高中数学新课标人教A版必修第一二册数学文化〖数学家埃尔米特主要成就〗

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学家埃尔米特主要成就
埃尔米特是法国数学家.曾任法兰西学院、巴黎高等师范学校、巴黎大学教授.法兰西科学院院士.在函数论、高等代数、微分方程等方面都有重要发现.1858年利用椭圆函数首先得出五次方程的解.1873年证明了自然对数的底e的超越性.在现代数学各分支中以他姓氏命名的概念(表示某种对称性)很多,如“埃尔米特二次型”、“埃尔米特算子”等.埃尔米特是一位热心的数学传播者,他经常无保留地向数学界提供他的知识、想法以致创造性的思维火花,一般通过书信、便条以及讲演进行这种传播.例如,他与斯蒂尔切斯两人从1882年到1894年间至少写过432封信.只要认真阅读埃尔米特的著作,就会发现,他提供了许多可以作为别人发现的序幕的例子,他的数学传播工作极大地促进了数学的发展.埃尔米特是一个全面的数学家,除了前述各项工作外,他在数学的各领域中还取得如下成果:他深入研究了矩阵理论,证明了,如果矩阵M=M*(M的伴随矩阵),则其特征值都是实数;提出一个属于代数函数论的埃尔米特原理,是后来著名的黎曼-罗赫定理的特例之一;在不变量方面有较多成果,以致于西尔威斯特曾指出,“凯莱、埃尔米特和我组成了一个不变量的三位一体”,例如,他提出一个“互反律”,即一个m次二元型的阶固定次数的共变式之间的一种一一对应关系;埃尔米特推广了高斯研究整系数二次型的方法,证明了它们对于任意个变量其类数仍是有限的;还把这一结果应用于代数数,证明了,如果一个数域的判别式已给出,则其范型的数目是有限的;他还把这种“类数有限性”用于不定二次型,取得一些重要的结果;他关于拉梅方程(一种微分方程)的研究在当时也有十分重要的意义.
埃米尔特
1。

相关文档
最新文档