护方面具有重要的意义[56].由于AM真菌只有侵入根系才能存活、繁殖并发挥作用,而目前纯培养问题己成为AM真菌研究与应用中的一个关键问题,这使其在大面积栽培条件下接种困难,AM生物技术并没有得到广泛应用.因此,今后需要在多方面对AM真菌展开深入研究,进一步探讨AM真菌改善植物营养代谢的机制与途径,加快AM真菌的纯培养研究.可以预见,AM真菌作为一种经济而有效的生物肥料,将广泛应用于农业生产与生态农业中[57],带来不可估量的经济效益和生态效益.
参考文献:
[1]刘润进,陈应龙.菌根学[M].北京:科学出版社,2007.
[2]李晓林,冯固.丛枝茵根生态生理[M].北京:华文出版社,2001.
[3]GeorgeE,MarschnerH,JakobsenI.Roleofarbuscularmycorrhizalfungiinuptakeofphosphorusandnitrogenfromsoil[J].CritRevBiotechn-ol,1995,15(3/4):257-270.
[4]GrahamJH,CalvetC,CamprubiA,etal.Waterrelationsofmycorrhizalandphosphorusfertilizednon-mycorrhizalcirrusunderdroughtstress[J].NewPhytol,1987,105(2):411-419.
[5]赵金莉,贺学礼.AM真菌对油蒿生长和抗旱性的影响[J].华北农学报,2007,22(5):184-188.
[6]齐国辉,李保国,郭素萍,等.AM真菌对君迁子水分状况、保护酶活性和膜脂过氧化的影响[J].河北农业大学学报,2006,29(2):22-25.
[7]MorteA,LovisoloC,SchubertA.Effectofdroughtstressongrowthandwaterrelationsofthemycorrhizalassociationhelianthemumalmeriense-terfeziaclaveryi[J].Mycorrhiza,2000,10(3):115-119.
[8]RilligMC,WrightSF,EvinerVT.Theroleofarbuscularmycorrhizalfungiandglomalininsoilaggregation:comparingeffectsfiveplantspe-cial[J].PlantandSoil,2002,238(2):325-333.
[9]DutraPV,AbadM,AlmelaV,etal.Auxininteractionwiththevesicular-arbuscularmycorrhizalfungusglomusintraradicesSchenck&Smithimprovesvegetativegrowthoftworootstocks[J].ScientiaHoricuturae,1996,66(1):77-83.
[10]杨蓉,郑钦玉,薛华清,等.AM真菌对沙田柚组培苗炼苗期水分生理及生长效应的研究[J].重庆师范大学学报:自然科学版,2009,26(2):115-119.
[11]贺学礼,刘媞,安秀娟,等.水分胁迫下AM真菌对柠条锦鸡儿(Caraganakorshinskii)生长和抗旱性的影响[J].生态学报,2009,29(1):47-52.
[12]吴强盛,夏仁学.丛枝菌根真菌对柑橘嫁接苗枳/红肉脐橙抗旱性的影响[J].应用生态学报,2005,16(5):865-869.
[13]王奇燕,张振文,宋晓菊,等.AM菌剂对赤霞珠扦插苗生长及抗旱性的影响[J].西北农林科技大学学报:自然科学版,2008,36(11):91-96.
[14]于桂宝,杨晓红,朱钧,等.AM真菌对长寿沙田柚耐旱性的影响[J].南方农业,2007,1(1):24-26.
[15]徐敏,史庆华,李敏.AM真菌对姜生长和产量的影响[J].山东农业科学,2002(4):22-25.
[16]江龙,李竹玫,黄建国,等.AM真菌对烟苗生长及某些生理指标的影响[J].植物营养与肥料学报,2008,14(1):156-161.
[17]任志雨,贺超兴,孙世海,等.丛枝菌根真菌对黄瓜幼苗生长和矿质元素吸收的影响[J].长江蔬菜,2008(18):34-36.
[18]李敏,刘润进,李晓林.大田条件下丛枝菌根真菌对西瓜生长和枯萎病的影响[J].植物病理学报,2004,34(5):472-473.
[19]郑红丽,邢杰,胡俊,等.两种丛枝菌根真菌对小麦和大豆生长的影响[J].内蒙古农业大学学报:自然科学版,2002,23(1):104-106.803浙江师范大学学报(自然科学版) 2010年 
[20]秦海滨,贺超兴,张志斌,等.丛枝菌根真菌对温室黄瓜生长及产量品质的影响[J].中国瓜菜,2008(6):10-13.[21]范继红,杨国亭,李桂伶.接种VA菌根对黄檗幼苗生长的影响[J].东北林业大学学报,2006,34(2):18-19.[22]柯世省.丛枝菌根与植物营养[J].生物学教学,2007,32(8):4-6.
[23]蔡宣梅,方少忠,林真.VA菌根及其研究进展[J].福建农业科技,2002(6):28-29.
[24]郭鹏,贺学礼.AM真菌对草莓的接种效应研究[J].河北农业大学学报,2006,29(4):53-56.
[25]吕桂云,陈贵林,齐国辉,等.菌根化育苗对大棚黄瓜生长发育和果实品质的影响[J].应用生态学报,2006,17(12):2352-2356.[26]毕国昌,赵志鹏,郭美珍.柑橘幼苗接种VA菌根真菌的研究[J].微生物学报,1990,30(2):141-148.[27]郭绍霞,姜洪波,刘宁,等.AM真菌对3种花卉生长发育的影响[J].辽宁林业科技,2008(4):22-25.[28]马颖,郭绍霞,李想,等.AM真菌对彩叶草生长发育的影响[J].安徽农业科学,2008,36(11):4500-4501.
[29]陈志超,石兆勇,田长彦.接种AM真菌对短命植物生长发育及矿质养分吸收的影响[J].植物生态学报,2008,32(3):648-653.[30]李敏,刘润进.AM真菌对蔬菜品质的影响[J].中国生态农业学报,2002,10(4):54-55.[31]AmesRN,ReidCPP,PorterLK.Hyphaluptakeandtransportofnitrogenfromtwo
15
N-labelledsourcesbyGlomusmosseae,avesicular-ar-
buscularmycorrhizalfungus[J].NewPhytol,1983,95(3):381-396.
[32]邹碧莹,张云翼.丛枝菌根(AM)真菌对植物营养代谢的影响研究进展[J].现代农业科技,2008(15):10-13.[33]黄金芳,肖华山.VA菌根对植物有益作用的研究进展及其应用展望[J].蔬菜,2006(10):27-29.[34]李晓林,曹一平.VA菌根菌丝对三叶草固氮的影响[J].北京农业大学学报,1992,18(3):299-302.
[35]李淑敏,孟令波,张晶.丛枝菌根真菌和根瘤菌对蚕豆吸收有机磷的促进作用[J].北方园艺,2004(4):54-55.
[36]JinH,PfefferPE,DoudsDD,etal.Theuptake,metabolism,transportandtransferofnitrogeninanarbuscularmycorrhizalsymbiosis[J].NewPhytologist,2005,168(3):687-696.
[37]李侠,张俊伶.丛枝菌根真菌对氮素的吸收作用和机制[J].山西大同大学学报:自然科学版,2008,24(6):75-78.
[38]JohansenA,FinlayRD,OlssonPA.NitrogenmetabolismoftheexternalhyphaeofthearbuscularmycorrhizalfungusGlomusintraradices[J].NewPhytologist,1996,133(4):705-712.[39]HawkinsHJ,JohansenA,GeorgeE.Uptakeandtransportoforganicandinorganicnitrogenbyarbuscularmycorrhizalfungi[J].PlantandSoil,2000,226(2):275-285.
[40]李侠,张俊伶.丛枝菌根根外菌丝对不同形态氮素的吸收能力[J].核农学报,2007,21(2):195-200.
[41]BaylisGTS.Effectofvesicular-arbuscularmycorrhizasongrowthofGriselinialittoralis(Cornaceae)[J].NewPhytol,1959,58(3):274-
280.
[42]JohnsonCR,MengeJA,SchwabS,etal.Interactionofphotoperiodandvesicular-arbuscularmycorrhizaeongrowthandmetabolismofsweetorange[J].NewPhytol,1982,90(4):665-669.[43]粱秀棠.菌根对芒果实生苗吸收营养和生长的影响[J].广西农学院学报,1990,9(5):83-86.
[44]冯海艳,冯固,王敬国,等.植物磷营养状况对丛枝菌根真菌生长及代谢活性的调控[J].菌物系统,2003,22(4):589-598.
[45]LiXiaolin,MarschnerH,GeorgeE.ExtensionofthephosphorusdepictionzoneinVA-mycorrhizalwhitecloverinacalcarenoussoil[J].PlantandSoil,1991,136(1):41-48.
[46]HinsingerP.BioavailabilityofsoilinorganicPintherhizosphereasaffectedbyroot-inducedchemicalchanges:areview[J].PlantandSoil,
2001,237(2):173-195.
[47]马琼,黄建国.菌根及其在植物吸收矿质元素营养中的作用[J].吉林农业科学,2003,28(2):41-43.
[48]宋勇春,李晓林,冯固.菌根真菌磷酸酶活性对红三叶草生境中土壤有机磷亏缺的影响[J].生态学报,2001,21(7):1130-1135.[49]唐振尧,何首林.菌根促进柑桔吸收难溶性磷肥的机理研究[J].中国柑桔,1991,20(2):7-10.
[50]BeeverRE,BurnsDJW.Phosphorusuptake,storageandutilizationbyfungi[M]//WoolhouseHW.AdvancesinBotanicalResearch:Vol8.London:AcademicPressInc,1981:127-219.[51]刘进法,夏仁学,王明元,等.丛枝菌根促进植物根系吸收难溶态磷的研究进展(综述)[J].亚热带植物科学,2007,36(4):62-66.[52]姚青.植物对VA菌根的依赖性差异及菌根活化难溶性磷酸盐的机理研究[D].北京:中国农业大学,2000.
[53]ToroM,AzconR,BareaJM,etal.TheuseofisotopicdilutiontechniquestoevaluatetheinteractiveeffectsofRhizobiumgenotype,mycorrhizal
fungi,phosphate-solubilizingrhizobacteriaandrockphosphateonnitrogenandphosphorusacquisitionbyMedicagosativa[J].NewPhytol,1998,138(2):265-273.
[54]刘江,黄学跃,李天飞,等.VA菌根真菌与根瘤菌和溶磷菌双接种对烟苗生长的影响[J].烟草科技,2000(2):43-44.[55]李晓林.施磷水平与VA菌根效应的关系[J].北京农业大学学报,1990,16(2):177-180.
[56]刘润进,王洪娴,王淼焱,等.菌根生物技术在城郊生态农业上的应用[J].山东科学,2006,19(6):98-101.
[57]张勇,曾明,熊丙全,等.丛枝菌根(AM)生物技术在现代农业体系中的生态意义[J].应用生态学报,2003,14(4):613-617.
(责任编辑 薛 荣)

03 第3期 吉春龙,等:丛枝菌根真菌对植物营养代谢与生长影响的研究进展。

相关文档
最新文档