湾里区高级中学2018-2019学年高二上学期第一次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湾里区高级中学2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. S n 是等差数列{a n }的前n 项和,若3a 8-2a 7=4,则下列结论正确的是( ) A .S 18=72 B .S 19=76 C .S 20=80
D .S 21=84
2. (理)已知tan α=2,则=( )
A .
B .
C .
D .
3. 如图所示,函数y=|2x ﹣2|的图象是( )
A .
B .
C .
D .
4. 若函数()()22f x x πϕϕ⎛
⎫=+< ⎪⎝
⎭的图象关于直线12x π=对称,且当
12172123x x π
π⎛⎫∈-- ⎪⎝⎭
,,,12x x ≠时,()()12f x f x =,则()12f x x +等于( )
A
B D 5. 已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(∁U A )∩(∁U B )=( ) A .{5,8}
B .{7,9}
C .{0,1,3}
D .{2,4,6}
6. 下列命题的说法错误的是( )
A .若复合命题p ∧q 为假命题,则p ,q 都是假命题
B .“x=1”是“x 2﹣3x+2=0”的充分不必要条件
C .对于命题p :∀x ∈R ,x 2+x+1>0 则¬p :∃x ∈R ,x 2+x+1≤0
D .命题“若x 2﹣3x+2=0,则x=1”的逆否命题为:“若x ≠1,则x 2﹣3x+2≠0” 7. 若函数f (x )=﹣2x 3+ax 2+1存在唯一的零点,则实数a 的取值范围为( ) A .[0,+∞) B .[0,3] C .(﹣3,0]
D .(﹣3,+∞)
8. 函数f (x )=Asin (ωx+φ)(其中A >0,|φ|<)的图象如图所示,为了得到g (x )=sin2x 的图象,则
只要将f (x )的图象( )
A .向右平移个单位长度
B .向右平移个单位长度
C .向左平移
个单位长度 D .向左平移
个单位长度
9. 如图,在等腰梯形ABCD 中,AB=2DC=2,∠DAB=60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED 、EC 向上折起,使A 、B 重合于点P ,则P ﹣DCE 三棱锥的外接球的体积为( )
A .
B .
C .
D .
10.下列4个命题:
①命题“若x 2﹣x=0,则x=1”的逆否命题为“若x ≠1,则x 2﹣x ≠0”; ②若“¬p 或q ”是假命题,则“p 且¬q ”是真命题;
③若p :x (x ﹣2)≤0,q :log 2x ≤1,则p 是q 的充要条件;
④若命题p :存在x ∈R ,使得2x <x 2,则¬p :任意x ∈R ,均有2x ≥x 2; 其中正确命题的个数是( ) A .1个 B .2个 C .3个 D .4个 11.下列各组函数为同一函数的是( )
A .f (x )=1;g (x )=
B .f (x )=x ﹣2;g (x )=
C .f (x )=|x|;g (x )=
D .f (x )=

;g (x )=
12.若函数y=|x|(1﹣x )在区间A 上是增函数,那么区间A 最大为( )
A .(﹣∞,0)
B .
C .[0,+∞)
D .
二、填空题
13.下列命题:
①函数y=sinx 和y=tanx 在第一象限都是增函数;
②若函数f (x )在[a ,b]上满足f (a )f (b )<0,函数f (x )在(a ,b )上至少有一个零点; ③数列{a n }为等差数列,设数列{a n }的前n 项和为S n ,S 10>0,S 11<0,S n 最大值为S 5;
④在△ABC 中,A >B 的充要条件是cos2A <cos2B ;
⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强.
其中正确命题的序号是 (把所有正确命题的序号都写上).
14.已知条件p :{x||x ﹣a|<3},条件q :{x|x 2﹣2x ﹣3<0},且q 是p 的充分不必要条件,则a 的取值范围是 .
15.若等比数列{a n }的前n 项和为S n ,且
,则
= .
16.函数2
()2(1)2f x x a x =+-+在区间(,4]-∞上递减,则实数的取值范围是 . 17.函数f (x )=2a x+1﹣3(a >0,且a ≠1)的图象经过的定点坐标是 . 18.设不等式组
表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2
的概率是 .
三、解答题
19.如图,在四棱锥P ﹣ABCD 中,AD ∥BC ,AB ⊥AD ,AB ⊥PA ,BC=2AB=2AD=4BE ,平面PAB ⊥平面ABCD ,
(Ⅰ)求证:平面PED ⊥平面PAC ;
(Ⅱ)若直线PE 与平面PAC 所成的角的正弦值为
,求二面角A ﹣PC ﹣D 的平面角的余弦值.
20.在平面直角坐标系xOy中,经过点且斜率为k的直线l与椭圆有两个不同的交点
P和Q.
(Ⅰ)求k的取值范围;
(Ⅱ)设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请说明理由.
21.已知函数f(x)=sin2x•sinφ+cos2x•cosφ+sin(π﹣φ)(0<φ<π),其图象过点(,.)
(Ⅰ)求函数f(x)在[0,π]上的单调递减区间;
(Ⅱ)若x0∈(,π),sinx0=,求f(x0)的值.
22.已知命题p:不等式|x﹣1|>m﹣1的解集为R,命题q:f(x)=﹣(5﹣2m)x是减函数,若p或q为真命题,p且q为假命题,求实数m的取值范围.
23.为了了解湖南各景点在大众中的熟知度,随机对15~65岁的人群抽样了n人,回答问题“湖南省有哪几个”
(Ⅱ)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?(Ⅲ)在(Ⅱ)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.
24.在极坐标系中,圆C的极坐标方程为:ρ2=4ρ(cosθ+sinθ)﹣6.若以极点O为原点,极轴所在直线为x 轴建立平面直角坐标系.
(Ⅰ)求圆C的参数方程;
(Ⅱ)在直角坐标系中,点P(x,y)是圆C上动点,试求x+y的最大值,并求出此时点P的直角坐标.
湾里区高级中学2018-2019学年高二上学期第一次月考试卷数学(参考答案)
一、选择题
1. 【答案】
【解析】选B.∵3a 8-2a 7=4, ∴3(a 1+7d )-2(a 1+6d )=4,
即a 1+9d =4,S 18=18a 1+18×17d 2=18(a 1+17
2d )不恒为常数.
S 19=19a 1+19×18d
2=19(a 1+9d )=76,
同理S 20,S 21均不恒为常数,故选B. 2. 【答案】D
【解析】解:∵tan α=2,∴ ===.
故选D .
3. 【答案】B
【解析】解:∵y=|2x
﹣2|=

∴x=1时,y=0, x ≠1时,y >0. 故选B .
【点评】本题考查指数函数的图象和性质,解题时要结合图象进行求解.
4. 【答案】C 【




点:函数的图象与性质.
【方法点晴】本题主要考查函数的图象与性质,涉及数形结合思想、函数与方程思想、转化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型.首先利用数形结合思想和转化化归思想可得
()
2122k k π
π
ϕπ⨯
+=
+∈Z ,解得3π
ϕ=
,从而()23f x x π⎛
⎫=+ ⎪⎝
⎭,再次利用数形结合思想和转化化归思想
可得()()()()1122x f x x f x ,,,关于直线11
12x π=-对称,可得12116
x x π
+=-,从而
()
12113
3f x x ππ⎛⎫
+=-+= ⎪⎝⎭.
5. 【答案】B
【解析】解:由题义知,全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},
所以C U A={2,4,6,7,9},C U B={0,1,3,7,9}, 所以(C U A )∩(C U B )={7,9}
故选B
6. 【答案】A
【解析】解:A .复合命题p ∧q 为假命题,则p ,q 至少有一个命题为假命题,因此不正确; B .由x 2﹣3x+2=0,解得x=1,2,因此“x=1”是“x 2﹣3x+2=0”的充分不必要条件,正确; C .对于命题p :∀x ∈R ,x 2+x+1>0 则¬p :∃x ∈R ,x 2+x+1≤0,正确;
D .命题“若x 2﹣3x+2=0,则x=1”的逆否命题为:“若x ≠1,则x 2﹣3x+2≠0”,正确. 故选:A .
7. 【答案】 D
【解析】解:令f(x)=﹣2x3+ax2+1=0,
易知当x=0时上式不成立;
故a==2x﹣,
令g(x)=2x﹣,则g′(x)=2+=2,
故g(x)在(﹣∞,﹣1)上是增函数,
在(﹣1,0)上是减函数,在(0,+∞)上是增函数;
故作g(x)=2x﹣的图象如下,

g(﹣1)=﹣2﹣1=﹣3,
故结合图象可知,a>﹣3时,
方程a=2x﹣有且只有一个解,
即函数f(x)=﹣2x3+ax2+1存在唯一的零点,
故选:D.
8.【答案】A
【解析】解:根据函数的图象:A=1

解得:T=π
则:ω=2
当x=,f()=sin(+φ)=0
解得:
所以:f(x)=sin(2x+)
要得到g(x)=sin2x的图象只需将函数图象向右平移个单位即可.
故选:A
【点评】本题考查的知识要点:函数图象的平移变换,函数解析式的求法.属于基础题型
9.【答案】C
【解析】解:易证所得三棱锥为正四面体,它的棱长为1,
故外接球半径为,外接球的体积为,
故选C.
【点评】本题考查球的内接多面体,球的体积等知识,考查逻辑思维能力,是中档题.
10.【答案】C
【解析】解:①命题“若x2﹣x=0,则x=1”的逆否命题为“若x≠1,则x2﹣x≠0”,①正确;
②若“¬p或q”是假命题,则¬p、q均为假命题,∴p、¬q均为真命题,“p且¬q”是真命题,②正确;
③由p:x(x﹣2)≤0,得0≤x≤2,
由q:log2x≤1,得0<x≤2,则p是q的必要不充分条件,③错误;
④若命题p:存在x∈R,使得2x<x2,则¬p:任意x∈R,均有2x≥x2,④正确.
∴正确的命题有3个.
故选:C.
11.【答案】C
【解析】解:A、函数f(x)的定义域为R,函数g(x)的定义域为{x|x≠0},定义域不同,故不是相同函数;
B、函数f(x)的定义域为R,g(x)的定义域为{x|x≠﹣2},定义域不同,故不是相同函数;
C、因为,故两函数相同;
D、函数f(x)的定义域为{x|x≥1},函数g(x)的定义域为{x|x≤1或x≥1},定义域不同,故不是相同函数.
综上可得,C项正确.
故选:C.
12.【答案】B
【解析】解:y=|x|(1﹣x)=,
再结合二次函数图象可知
函数y=|x|(1﹣x)的单调递增区间是:.
故选:B.
二、填空题
13.【答案】②③④⑤
【解析】解:①函数y=sinx和y=tanx在第一象限都是增函数,不正确,取x=,,但是
,,因此不是单调递增函数;
②若函数f(x)在[a,b]上满足f(a)f(b)<0,函数f(x)在(a,b)上至少有一个零点,正确;
③数列{a n}为等差数列,设数列{a n}的前n项和为S n,S10>0,S11<0,∴=5(a6+a5)>0,
=11a6<0,
∴a5+a6>0,a6<0,∴a5>0.因此S n最大值为S5,正确;
④在△ABC中,cos2A﹣cos2B=﹣2sin(A+B)sin(A﹣B)=2sin(A+B)sin(B﹣A)<0⇔A>B,因此正确;
⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强,正确.
其中正确命题的序号是②③④⑤.
【点评】本题综合考查了三角函数的单调性、函数零点存在判定定理、等差数列的性质、两角和差化积公式、线性回归分析,考查了推理能力与计算能力,属于难题.
14.【答案】[0,2].
【解析】解:命题p:||x﹣a|<3,解得a﹣3<x<a+3,即p=(a﹣3,a+3);
命题q:x2﹣2x﹣3<0,解得﹣1<x<3,即q=(﹣1,3).
∵q是p的充分不必要条件,
∴q⊊p,
∴,
解得0≤a≤2,
则实数a的取值范围是[0,2].
故答案为:[0,2].
【点评】本题考查了绝对值不等式的解法、一元二次不等式的解法、充分必要条件的判定与应用,考查了推理能力与计算能力,属于中档题
15.【答案】.
【解析】解:∵等比数列{a n}的前n项和为S n,且,
∴S4=5S2,又S2,S4﹣S2,S6﹣S4成等比数列,
∴(S4﹣S2)2=S2(S6﹣S4),
∴(5S2﹣S2)2=S2(S6﹣5S2),
解得S6=21S2,
∴==.
故答案为:.
【点评】本题考查等比数列的求和公式和等比数列的性质,用S2表示S4和S6是解决问题的关键,属中档题.a≤-
16.【答案】3
【解析】
试题分析:函数()f x 图象开口向上,对称轴为1x a =-,函数在区间(,4]-∞上递减,所以14,3a a -≥≤-. 考点:二次函数图象与性质. 17.【答案】 (﹣1,﹣1) .
【解析】解:由指数幂的性质可知,令x+1=0得x=﹣1,此时f (﹣1)=2﹣3=﹣1, 即函数f (x )的图象经过的定点坐标是(﹣1,﹣1), 故答案为:(﹣1,﹣1).
18.【答案】

【解析】解:到坐标原点的距离大于2的点,位于以原点O 为圆心、半径为2的圆外
区域D :
表示正方形OABC ,(如图)
其中O 为坐标原点,A (2,0),B (2,2),C (0,2). 因此在区域D 内随机取一个点P ,
则P 点到坐标原点的距离大于2时,点P 位于图中正方形OABC 内, 且在扇形OAC 的外部,如图中的阴影部分
∵S 正方形OABC =22=4,S 阴影=S 正方形OABC ﹣S 扇形OAC =4﹣π•22
=4﹣π
∴所求概率为P==
故答案为:
【点评】本题给出不等式组表示的平面区域,求在区域内投点使该到原点距离大于2的概率,着重考查了二元一次不等式组表示的平面区域和几何概型等知识点,属于基础题.
三、解答题
19.【答案】
【解析】解:(Ⅰ)∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,AB⊥PA
∴PA⊥平面ABCD
结合AB⊥AD,可得
分别以AB、AD、AP为x轴、y轴、z轴,建立空间直角坐标系o﹣xyz,如图所示…
可得A(0,0,0)D(0,2,0),E(2,1,0),C(2,4,0),
P(0,0,λ)(λ>0)
∴,,
得,,
∴DE⊥AC且DE⊥AP,
∵AC、AP是平面PAC内的相交直线,∴ED⊥平面PAC.
∵ED⊂平面PED∴平面PED⊥平面PAC
(Ⅱ)由(Ⅰ)得平面PAC的一个法向量是,
设直线PE与平面PAC所成的角为θ,
则,解之
得λ=±2
∵λ>0,∴λ=2,可得P的坐标为(0,0,2)
设平面PCD的一个法向量为=(x0,y0,z0),,
由,,得到,
令x0=1,可得y0=z0=﹣1,得=(1,﹣1,﹣1)
∴cos<,
由图形可得二面角A﹣PC﹣D的平面角是锐角,
∴二面角A﹣PC﹣D的平面角的余弦值为.
【点评】本题在四棱锥中证明面面垂直,并且在线面所成角的正弦情况下求二面角A﹣PC﹣D的余弦值.着重考查了线面垂直、面面垂直的判定定理和利用空间向量研究直线与平面所成角和二面角大小的方法,属于中档题.
20.【答案】
【解析】解:(Ⅰ)由已知条件,直线l的方程为,
代入椭圆方程得.
整理得①
直线l与椭圆有两个不同的交点P和Q,等价于①的判别式△=,
解得或.即k的取值范围为.
(Ⅱ)设P(x1,y1),Q(x2,y2),则,
由方程①,.②
又.③
而.
所以与共线等价于,
将②③代入上式,解得.
由(Ⅰ)知或,
故没有符合题意的常数k.
【点评】本题主要考查直线和椭圆相交的性质,2个向量共线的条件,体现了转化的数学而思想,属于中档题.
21.【答案】
【解析】(本小题满分12分)φ
解:(Ⅰ)f(x)=+﹣
=+
=)
由f(x)图象过点()知:
所以:φ=
所以f(x)=
令(k∈Z)
即:
所以:函数f(x)在[0,π]上的单调区间为:
(Ⅱ)因为x0∈(π,2π),
则:
2x0∈(π,2π)
则:=
sin
所以=)=
【点评】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数单调区间的确定,三角函数的求值问题,属于基础题型.
22.【答案】
【解析】解:不等式|x﹣1|>m﹣1的解集为R,须m﹣1<0,即p是真命题,m<1
f(x)=﹣(5﹣2m)x是减函数,须5﹣2m>1即q是真命题,m<2,
由于p或q为真命题,p且q为假命题,故p、q中一个真,另一个为假命题
因此,1≤m<2.
【点评】本题考查在数轴上理解绝对值的几何意义,指数函数的单调性与特殊点,分类讨论思想,化简这两个命题是解题的关键.属中档题.
23.【答案】
【解析】解:(Ⅰ)由频率表中第4组数据可知,第4组总人数为,
再结合频率分布直方图可知n=,
∴a=100×0.01×10×0.5=5,b=100×0.03×10×0.9=27,

(Ⅱ)因为第2,3,4组回答正确的人数共有54人,
∴利用分层抽样在54人中抽取6人,每组分别抽取的人数为:第2组:人;第3组:人;
第4组:人
(Ⅲ)设第2组2人为:A1,A2;第3组3人为:B1,B2,B3;第4组1人为:C1.
则从6人中随机抽取2人的所有可能的结果为:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,C1),
(A2,B1),(A2,B2),(A2,B3),(A2,C1),(B1,B2),(B1,B3),(B1,C1),(B2,B3),(B2,C1),(B3,C1)共15个基本事件,
其中恰好没有第3组人共3个基本事件,
∴所抽取的人中恰好没有第3组人的概率是:.
【点评】本题考查了频率分布表与频率分布直方图,考查了古典概型的概率计算,解题的关键是读懂频率分布直方图.
24.【答案】
【解析】(本小题满分10分)选修4﹣4:坐标系与参数方程
解:(Ⅰ)因为ρ2=4ρ(cosθ+sinθ)﹣6,
所以x2+y2=4x+4y﹣6,
所以x2+y2﹣4x﹣4y+6=0,
即(x﹣2)2+(y﹣2)2=2为圆C的普通方程.…
所以所求的圆C的参数方程为(θ为参数).…
(Ⅱ)由(Ⅰ)可得,…
当时,即点P的直角坐标为(3,3)时,…x+y取到最大值为6.…。

相关文档
最新文档