人教初中数学九上第24章《圆小结与复习》教案 (公开课获奖)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十四章《圆》
一、本章知识结构框图
二、本章知识点概括
(一)圆的有关概念
1、圆(两种定义)、圆心、半径;
2、圆的确定条件:
①圆心确定圆的位置,半径确定圆的大小;
②不在同一直线上的三个点确定一个圆。

3、弦、直径;
4、圆弧(弧)、半圆、优弧、劣弧;
5、等圆、等弧,同心圆;
6、圆心角、圆周角;
7、圆内接多边形、多边形的外接圆;
8、割线、切线、切点、切线长;
9、反证法:假设命题的结论不成立,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立。

(二)圆的基本性质
1、圆的对称性
①圆是轴对称图形,任何一条直径所在的直线都是它的对称轴。

*②圆是中心对称图形,圆心是对称中心。

2、圆的弦、弧、直径的关系
①垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

* [引申] 一条直线若具有:Ⅰ、经过圆心;Ⅱ、垂直于弦;Ⅲ、平分弦;Ⅳ、平分弦所对的劣弧;Ⅴ、平分弦所对的优弧,这五个性质中的任何两条,必具有其余三条性质,即“知二推三”。

(注意:具有Ⅰ和Ⅲ时,应除去弦为直径的情况)
3、弧、弦、圆心角的关系
①在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

②在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等。

③在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。

归纳:在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等。

4、圆周角的性质
①定理:在同圆或等圆中,同弧或等弧所对圆周角相等,都等于这条弧所对的圆心角的一半。

②在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等。

③推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。

(三)与圆有关的位置关系
1、点与圆的位置关系
设⊙O的半径为r,OP=d则:
点P在圆内d<r;点P在圆上d=r;点P在圆外d>r.
2、直线与圆的位置关系
设⊙O的半径为r,圆心O到l的距离为d则:
直线l与⊙O相交 d<r 直线和圆有两个公共点;
直线l与⊙O相切 d=r 直线和圆只有一个公共点;
直线l与⊙O相离 d>r 直线和圆没有公共点。

3、圆与圆的位置关系
①如果两圆没有公共点,那么这两个圆相离,分为外离和内含;
如果两圆只有一个公共点,那么这两个圆相切,分为外切和内切;
如果两个圆有两个公共点,那么这两个圆相交。

②设⊙O1的半径为r1,⊙O2半径为r2,圆心距为d,则:
两圆外离d>r2+r1;
两圆外切d=r2+r1;
两圆相交 r2-r1<d<r2+r1(r2≥r1);
两圆内切d=r2-r1(r2>r1);
两圆内含0≤d<r2-r1(r2>r1)。

(四)圆的切线
1、定义:和圆只有一个公共点的直线是圆的切线。

2、性质:
①圆的切线到圆心的距离等于半径。

②定理:圆的切线垂直于过切点的半径。

③切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。

3、判定:
①利用切线的定义。

②到圆心的距离等于半径的直线是圆的切线。

③定理:经过半径的外端并且和这条半径垂直的直线是圆的切线。

(五)圆与三角形
1、三角形的外接圆
(1)定义:经过三角形的三个顶点的圆叫做三角形的外接圆。

(2)三角形外心的性质:①是三角形三条边垂直平分线的交点;②到三角形各顶点距离相
等;③外心的位置:锐角三角形外心在三角形内,直角三角形的外心恰好是斜边的中点,钝角三角形外心在三角形外面。

2、三角形的内切圆
(1)定义:与三角形各边都相切的圆叫做三角形的内切圆。

(2)三角形内心的性质:①是三角形角平分线的交点;②到三角形各边的距离相等;③都在三角形内。

(六)圆与四边形
1、由圆周角定理可以得到:圆内接四边形对角互补。

*2、由切线长定理可以得到:圆的外切四边形两组对边的和相等。

(七)圆与正多边形 1、正多边形的定义
各边相等,各角也相等的多边形叫做正多边形,其外接圆的圆心叫做这个正多边形的中心。

2、正多边形与圆的关系
把圆分成n (n ≥3)等份,依次连结各分点所得的多边形是这个圆的内接正n 边形,这时圆叫做正n 边形的外接圆。

3、正多边形的有关计算(11个量)
边数n ,内角和,每个内角度数,外角和,每个外角度数,中心角αn ,边长a n ,半径R n ,边心距r n ,周长l n ,面积S n (S n =1/2l n r n ) 4、正多边形的画法
画正多边形的步骤:首先画出符合要求的圆;然后用量角器或用尺规等分圆;最后顺次连结各等分点。

如用尺规等分圆后作正四、八边形与正六、三、十二边形。

注意减少累积误差。

(八)弧长、扇形的面积、圆锥的侧面积和全面积公式
180n R
l π=
弧长 2
360
n R S π扇形
==1
2
lR (其中l 为弧长) S rl π圆锥侧= (其中l 为母线长)
(九)直角三角形的一个判定
如果三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形。

(十)本章常见的辅助线
课 后 反 思
15.2.2 分式的加减
教学目标
明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点
1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法
教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面.
教学过程
例、习题的意图分析
1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.
2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入
1.说出分数混合运算的顺序.
2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解
(教科书)例7 计算
[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.
(教科书)例8 计算:
[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:
(1) x
x x x x 22
)242(2+÷-+- (2))11()(
b a a b b b a a -÷--- (3))2
1
22()41223(
2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(y
x x
y x y +--+ (2)22242)44122(
a
a
a a a a a a a a -÷-⋅+----+
(3)zx
yz xy xy
z y x ++⋅++)111(
2.计算24
)2121(a
a a ÷--+,并求出当=a -1的值.
六、答案:
四、(1)2x (2)b
a ab
- (3)3 五、1.(1)
2
2y x xy
- (2)21-a (3)z 1
2.原式=4
22
--a a ,当=a -1时,原式=-31.
13.3.1 等腰三角形
教学目标
(一)教学知识点
1.等腰三角形的概念. 2.等腰三角形的性质.
3.等腰三角形的概念及性质的应用. (二)能力训练要求
1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. (三)情感与价值观要求 通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.
重点难点
重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.
难点:等腰三角形三线合一的性质的理解及其应用. 教学方法 探究归纳法. 教具准备
师:多媒体课件、投影仪; 生:硬纸、剪刀. 教学过程
Ⅰ.提出问题,创设情境
[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形? [生]有的三角形是轴对称图形,有的三角形不是. [师]那什么样的三角形是轴对称图形?
[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.
[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形. Ⅱ.导入新课
[师]同学们通过自己的思考来做一个等腰三角形.
A
B
I
C
A
B
I
作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,则可得到一个等腰三角形.
[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.
[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……
[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.
(演示课件)
1.等腰三角形是轴对称图形吗?请找出它的对称轴.
2.等腰三角形的两底角有什么关系?
3.顶角的平分线所在的直线是等腰三角形的对称轴吗?
4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?
[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.
[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.
[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.
[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.
[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.
[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.
[师]你们说的是同一条直线吗?大家来动手折叠、观察.
[生齐声]它们是同一条直线.
[师]很好.现在同学们来归纳等腰三角形的性质.
[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.
[师]很好,大家看屏幕.
(演示课件)
等腰三角形的性质:
1.等腰三角形的两个底角相等(简写成“等边对等角”).
2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线
合一”).
[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).
(投影仪演示学生证明过程)
[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为
,,,AB AC BD CD AD AD =⎧⎪
=⎨⎪=⎩
所以△BAD ≌△CAD (SSS ). 所以∠B=∠C .
[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为
,,,AB AC BAD CAD AD AD =⎧⎪
∠=∠⎨⎪=⎩
所以△BAD ≌△CAD .
所以BD=CD ,∠BDA=∠CDA=1
2
∠BDC=90°.
[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.
(演示课件)
[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.
[师]同学们先思考一下,我们再来分析这个题.
[生]根据等边对等角的性质,我们可以得到
∠A=∠ABD ,∠ABC=∠C=∠BDC ,•
再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.
[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. (课件演示)
[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD (等边对等角).
设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .
于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.
在△ABC 中,∠A=35°,∠ABC=∠C=72°.
[师]下面我们通过练习来巩固这节课所学的知识. Ⅲ.随堂练习
D C
A B
D C
A
B
D
C A B
(一)课本练习 1、2、3. 练习
1. 如图,在下列等腰三角形中,分别求出它们的底角的度数.
(2)
120︒
36︒
(1)
答案:(1)72° (2)30°
2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?
D C
A
B
答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .
3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.
答:∠B=77°,∠C=38.5°.
(二)阅读课本,然后小结. Ⅳ.课时小结
这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.
我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业
(一)习题13.3 第1、3、4、8题. (二)1.预习课本.
2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究
如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .
求证:AE=CE .
D C A B
E
D
C
A
B
过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:
证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,
12,,,AD AD ADP ADC ∠=∠⎧⎪
=⎨⎪∠=∠⎩
∴△ADP ≌△ADC .
∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .
同理可证:AE=DE .
∴AE=C E .
板书设计
一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习
1.如果△ABC 是轴对称图形,则它的对称轴一定是( ) A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是( ) A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C
3. 已知等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长.
解:设三角形的底边长为x cm ,则其腰长为(x+2)cm ,根据题意,得 2(x+2)+x=16.解得x=4.
E D
C A B P
所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .
15.2.2 分式的加减
教学目标
明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点
1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法
教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程
例、习题的意图分析
1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.
2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入
1.说出分数混合运算的顺序.
2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解
(教科书)例7 计算
[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.
(教科书)例8 计算:
[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:
(1) x
x x x x 22
)242(2+÷-+- (2))11()(
b a a b b b a a -÷--- (3))2
1
22()41223(
2+--÷-+-a a a a 五、课后练习 1.计算:
(1))1)(1(y x x y x y +--+ (2)22242)44122(a
a a a a a a a a a -÷-⋅+----+ (3)zx
yz xy xy z y x ++⋅++)111( 2.计算24)2121(
a
a a ÷--+,并求出当=a -1的值.
六、答案: 四、(1)2x (2)
b
a a
b - (3)3 五、1.(1)22y x xy - (2)21-a (3)z 1 2.原式=4
22
--a a ,当=a -1时,原式=-31.。

相关文档
最新文档