年产生铁275万吨的高炉车间本科毕业设计说明书

合集下载

设计年生产炼钢生铁200万吨的高炉车间

设计年生产炼钢生铁200万吨的高炉车间

设计年生产炼钢生铁200万吨的高炉车间设计年产炼钢生铁200万吨的高炉车间河北理工大学成人教育毕业设计(论文)任务书: :3河北理工大学成人教育毕业设计(论文)进程表指导教师签字:4毕业设计评定书-指导教师对设计的评语:成绩:指导教师:200 年月日5毕业设计评定书-评议人对设计的评语及评定的成绩:成绩:评议人:200 年月日6毕业设计评定书-目录摘要 (1)引言 (2)1绪论 (4)1.1概述 (4)1.2高炉生产主要经济技术指标 (4)1.3高炉冶炼现状及发展 (6)1.4本设计采用的新技术 (7)1.5高炉辅助设计和生产流程图 (7)2高炉本体设计 (8)2.1.总述 (8)2.2确定年工作日:347天 (9)2.3定容积: (9)2.4炉缸尺寸 (9)2.5死铁层厚度 (10)2.6炉腰直径炉腹角炉腹高度 (10)2.7炉喉直径炉喉高度 (10)2.8炉身角炉身高度炉腰高度 (11)2.9校核炉容 (11)3 厂址选择 (12)3.1考虑因素 (12)3.2 要求 (13)4 供料系统 (14)4.1焦矿槽容积的确定 (15)4.1.1贮矿槽和附矿槽的布置、容积及数目的确定 (15) 4.1.2 焦矿槽的布置、容积及数目的确定 (16)4.2槽上、槽下设备及参数的确定 (16)4.2.1槽上设备 (16)4.2.2槽下设备及参数选择 (16)4.3皮带上料机能力的确定 (17)—物料堆比重,1.6 3/m t....................... 错误!未定义书签。

4.4 高炉槽下上料系统的设计与改进 (18)5 送风系统 (20)5.1.1 高炉入炉风量 (20)5.1.2 鼓风机风量 (21)5.1.3高炉鼓风压力 (21)5.1.4 鼓风机的选择 (21)5.2.1 热风炉座数的确定 (22) 5.2.2 热风炉工艺布置 (22)5.2.3 热风炉型式的确定 (22) 5.2.4 热风炉主要尺寸的计算 (22) 5.2.5 热风炉设备 (25)5.2.6 热风炉管道及阀门 (25)6 渣铁处理系统 (28)6.1风口平台及出铁场 (29)6.2炉渣处理设备 (29)6.3铁水处理设备 (32)6.3.1 铁水罐车 (32)6.3.2 铸铁机 (33)6.3.3 铁水炉外脱硫设备 (33) 6.4铁沟流咀布置 (33)6.4.1 渣铁沟的设计 (33)6.4.2 流咀的设计 (34)6.5炉前设备的选择 (34)6.5.1 开铁口机 (34)6.5.2 堵铁口泥炮 (34)6.5.3 堵渣机 (35)6.5.4 换风口机 (35)。

毕业论文:高炉炼铁系统设计-精品【范本模板】

毕业论文:高炉炼铁系统设计-精品【范本模板】

莱芜职业技术学院毕业论文论文标题:高炉炼铁系统设计作者:凌宗峰学校名称:莱芜职业技术学院专业:冶金技术年级:07冶金技术指导教师:冯博楷日期:2010。

4。

1目录内容提要与关键词¨¨¨¨¨¨¨¨¨¨¨3手抄在论文本上,最后再根据内容补填目录,要求手写!正文¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨4参考文献¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨58摘要本设计要求建年产量为200万吨生铁的高炉系统。

高炉车间的七大系统:即高炉本体系统、上料系统、渣铁处理系统、喷吹系统、送风系统、除尘系统和冷却系统都做了较为详细的叙述。

高炉炼铁是获得生铁的主要手段,是钢铁冶金过程中最重要的环节之一,在国民经济建设中起着举足轻重的作用。

高炉是炼铁的主要设备,本着优质、高产、低耗和对环境污染小的方针,在预设计建造一座年产生铁200万吨的高炉炼铁系统,本设计说明书详细的对其进行了高炉设计,其中包括绪论、工艺计算(包括配料计算、物料平衡和热平衡)、高炉炉型设计、高炉各部位炉衬的选择、炉体冷却设备的选择、风口及出铁场的设计、原料系统、送风系统、煤气处理系统、渣铁处理系统、高炉喷吹系统等。

设计的同时还结合国内外相同炉容高炉的一些先进的生产操作经验和相关的数据,力争使该设计的高炉做到高度机械化、自动化和大型化,以期达到最佳的生产效益. 关键词:高炉;炼铁;设计;煤气处理;渣鉄处理;1绪论1。

1概述钢铁是重要的金属材料之一,被广泛应用于各个领域,钢铁生产水平是一个国家发展程度的标志。

毕业设计 高炉本体设计

毕业设计 高炉本体设计

内蒙古科技大学毕业设计说明书.内蒙古科技大学本科生毕业设计说明书题目:包头地区原料条件下1500m3高炉本体设计学生姓名:学号:专业:冶金工程班级:冶金09-1指导教师:摘要高炉炼铁是获得生铁的主要手段,高炉是炼铁的主要设备,高炉本体设计是炼铁厂设计的基础。

本着优质、高产、低耗和对环境污染小的方针,长寿与高效是高炉设计与生产所追求的目标。

本设计说明书进行的详细的设计及计算,同时结合国内外一些大型高炉的先进生产操作经验及相关的数据。

力求设计的高炉做到高度机械化、自动化和大型化。

以期达到最佳的生产效益。

本设计为1500m3高炉本体设计,所设计的炼铁高炉采用的高径比为2.78,高炉的有效利用系数为2.3t/(m3٠d)。

车间采用岛式布置,出铁场采用圆形出铁场。

其炉底和炉缸采用的先进的“陶瓷杯”技术来砌筑,从而达到了隔热保温、减少热损、保护炭砖的目的。

炉腹部位用耐火度较高的铝碳转,炉腰和炉身下部用抗渣和防震较好的碳化硅砖,而炉身上部和炉喉用抗刷和抗侵蚀较好的高铝砖。

高炉冷却方法采用了炉壳喷水冷却,和板壁结合的方式达到冷却效果,其中板壁结合中用到的冷却壁有光面冷却壁、第三代和第四代冷却壁。

合适的钢结构和高炉基础设计保证了高炉的正常冶炼。

关键词高炉;炉衬;冷却系统;钢结构AbstractBlast furnace iron making is the main means for pig iron, the main equipment of iron making is blast furnace, blast furnace design of ontology is the foundation of the iron mill design. In line with high quality, high yield, low consumption and pollution to the environment policy of small, long life and high efficiency is the goal of the design and production of the blast furnace. This design manual for detailed design and calculation, at the same time, combined with some large blast furnace at home and abroad advanced production operation experience and related data. Strive to design blast furnace of high mechanization, automation and large. In order to achieve the best production efficiency.This design for 1500 m3 blast furnace body design, The design of the blast furnace high aspect ratio of 2.78,the effective utilization of blast furnace coefficient of 2.3t/(m3٠d).Workshop uses the island type layout cast house using circular cast house Blast furnace bottom and hearth uses advanced technology to building "ceramic cup", so as to achieve the heat insulation heat preservation, reduce heat loss and protect the carbon brick. Furnace belly with high refractoriness of aluminum carbon, bosh and furnace body with good slag resistance and shock-proof carborundum brick, The furnace body and brush with resistance and erosion resistance furnace throat good high alumina brick.Blast furnace cooling method USES a furnace shell water spray cooling, cooling effect and partition way, combined with the wooden partition used in cooling stave cooling wall has smooth surface, the third and fourth generation of cooling stave.Appropriate steel structure and foundation design guarantees the normal of the blast furnace smelting blast furnace.Key word: blast furnace body;the lining;of blast furnace cooling system;steel structure目录摘要 (I)Abstract (II)目录 (III)第一章文献综述 (1)1.1高炉炉型概述 (1)1.1.1高炉炉型的发展 (1)1.1.2高炉炉龄及其影响因素 (2)1.2高炉炉衬的发展 (2)1.2.1高炉各部分耐火材料的选择 (2)1.2.2我国最新对耐火材料的选择 (4)1.3高炉的冷却设备 (4)1.3.1高炉冷却的必要性 (4)1.3.2高炉冷却的目的 (5)1.3.3高炉冷却的方式 (5)1.3.4高炉各个冷却方式的发展以及优缺点 (6)1.4高炉钢结构以及高炉基础的概述 (10)1.4.1高炉的钢结构以及影响因素 (10)1.4.2我国高炉钢结构设计的基本现状 (11)1.4.3我国在高炉钢结构设计上的差距 (12)1.4.4高炉基础的概述 (13)1.5高炉设计方案 (15)第二章炼铁工艺计算 (17)2.1原料成分及参数选择 (17)2.1.1原料成分 (17)2.1.2参数选择 (18)2.2原料成分的整理计算 (19)2.2.1矿石成分补齐计算 (19)2.2.2矿石成分的平衡计算 (20)2.2.3燃料成分的整理计算 (22)2.3配料计算 (23)2.3.1吨铁矿石用量 (23)2.3.2生铁成分计算 (23)2.3.3熔剂用量计算 (24)2.3.4炉料及炉渣成分计算 (24)2.4物料平衡计算 (25)2.5热平衡计算 (29)2.5.1热收入 (29)2.5.2热支出 (30)2.6高温区热平衡计算 (34)2.6.1高温区热收入 (34)2.6.2高温区热支出 (34)2.7炼铁焦比的计算 (36)第三章高炉炉型设计 (38)3.1炉型的计算 (38)3.1.1铁口 (38)3.1.2渣口 (39)3.1.3风口 (39)3.1.4日产铁量的计算 (40)3.1.5炉缸尺寸计算 (40)3.1.6死铁层厚度 (41)3.1.7炉腰直径、炉腹角、炉腹高度的计算 (41)3.1.8炉喉直径、炉喉高度、炉身高度、炉腰高度 (41)3.2炉容的校核 (42)3.3出铁场布置 (42)第四章高炉炉衬设计 (44)4.1各部位砖衬的选择 (44)4.1.1炉底、炉缸部位的选择 (44)4.1.2炉腹部位的选择 (44)4.1.3炉身中下部及炉腰部位的选择 (44)4.1.4炉身上部及炉喉部位的选择 (45)4.2各部位砖量计算 (45)4.2.1炉底、炉缸的砌筑 (46)4.2.2炉腹的砌筑 (46)4.2.3炉腰的砌筑 (47)4.2.4炉身部位的砌筑 (48)第五章高炉冷却系统设计 (52)5.1高炉冷却设备 (52)5.1.1高炉冷却目的及方法 (52)5.1.2冷却设备 (52)5.2冷却器的工作机制 (53)5.3合理的冷却结构 (54)5.4高炉冷却系统的维护 (57)第六章高炉钢结构及基础 (60)6.1高炉钢结构 (60)6.1.1高炉本体钢结构 (60)6.1.2炉壳 (61)6.1.3炉体平台 (61)6.1.4炉体框架 (61)6.1.5热风围管 (62)6.2高炉基础 (62)参考文献 (63)致谢 (65)第一章文献综述1.1高炉炉型概述1.1.1高炉炉型的发展高炉是一种竖炉型的冶炼炉,它由炉体内耐火材料砌成的工作空间、炉体设备、炉体冷却设备、炉体钢结构等组成。

高炉本体毕业设计完整版

高炉本体毕业设计完整版

内蒙古科技大学本科生毕业设计说明书题目:内蒙古包头地区条件下2500m³高炉炉体系统设计学生姓名:张瑜学号:1176803442专业:冶金工程班级:4班指导教师:宋萍包头地区条件下2500m³高炉炉体系统设计摘要高炉炼铁的历史悠久,炼铁技术日益成熟,是当今主要的炼铁方式,随着炼铁技术的不断发展,高炉一代炉役寿命的不断提高,长寿高炉技术应用越来越广泛。

它是降低炼铁成本,提高钢铁企业经济效益的重要手段。

在大型高炉设计中,通过优化炉型、采用合理炉缸内衬结构、铜冷却壁、软水密闭循环冷却系统、薄壁内衬等技术为高炉长寿创造条件,提出了长寿高炉的基本设计思想。

为了适应这一发展趋势,.在本次长寿高炉设计中,对高炉合理内型、合理内衬结构和不同部位耐火材料的选择、冷却方式和冷却系统(包括冷却器的结构、材质与水质等)及其它有关方面作了综合考虑。

关键词:高炉长寿高炉内衬炉体冷却Design of Long Life BFABSTRACTHas a long history of BF ironmaking, is the main way of ironmaking,BF campaign life is continuously increased as unceasing development of iron making technology.It is being used more and more abroad. The long campaign technologies of blast furnace is one of the most important measures which reduce the iron making production cost and improve the economic profits of Iron and Steel Company. In the design of large BF,the technologies like optimized BF profile,reasonable hearth lining,copper stave,soft water closed circulating cooling system and thin-walled lining etc. were applied to prolong BF campaign life. The basic concept of designing long campaign blast furnace was put forward.In order to adapt to the trend,during designing long campaign blast furnace,the rational; furnace profile,rational furnace lining structure and selection of different refractories for various areas,cooling method and system (including cooler structure and material,cooling water and so on) and concerned aspects must be comprehensively considered.Key Words:Blast furnace life .Blast furnace lining. Furnace cooling目录摘要 (II)ABSTRACT (III)第一章文献综述 (1)1.1我国高炉炼铁发展现状 (1)1.2高炉概述 (2)1.2.1高炉本体概括 (1)1.2.2高炉冶炼用的原料 (2)1.2.3高炉本体及附属设备 (2)1.2.4高炉炉型的发展现状 (3)1.3高炉炉底、炉缸对高炉长寿的影响 (4)1.3.1高炉长寿概述 (4)1.3.2 炉缸、炉底侵蚀的特征及原因 (4)1.3.3 炉腹、炉腰侵蚀的原因 (5)1.3.4 减少炉缸炉底侵蚀措施 (5)1.3.5 减少炉腹炉身侵蚀措施 (6)1.3.6陶瓷杯与热压小炭块的比较 (7)1.4高炉冷却设备对高炉长寿的影响 (7)1. 4. 1高炉冷却 (7)第二章高炉物料平衡计算 (10)2.1.原料条件 (11)2.2 矿石成分的补齐计算 (14)2.2.1烧结矿中成分的补齐计算 (14)2.2.2 球团矿中成分的补齐计算 (14)2.2.3 生矿成分的补齐计算 (15)2.3 矿石成分的平衡计算 (16)2.3.1 烧结矿平衡计算 (16)2.3.2 球团矿平衡计算 (17)2.3.3 生矿平衡计算 (18)2.4 配料计算 (19)2.4.2 使用熔剂时的配料计算 (20)2.5物料平衡计算 (24)2.5.1 鼓风量的计算 (24)2.5.2 煤气组分及煤气量的计算 (25)2.5.3煤气中水量计算 (27)2.5.4考虑炉料的机械损失后的实际入炉量 (27)2.6 高炉热平横计算 (28)2.6.1全炉热平衡计算(第二种) (28)2.6.2 高温区热平衡 (32)2.7 炼铁焦比计算 (34)第三章2500m3高炉炉体设计 (37)3.1 高炉内型设计 (37)3.1.1炉形设计 (38)3.1.2炉容校核,高径比校核Hu/D及h4/Hu (40)3.2高炉耐火材料 (42)3.2.1 高炉各部位耐火材料的选择 (42)3.3 高炉炉体设备设计 (43)3.3.1 炉体冷却设备设计 (43)3.3.1.1 高炉炉底及炉缸 (43)3.3.1.2 炉腹至炉身中下部 (43)3.3.1.3 炉身中上部 (44)3.3.2高炉冷却水设计 (46)3.3.3风口、铁口及炉底冷却设备的设计 (49)3.3.3.1风口设计 (49)3.3.3.3 炉底冷却设备 (51)3.4 炉壳设计 (51)3.5 高炉附属设备 (54)参考文献 (59)附表 (60)致谢 (68)第一章文献综述1.1我国高炉炼铁发展现状在经济发展的“新常态”下,钢铁行业正处于适应新常态之中转型升级、提质增效的重要阶段,技术创新对产业发展的支撑和引领作用日益突出。

高炉设计说明书

高炉设计说明书

高炉设计说明书1. 引言本文档旨在提供一份关于高炉设计的详细说明,包括设计背景、设计目标、设计方案、设计流程以及设计结果等内容。

高炉作为一种热工设备,广泛应用于冶金行业,用于生产铁矿石的冶金过程。

本文档将详细介绍高炉设计的技术要求、设计原理以及相关参数等内容,以期为高炉设计提供指导。

2. 设计背景高炉作为冶金行业中的核心设备之一,对于提高铁矿石的冶炼效率、降低生产成本具有重要意义。

因此,进行高炉设计是行业发展的必然需求。

本次设计背景主要包括需求分析、市场调研等内容。

2.1 需求分析根据对冶金行业的需求分析,需要设计一台具有高效、节能、安全可靠的高炉设备。

同时,还需要考虑环境保护方面的要求,减少对环境的污染。

2.2 市场调研在市场调研中,我们发现当前高炉设备存在的问题主要包括效率低、能耗高、设备老化等。

因此,我们需要设计一台能够解决这些问题的高炉设备。

3. 设计目标基于设计背景的分析,本次高炉设计的目标如下:•提高冶炼效率:通过合理的设备结构和工艺参数设计,提高冶炼效率,降低生产成本。

•降低能耗:采用先进的能量回收技术,提高能量利用效率,降低能耗。

•提升安全可靠性:对高炉设备进行严格的安全设计,确保操作人员安全,并有效减少设备故障发生率。

•环境保护:通过采用先进的防尘、防污染技术,减少高炉对环境的污染。

4. 设计方案本次高炉设计的方案主要包括高炉结构设计、工艺参数设计以及设备选型等内容。

4.1 高炉结构设计根据需求分析和设计目标,我们选择采用新型的高炉结构设计。

该结构采用优化配筋和合理布置的方式,提高高炉的强度和稳定性。

同时,结合现代计算机仿真技术,对高炉结构进行合理优化,使其具有更好的抗压能力和承载能力。

4.2 工艺参数设计高炉的工艺参数设计对于高炉的冶炼效果具有重要影响。

本次设计将通过分析高炉传热、传质、反应等过程,确定合理的工艺参数。

包括温度、压力、氧气流量等参数的确定,以提高高炉的冶炼效率和产品质量。

毕业设计--年产300万吨生铁高炉设计

毕业设计--年产300万吨生铁高炉设计

年产300万吨生铁高炉设计摘要高炉炼铁是传统的炼铁工艺,也是钢铁冶金过程中最重要的环节之一,在国民经济建设中起着举足轻重的作用。

随着钢铁行业的蓬勃发展和节能环保要求的日益严格,高炉炉型逐渐走向大型化。

本论文对年产300万吨生铁大型高炉车间进行了设计,设计内容包括炼铁物料平衡和热平衡计算、高炉炉型确定、高炉各部位炉衬、炉体冷却设备的选择和风口的设计。

此外,还就高炉附属系统的煤气除尘处理系统进行了设计。

本设计的高炉车间共有容积2162m³的大型高炉两座,高炉车间按并列式布置。

关键词:高炉;炼铁工艺计算;设计;煤气处理年产300万吨生铁高炉设计AbstractBlast furnace ironmaking was the traditional iron-making craft, also was one of the most important link in ferrous metallurgy, it played a decisive role in national economic construction. With the vigorous development of the steel industry and more and more strict requirement of energy conservation and environmental protection requirement, the BF became maximization gradually.A large scale BF plant which had annual output of 3 million tons of pig iron was designed in this thesis, design content includeed material balance and thermal equilibrium calculation, determination of BF profile, selection of lining and cooling equipment for each part of BF and design of taphole. In addition, the gas processing sytem which was one of the BF subsidiary system was designed.The ironmaking plant of this thesis has two 2162m³ BF, they were layouted side by side. Key words:blast furnace;Ironmaking process calculation;design;gas processing目录2011年 4 月17日...................................................................................... 错误!未定义书签。

转炉炼钢车间设计

转炉炼钢车间设计

年产500万吨合格铸坯炼钢厂转炉炼钢系统设计冶金工程冶金06-3班邵志华指导老师:张芳摘要本设计的题目:年产500万吨合格铸坯炼钢厂转炉炼钢系统设计。

本说明书在实习和参考文献的基础上,对所学知识进行综合利用。

讲述了设计一转炉车间的方法和步骤,说明书中对车间主要系统例如铁水供应系统,废钢供应系统,散装料供应系统,铁合金供应系统,除尘系统等进行了充分论证和比较确定出一套最佳设计方案。

并确定了车间的工艺布置,对跨数及相对位置进行设计,简述了其工艺流程,并在此基础上进行设备计算,包括转炉炉型计算,转炉炉衬计算及金属构件计算,氧枪设计,净化系统设备计算,然后进行车间计算和所用设备的规格和数量的设计,在此基础上进行车间尺寸计算,确定各层平台标高。

最后对转炉车间设计得环境和安全要求进行说明。

为了更加详细说明转炉车间设计中的一些工艺及设备结构,本设计穿插了图形,为能够明确、直观的介绍了转炉炼钢车间的工艺布置。

关键词: 转炉;500万吨;设计;设备计算;车间计算第一章 文献综述 第二章 生产规模及产品方案2.1 金属平衡计算87%铁水 510.78万吨入炉金属料 587.1万吨13%废钢 76.32万吨 93%转炉钢水 546万吨97%钢包 529.62万吨 LF 精炼 529.62万吨3%损失 16.38万吨2%损耗 10.59万吨98%RH 精炼 519.03万吨0.7%损失 3.63万吨99.3%中间包 515.40万吨0.03%氧化铁皮 0.15万吨97.5%钢坯 502.51万吨1.2%连铸切头 6.18万吨1%中间罐结壳 5.15万吨0.5%连铸废品 2.51万吨99.5%合格坯500万吨图2.1 金属平衡表2.2 生产规模的确定该转炉车间的生产规模是年产合格铸坯500万吨。

2.2.1 转炉座数和大小的确定设计年产500万吨合格铸坯的转炉炼钢系统。

由金属平衡表计算可知,所需的转炉钢水年产量为546万吨。

2580m高炉毕业设计方案

2580m高炉毕业设计方案

2580m高炉毕业设计方案摘要本文针对炼钢高炉的设计及操作问题,提出了一种新型的高炉设计方案,该高炉的高度为2580m,可满足现代工业对于大产量、高效率的需求。

该设计方案有利于提高钢铁行业的生产效率和降低成本,同时也具有一定的环保优势。

本文就该高炉的整体结构、燃烧系统、废气处理等主要问题进行了详细的研究及探讨。

关键词:高炉、设计方案、燃烧系统、环保概述高炉是炼钢采用的主要设备之一,其主要作用是通过高温下的还原反应使矿石中的铁氧化物还原成金属铁,同时去除其中的杂质,从而获得较为纯净的钢铁。

现代工业对于钢铁的产量和品质要求越来越高,因此需要一种新型的高炉设计,以满足这些要求。

该设计方案将高炉的高度增加至2580m,以达到更高的生产效率和更低的成本。

一、高炉设计该高炉的整体结构采用了较为先进的不锈钢材料,以保证高炉的稳定性和耐用性。

高炉的总高度为2580m,直径为30m,容积为1.3万立方米。

高炉底部为圆形的锅炉炉室,其上方为上部炉身,最后是顶部炉喉和罩壳。

高炉的整体设计符合国际环保标准,能够有效地降低废气排放量。

二、燃烧系统该高炉采用了较为先进的燃烧系统,其中主要包括喷嘴和燃料供应系统等部分。

喷嘴采用了新型的旋转喷雾技术,以确保燃料的均匀分布;燃料供应系统采用了液态环保燃料,可有效地降低废气的排放量。

该燃烧系统能够从根本上解决传统高炉设计中存在的燃烧不充分和排放量过大等问题。

三、废气处理该高炉的废气处理系统采用了多级净化技术,可将排放的废气中的二氧化碳、硫化氢等有害物质有效地清除。

此外,该系统还采用了高效的氮氧化物治理技术,以确保排放的废气不会对环境造成危害。

该废气处理系统的设计既能够满足高炉燃烧排放的要求,又能够有效地保护环境。

结论2580m高炉是一种新型的高炉设计方案,旨在提高钢铁行业的生产效率和降低成本,同时也具有一定的环保优势。

该设计方案采用了先进的不锈钢材料、新型的喷嘴和燃料供应系统,以及多级净化技术,能够有效地降低废气排放量,保护环境。

年产250万吨炼钢生铁高炉车间设计说明书

年产250万吨炼钢生铁高炉车间设计说明书

年产250万吨炼钢生铁高炉车间设计说明书第一章文献综述钢铁是重要的金属材料之一,广泛应用于各个领域,因此钢铁生产水平是一个国家工业发展程度的标志之一。

工农业生产要大量的机械设备,这些都需要大量的工业材料。

钢铁工业为机械制造和工程建设提供最基本的材料,在国民经济中占有重要地位。

1.1概述钢铁作为基础工业材料自身价格相对低廉同时具有以下优点:(1)具有较高的强度及韧性。

(2)容易用于铸、锻、切削以及焊接等多种加工方式,可以得到任何结构、任何形态的工件。

(3)生产所需资源(铁矿石、煤炭、石灰石等)储量丰富,易于开采,生产成本较低。

(4)钢铁生产历史悠久,积累了大量成熟的生产技术,与其他材料工业相比,钢铁工业规模大、产量高、成本低。

所以在一定意义上说,一个国家的钢铁工业发展状况也反映其国民经济发展程度。

到目前为止,没有任何材料能够代替钢铁的地位。

1.1.1 高炉炼铁简史人类炼铁历史悠久,原始的炼铁炉是由石堆炼铁法改造而成的。

在土中挖一坑洞,周围用石块堆砌,称为地炉。

以木炭为燃料,利用自然风力进行燃烧、加热和还原铁矿石,产品为类似块状的海绵铁。

随着人力、畜力和水力鼓风方法的出现,产量提高,渣和铁也比较容易分离,产品质量有所提高。

随着科学技术的进步,炼铁工艺逐步得到改进和发展,到近现代工艺技术基本成熟。

1709年欧洲开始用焦炭炼铁,1776年高炉应用了蒸汽机带动的鼓风机,1832年回收炉顶煤气,1857年应用了考贝式热风炉,逐步形成了近代高炉雏形。

19世纪下半叶,高炉容积逐步扩大,设备结构趋向完善。

20世纪初至50年代,美国采用了人造富矿以及高压炉顶、综合鼓风技术,为高炉发展奠定了基础。

70年代卢森堡研制无料钟装料设备成功,为进一步扩大炉容和提高炉顶压力创造了条件。

60年代初,高炉最大炉容达2000m3 ,日产生铁4000t。

随着精料、超高压炉顶、高风温热风炉、燃料喷吹、富氧、脱湿和计算机控制等技术的发展,70年代初炉容增大至4000~5500m3 ,日产生铁10000t 以上。

高炉设计说明书

高炉设计说明书

高炉设计说明书1. 引言本文档旨在对高炉的设计进行详细说明,介绍高炉的结构、工作原理及相关参数等内容。

高炉作为冶金工业中广泛应用的设备,对于钢铁生产具有重要的作用。

设计合理的高炉能够提高产能、降低能耗,并保证生产质量和环境友好。

2. 结构概述高炉主要由以下部分组成:2.1 炉体炉体是高炉的主要部分,是炉料冶炼和反应的场所。

炉体一般分为上部、中部和下部三个部分。

上部主要是煤气的燃烧区,中部是高炉的主反应区,下部是铁水和渣的收集区。

2.2 炉缸炉缸是高炉的外包装,承受高炉的重力荷载,并起到保温和防腐蚀的作用。

炉缸一般采用耐火材料制作,能够承受高温的侵蚀。

2.3 冷却设备冷却设备主要用于冷却高炉的炉体和炉缸,防止温度过高导致设备损坏。

冷却设备一般采用循环水冷却的方式,通过冷却水循环流动来带走炉体和炉缸的热量。

2.4 其他设备除了上述主要部分外,高炉还包括一系列辅助设备,如鼓风机、煤气净化设备、渣铁分离系统等。

这些设备可以为高炉的运行提供必要的条件和支持。

3. 工作原理高炉的工作原理是将炼铁原料(一般为铁矿石、燃料和烧结矿等)投入到高炉中,经过高温下的还原、冶炼和分离等反应,最终得到铁水和炉渣。

具体工作原理可概括如下:1.鼓风机向高炉提供一定的氧气,使煤气得以充分燃烧,提供能量给高炉的反应。

2.燃料在高炉内燃烧产生煤气,煤气中的一氧化碳与铁矿石反应生成还原铁,并释放出大量的热量。

3.负责转移炉料和炉渣的料斗和渣口使物料进出炉体。

4.铁水和炉渣分别从高炉的不同出口流出,炉渣用于炼铁过程中的冶炼反应,而铁水则作为最终产物。

4. 参数说明高炉设计中需要考虑的参数包括但不限于以下内容:4.1 炉容量炉容量是指高炉能够承载的炉料数量。

炉容量的大小直接影响到高炉的产能。

4.2 炉料比例炉料比例是指高炉中铁矿石、燃料和烧结矿等炼铁原料的配比情况。

不同的炉料比例对产出铁水的质量和数量都有影响。

4.3 空气分配空气分配是指高炉燃烧区域空气的供给量,包括鼓风量、风口的开启情况等。

年产280万吨炼钢生铁3600高炉毕业设计

年产280万吨炼钢生铁3600高炉毕业设计

目录1 高炉地址选择 (1)1.1确定高炉地址要考虑的因素 (1)1.2高炉地址选择 (1)2 主要技术经济指标 (2)3 高炉长寿高效的设计理念 (4)3.1概述 (4)3.2优化高炉炉型 (4)3.3高炉炉缸内衬结构 (5)3.4炉体冷却结构 (5)3.5软水密闭循环冷却技术 (5)3.6自动化检测与控制系统 (6)4 高炉炉型设计与计算 (7)5 冷却设备选择 (10)5.1 概述 (10)5.2 高炉各部位冷却设备 (11)5.2.1 炉缸和炉底部位冷却设备选择 (11)5.2.2 炉腹、炉腰和炉身 (12)5.2.3炉喉 (14)6 炉衬选择 (15)6.1 高炉炉基的形状及材质 (15)6.1.1对高炉基础的要求 (15)6.1.2 高炉基础的形状、尺寸、材质结构 (15)6.2 高炉炉底和各段炉衬的选择、设计和砌筑 (16)6.2.1炉底、炉缸 (17)6.2.2炉腹、炉腰和炉身下部 (17)6.2.3炉身中上部 (17)6.2.4炉喉 (17)7 高炉供水量、水压的确定 (18)7.1供水量 (18)7.1.1冷却壁供水量 (18)7.1.2炉底水冷管供水量 (18)7.1.3炉体软水冷却总水量 (19)7.1.4风口小套冷却水供水量 (19)7.1.5风口二套冷却水供水量 (19)7.1.6炉喉水冷钢砖供水量 (20)7.1.7高炉工业水总量 (20)7.2 供水水压 (20)8 炉体软水密闭循环冷却系统设计 (22)8.1冷却设备连接方式 (22)8.2炉体软水密闭循环冷却系统 (22)8.3高炉软水密闭循环冷却系统工作原理 (22)8.3.1 膨胀罐的水位控制 (22)8.3.2膨胀管压力控制 (23)8.3.3事故操作 (24)结论 (26)参考文献 (27)致谢 (28)摘要高炉炼铁是获得生铁的主要手段,是钢铁冶金过程中最重要的环节之一,在国民经济建设中起着举足轻重的作用。

高炉车间设计(毕业设计)

高炉车间设计(毕业设计)

第一部分:高炉车间设计第一章:概述1.1 高炉炼铁生产工艺剂(焦炭、煤等)在高温下将铁矿石或含铁原料还原成液态流程。

高炉炼铁是用还原生铁的过程。

高炉本体是冶炼生铁的主体设备,它是由耐火材料砌筑的竖立式圆筒形炉体,最外层是由钢板制成的炉壳,在炉壳和耐火材料之间有冷却设备。

要完成高炉炼铁生产,除高炉本体外,还必须有其它附属系统的配合,它们是:(1)供料系统:包括贮矿槽、贮焦槽、称量与筛分等一系列设备,主要任务是及时、准确、稳定的将合格原料送入高炉。

(2)送风系统:包括鼓风机、热风炉及一系列管道和阀门等,主要任务是连续可靠地供给高炉冶炼所需热风。

(3)煤气除尘系统:包括煤气管道、重力除尘器、洗涤塔、文氏管等,主要任务是回收高炉煤气,使其含尘量降至10mg/m3以下,以满足用户对煤气质量地要求。

(4)渣铁处理系统:包括出铁场、开铁口机、堵渣口机、炉前吊车、铁水罐车及水冲渣设备等,主要任务是及时处理高炉排放出的渣、铁,保证高炉生产正常进行。

(5)喷吹燃料系统:包括原煤的储存、运输、煤粉的制备、收集及煤粉喷吹等系统,主要任务是均匀稳定的向高炉喷吹大量煤粉,以煤代焦,降低焦炭消耗。

1.2主要技术经济指标(1)高炉有效容积利用系数(ηv):高炉有效容积利用系数是指每昼夜生铁的产量P与高炉有效容积V有之比,即每昼夜,每1m³高炉有效容积的生铁产量。

ηv是高炉冶炼的一个重要指标,ηv俞大,高炉生产率俞大。

目前,一般大型高炉超过2.0 t / m3·d,一些先进高炉可达2.2~2.3 t / m3·d 。

小型高炉的ηv更高,100~300 m3高炉的利用系数为2.8~3.2t / m3·d。

本设计ηv =2.15 t / m3 ·d 。

(2)焦比(K):焦比即每昼夜焦碳消耗量Q K与每昼夜生铁产量P之比,即冶炼每吨生铁消耗的焦碳量。

K=Q K/P焦炭消耗量约占生铁成本的30%~40%,欲降低生铁成本必须降低焦比。

年产万吨生铁的高炉炼铁车间工艺设计

年产万吨生铁的高炉炼铁车间工艺设计

年产万吨生铁的高炉炼铁车间工艺设计1. 引言高炉炼铁车间是钢铁企业中重要的生产部门之一,承担着将铁矿石通过高温还原产生生铁的任务。

本文旨在设计一套年产万吨生铁的高炉炼铁车间工艺,以确保高效、稳定地生产高质量的生铁。

2. 工艺流程为了实现年产万吨生铁的目标,我们采用以下工艺流程:2.1 矿石预处理矿石预处理是高炉炼铁的第一步,目的是将原始矿石进行破碎、筛分、洗选等工序,以去除杂质并获得合适的粒度分布。

矿石预处理的具体工艺流程包括: 1.矿石破碎:通过破碎设备将原始矿石破碎至适合进一步处理的大小; 2. 筛分:经过筛分设备将破碎后的矿石按照粒度分布分级,分别进入不同的处理线路; 3. 洗选:利用洗选设备去除矿石中的杂质和尾矿,获得洗选后的矿石。

2.2 炼铁炉料配料炼铁炉料配料是将预处理好的矿石与其他辅助炼铁原料按照一定的配比混合,以形成合适的炉料,满足高炉内燃烧和还原的需求。

炼铁炉料配料的工艺流程包括:1. 矿石称量:将预处理后的矿石按照设定的配比进行称量,并放入配料设备中; 2. 辅料添加:将其他辅助炼铁原料如焦炭、石灰石等按照一定比例添加到配料设备中;3. 搅拌混合:通过搅拌设备对矿石和辅料进行混合,确保配料均匀。

2.3 高炉炉缸操作高炉炉缸操作是指将配料装入高炉内,并控制高炉内的温度、气氛和流动状态,使炉料逐渐进行还原反应并生成生铁。

高炉炉缸操作的工艺流程包括: 1. 入炉:将配料从炼铁炉料配料设备中装入高炉的料斗中,并通过配料装置均匀地投放到炉缸中; 2. 点火:在炉缸底部点火,通过引入适量的空气使焦炭燃烧,形成高温的还原气体; 3. 加料:在还原气氛下,定期加入炉料和燃料以保持高炉的运行; 4.排渣:定期排出炉缸内产生的废渣和不可燃物,以保持炉缸的畅通。

2.4 生铁产出在高炉炼铁的过程中,生铁通过熔化和融合的过程逐渐生成,并且由底部口出高炉。

生铁的质量受到炉料配比、温度和操作的影响,需要进行质量监控和调整。

高炉炼铁车间设计

高炉炼铁车间设计
第十六页,共25页。
优点: 可以共用一些设备和建筑物,节 省投资;高炉间距离近。
第十七页,共25页。
缺点: 热风炉距高炉远,热损失大,
并且热风炉靠近重力除尘器,劳 动条件不好。
第十八页,共25页。
2.4 岛式布置
第十九页,共25页。
岛式布置是指每座高炉和它的 热风炉、出铁场、铁水罐车停放线 等组成一个独立的体系,称为岛。
高炉与热风炉在同一列线,出铁场 也布置在高炉列线上成为一列,并 且与车间铁路线平和炉前起重机,共用 热风炉值班室和烟囱,节省投资;
2. 热风炉距高炉近,热损失少。
第十二页,共25页。
缺点:
运输能力低,在高炉数目多,产量高时, 运输不方便,特别是在一座高炉检修时车间 调度复杂。
第十三页,共25页。
2.3 并列式布置
第十四页,共25页。
图2-2 并列式高炉平面布置图
1-高炉;2-热风炉;3-重力除尘器;4-出铁场;5-高炉计器室;6-休 息室;7-水渣池;8-卷扬机室;9-热风炉计器;10-烟囱;11-铁水罐
车停放线;12-洗涤塔
第十五页,共25页。
主要特点:
高炉与热风炉分设于两条列线 上,出铁场布置在高炉列线,车间 铁路线与高炉列线平行。
高炉炼铁车间设计
第一页,共25页。
1 高炉座数及容积的确定
1.1 生铁产量的确定
第二页,共25页。
设计任务书中规定的生铁年产量是确定高炉炼 铁车间年产量的依据。
如果任务书给出多种品种生铁的年产量如 制钢铁与铸造铁,则应换算成同一品种的生铁。 一般是将铸造铁乘以换算系数,换算为同一品 种的制钢铁,求出总产量。
第七页,共25页。
2.1 高炉炼铁车间平面布置应遵循的原则

高炉本体设计

高炉本体设计
选取:
h0 1.5m
(5)炉腰直径、炉腹角、炉腹高度 选取: 则: 取
D
d
1.13
D 1.13 9.Biblioteka 11.07D 11m
选取: 则: 取 校核
8030 '
Dd h2 tg 80 30 ' 3.58 2
h2 3.5m
2h2 2 3.5 tg 5.83 D d 11 9.8
4bP hz 2 N c r铁 d
式中: p——日产生铁量,t; b ——生铁产量波动系数,一般取1.2; N ——昼夜出铁次数,一般2h出一次铁; r铁——铁水密度,7.1t/m3;
c——渣口以下炉缸容积利用系数,一般取0.55~0.60,
炉容大、渣量大时取低值; d ——炉缸直径,m;
2. 炉缸:
(1)渣铁的流动、炉内渣铁液面的升降, 大量的煤气流等高温流体对炉衬的冲刷是 主要的破坏因素; (2)化学侵蚀; (3)风口带为最高温度区。
取: 校核:
d 9.8m
Vu 2018 26 .75 合理 A 9 .8 2 4
②炉缸高度:
渣口高度:
bP hz 1.27 2 NC 铁 d 1.27 1.20 4035 1.64 2 10 0.55 7.1 9.8
取 hz 1.7m
风口高度:
高炉容积:
Vu V1 V2 V3 V4 V5 264.01 297.65 209.08 1156 04 88.36 2015 2m 3 . .
误差:
Vu V 2015 2 2018 . V 0.14% ' 2018 Vu < 1%
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北联合大学轻工学院QINGGONG COLLEGE, HEBEI UNITED UNIVERSITY毕业设计说明书设计题目:设计一座年产生铁275万吨的高炉车间学号:200915090113专业班级:09冶金1班学部:材料化工部摘要本设计是根据唐山地区条件设计的一个年产275万吨的高炉炼铁车间。

整个车间的平面布置采用半岛式平面布置形式。

设计的高炉有效容积是1982m3。

其中高炉的炉衬设计方法采用的是均衡炉衬的方法,根据不同的冶炼条件砌筑不同的砖。

上部采用的砖型有高砖,下部采用的是全碳砖炉底。

冷却方式:炉身部分采用板壁结合的方式炉腰部分采用凸台冷却壁;炉缸和炉底采用光面冷却壁和水冷炉底结构。

设计的热风炉采用传统改进型内燃式热风炉。

蓄热式和燃烧室在同一炉壳内,中间用隔热墙隔开;采用眼睛型燃烧室。

这部分同时包括热风炉各种设备和阀门的选取计算。

上料系统采用的皮带机连续上料,同时增加了皮带的速度和宽度,满足高炉冶炼的要求。

炉顶装料设备采用串罐式无料钟炉顶装料。

喷吹系统增加了煤的数量,采用了单管路串罐式直接喷吹。

煤气处理设备采用的是湿法除尘设备。

所涉及的计算有高炉和热风炉尺寸的计算、高炉的物料平衡和热平衡计算以及热风炉风机的选择等。

关键词:高炉;热风炉;湿法除尘;风机;无钟炉顶AbstractA blast furnace plant of 2.75 million tons product annual was desigened in the in the paper according to Tangshan area condition. The horizontal layout of the whole plant is peninsula type layout.The dischargeable capacity of the BF in this design is 1982m3.among it, the BF lining adopted equalization lining method and was made of alumina brick and chayote in upper of BF and all carbon brick in the bottom of BF.The cooling methods were batten wall style in shaft, boss-cooling stave in bosh, smooth cooling stave in hearth and water-cooling stave in bottom of hearth.The air-stove was modified tradition style of internal combustion. The checker chamber and combustion chamber were in the same furnace shell and divided by heat insulation wall. And the combustion chamber was eye-style. Furthermore this part of the paper included the selection of various equipments and valves.The charging equipment used the belt machine to continuing supplying charge and the belt velocity and width were increased in order to meet the BF melting needs. The furnace roof equipment used string pot style of non-bell furnace roof. Injection system increased amount of coal and use single valve line sting pot direct injection. The gas treating system used hydro filter equipment.The computes in the paper have size of BF and air-stave, charge balance, heat balance and fan of air-stave choice, etc.Key word: blast furnace, air-stove, hydro filter, fan, non-bell furnace roof目录摘要 (I)Abstract (II)第一部分设计说明书 (1)引言 (2)第1章绪论 (4)1.1 概述 (4)1.2 高炉生产主要经济技术指标 (4)1.3 高炉冶炼现状及其发展 (6)1.4 本设计采用的新技术 (7)第2章高炉车间设计 (8)2.1 厂址的选择 (8)2.2 高炉炼铁车间平面布置应遵循的原则 (10)2.3 车间平面布置形式 (10)第3章高炉本体设计 (11)3.1 高炉数目及总容积的确定 (11)3.2 炉型设计 (12)3.3 参数 (15)3.4 炉衬设计及高炉基础 (16)3.4.1 高炉炉基的形状及材质 (16)3.4.2高炉炉底和各段炉衬的选择、设计和砌筑 (18)3.5高炉冷却及钢结构 (20)3.5.1炉底冷却型式选择 (20)3.5.2高炉各部位冷却设备的选择 (21)3.5.3高炉供水量、水压的确定 (22)3.5.4风口数目及直径 (24)3.5.5铁口 (24)3.5.6炉壳及钢结构确定 (25)第4章原料系统 (27)4.1 焦矿槽容积的确定 (27)4.1.1 贮矿槽和附矿槽的布置、容积及数目的确定 (27)4.1.2 焦矿槽的布置、容积及数目的确定 (28)4.2 槽上、槽下设备及参数的确定 (28)4.2.1 槽上设备 (28)4.2.2 槽下设备及参数选择 (28)4.3 皮带上料机能力的确定 (29)第5章送风系统 (31)5.1 高炉鼓风机的选择 (31)5.1.1高炉入炉风量 (31)5.1.2 鼓风机风量 (31)5.1.3 高炉鼓风压力 (32)5.1.4 鼓风机的选择 (32)5.2 热风炉 (33)5.2.1 热风炉座数的确定 (33)5.2.2 热风炉工艺布置 (33)5.2.3 热风炉型式的确定 (33)5.2.4 热风炉主要尺寸的计算 (33)5.2.5 热风炉设备 (36)5.2.6 热风炉管道及阀门 (36)第6章炉顶设备 (40)6.1 炉顶基本结构: (40)6.2 布料方式 (41)6.3 基本参数的计算 (41)第7章煤气处理系统 (43)7.1 荒煤气管道 (43)7.1.1导出管 (43)7.1.2上升管 (43)7.1.3下降管 (44)7.2 除尘系统的选择和主要设备尺寸的确定 (44)7.2.1 粗除尘装置 (44)7.2.2 半精细除尘装置 (46)7.2.3 精细除尘装置 (46)7.2.4 布袋除尘器 (46)7.2.5 附属设备 (47)第8章渣铁处理系统 (48)8.1 风口平台及出铁场 (48)8.2 炉渣处理设备 (49)8.3 铁水处理设备 (49)8.3.1 铁水罐车 (49)8.3.2 铸铁机 (50)8.3.3 铁水炉外脱硫设备 (50)8.4 铁沟流咀布置 (50)8.4.1 渣铁沟的设计 (50)8.4.2 流咀的设计 (51)8.5 炉前设备的选择 (51)8.5.1 开铁口机 (51)8.5.2 堵铁口泥炮 (51)8.5.3 堵渣机 (52)8.5.4 换风口机 (52)8.5.5 炉前吊车 (52)第9章高炉喷吹煤粉系统 (53)9.1 煤粉制备系统 (53)9.1.1 煤粉制备工艺 (53)9.1.2 煤粉喷吹系统 (55)9.2 喷吹工艺流程 (57)第二部分物料平衡及热平衡计算 (58)第10章原始条件 (59)1.1 原燃料条件 (59)1.2主要技术经济指标 (61)第11章工艺计算 (63)2.1 配料计算 (63)2.1.1原燃料成分的整理 (63)2.1.2预定铁水成分(%) (63)2.1.3 原燃料的消耗 (63)2.1.4渣量及炉渣成分的计算 (64)2.1.5生铁成分的校对 (66)2.2 物料平衡 (66)2.2.1 风量的计算 (66)2.2.2 炉顶煤气成分的计算 (67)2.2.3 物料平衡表的编制 (69)2.3 热平衡计算 (70)2.3.1 热收入的计算 (70)2.3.2 热支出的计算 (71)2.3.3 热平衡表的编制 (74)结论 (76)参考文献 (78)致谢 (80)第一部分设计说明书第一部分设计说明书引言进入21世纪,国际钢铁工业的共同的时代命题是市场竞争力和可持续发展问题。

在走新型工业化道路,落实科学发展观和建设资源节约环境友好型社会的时代背景下,提高质量、经济效益,降低资源、能源消耗,减轻地球环境负荷,走绿色化道路,实现可持续发展,将是我国钢铁工业今后巨大的发展空间。

以较少的能源、资源消耗,合理的钢产量规模,高效的产品,以及较低的地球环境负荷支持我国的工业化过程是我国钢铁工业的历史责任。

钢铁工业是国民经济的重要基础产业之一,“对于经济竞争力和国家安全都是至关重要的”,是“国家的经济命脉”。

21世纪,钢铁工业是“很有魅力的工业”,是世界上最高产、高效和技术先进的工业之一,钢铁产业是一个强大的、充满活力的经济行业,并以环境友好、成本经济的方式为用户提供高质量的钢材。

21世纪以来,国际钢铁工业的第二个高速增长期是由发展中国家,特别是中国钢铁工业崛起推动的。

本世纪初的5年,世界钢产量增加2.848亿吨,其中中国增加量占78.6%。

中国钢铁工业的发展经历了曲折、徘徊和崛起的历史进程。

2005年中国粗钢产量达到35239万吨,2007年中国粗钢产量又进一步跃升到4.8亿吨,约占世界粗钢产量的35%。

这一历史进程是艰辛而丰富多彩的。

在21世纪,我国高炉炼铁将继续在结构调整中发展。

高炉结构调整不能简单的概括为大型化,应该根据企业生产规模、资源条件来确定高炉炉容。

从目前我国的实际情况来看,高炉的座数必须大大减少,平均炉容大型化是必然趋势。

高炉大型化,有利于提高劳动生产率、便于生产组织和管理,提高铁水质量,有利于减少热量损失、降低能耗、减少污染点,是污染容易集中管理,有利于环境保护。

相关文档
最新文档