舒兰市第二高级中学2018-2019学年高三上学期12月月考数学试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
舒兰市第二高级中学2018-2019学年高三上学期12月月考数学试卷
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.已知命题p:∀x∈(0,+∞),log2x<log3x.命题q:∃x∈R,x3=1﹣x2.则下列命题中为真命题的是()
A.p∧q B.¬p∧q C.p∧¬q D.¬p∧¬q
2.已知a=log20.3,b=20.1,c=0.21.3,则a,b,c的大小关系是()
A.a<b<c B.c<a<b C.a<c<b D.b<c<a
3.对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n=m+n;当m,n中一个为正偶数,另一个为正奇数时,m※n=mn.则在此定义下,集合M={(a,b)|a※b=12,a∈N*,b∈N*}中的元素个数是()
A.10个B.15个C.16个D.18个
4.某几何体的三视图如图所示,则它的表面积为()
A.B.C.D.
5.设函数y=x3与y=()x的图象的交点为(x0,y0),则x0所在的区间是()
A.(0,1) B.(1,2) C.(2,3) D.(3,4)
6.双曲线的焦点与椭圆的焦点重合,则m的值等于()
A.12 B.20 C. D.
7.已知直线a平面α,直线b⊆平面α,则()
A.a b B.与异面C.与相交D.与无公共点
8. 设1m >,在约束条件,,1.y x y mx x y ≥⎧⎪
≤⎨⎪+≤⎩
下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )
A
.(1,1 B
.(1)+∞ C. (1,3) D .(3,)+∞ 9. 在复平面内,复数1z
i
+所对应的点为(2,1)-,i 是虚数单位,则z =( ) A .3i --
B .3i -+
C .3i -
D .3i +
10.若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .(0,+∞) B .(0,2) C .(1,+∞)
D .(0,1)
二、填空题
11.1F ,2F 分别为双曲线22
221x y a b
-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,
若12PF F ∆
______________.
【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.
12.【泰州中学2018届高三10月月考】设二次函数()2
f x ax bx c =++(,,a b c 为常数)的导函数为()f x ',
对任意x R ∈,不等式()()f x f x ≥'恒成立,则222
b a
c +的最大值为__________.
13.设有一组圆C k :(x ﹣k+1)2+(y ﹣3k )2=2k 4(k ∈N *).下列四个命题: ①存在一条定直线与所有的圆均相切; ②存在一条定直线与所有的圆均相交; ③存在一条定直线与所有的圆均不相交; ④所有的圆均不经过原点.
其中真命题的代号是 (写出所有真命题的代号).
14.给出下列命题:
(1)命题p :;菱形的对角线互相垂直平分,命题q :菱形的对角线相等;则p ∨q 是假命题
(2)命题“若x 2
﹣4x+3=0,则x=3”的逆否命题为真命题 (3)“1<x <3”是“x 2
﹣4x+3<0”的必要不充分条件 (4)若命题p :∀x ∈R ,x 2
+4x+5≠0,则¬p
:
.
其中叙述正确的是 .(填上所有正确命题的序号)
15.【盐城中学2018届高三上第一次阶段性考试】已知函数()()ln f x x x ax =-有两个极值点,则实数a 的取值范围是. 16.下列命题:
①集合{},,,a b c d 的子集个数有16个; ②定义在R 上的奇函数()f x 必满足(0)0f =;
③2()(21)2(21)f x x x =+--既不是奇函数又不是偶函数; ④A R =,B R =,1
:||
f x x →,从集合A 到集合B 的对应关系f 是映射; ⑤1
()f x x
=
在定义域上是减函数. 其中真命题的序号是 .
三、解答题
17.已知函数f (x )=x 2﹣ax+(a ﹣1)lnx (a >1). (Ⅰ) 讨论函数f (x )的单调性; (Ⅱ) 若a=2,数列{a n }满足a n+1=f (a n ). (1)若首项a 1=10,证明数列{a n }为递增数列;
(2)若首项为正整数,且数列{a n }为递增数列,求首项a 1的最小值.
18.已知函数
.
(1)求f (x )的周期.
(2)当时,求f (x )的最大值、最小值及对应的x 值.
19.已知m≥0,函数f(x)=2|x﹣1|﹣|2x+m|的最大值为3.
(Ⅰ)求实数m的值;
(Ⅱ)若实数a,b,c满足a﹣2b+c=m,求a2+b2+c2的最小值.
20.求下列曲线的标准方程:
(1)与椭圆+=1有相同的焦点,直线y=x为一条渐近线.求双曲线C的方程.
(2)焦点在直线3x﹣4y﹣12=0 的抛物线的标准方程.
21.已知三次函数f(x)的导函数f′(x)=3x2﹣3ax,f(0)=b,a、b为实数.
(1)若曲线y=f(x)在点(a+1,f(a+1))处切线的斜率为12,求a的值;
(2)若f(x)在区间[﹣1,1]上的最小值、最大值分别为﹣2、1,且1<a<2,求函数f(x)的解析式.
22.一台还可以用的机器由于使用的时间较长,它按不同的转速生产出来的某机械零件有一些会有缺陷,每小时生产有缺陷零件的多少随机器运转的速率而变化,下表为抽样试验结果:
转速x(转/秒)16 14 12 8
每小时生产有缺陷的零件数y(件)11 9 8 5
(1)画出散点图;(2)如果y与x有线性相关的关系,求回归直线方程;
(3)若实际生产中,允许每小时的产品中有缺陷的零件最多为10个,那么机器的转运速度应控制在什么范围内?
参考公式:线性回归方程系数公式开始=,=﹣x.
舒兰市第二高级中学2018-2019学年高三上学期12月月考数学试卷(参考答案)
一、选择题
1.【答案】B
【解析】解:命题p:取x∈[1,+∞),log2x≥log3x,因此p是假命题.
命题q:令f(x)=x3﹣(1﹣x2),则f(0)=﹣1<0,f(1)=1>0,∴f(0)f(1)<0,∴∃x0∈(0,1),使得f(x0)=0,即∃x∈R,x3=1﹣x2.因此q是真命题.
可得¬p∧q是真命题.
故选:B.
【点评】本题考查了对数函数的单调性、函数零点存在定理、复合命题的判定方法,考查了推理能力,属于基础题.
2.【答案】C
【解析】解:由对数和指数的性质可知,
∵a=log20.3<0
b=20.1>20=1
c=0.21.3 <0.20=1
∴a<c<b
故选C.
3.【答案】B
【解析】解:a※b=12,a、b∈N*,
若a和b一奇一偶,则ab=12,满足此条件的有1×12=3×4,故点(a,b)有4个;
若a和b同奇偶,则a+b=12,满足此条件的有1+11=2+10=3+9=4+8=5+7=6+6共6组,故点(a,b)有2×6﹣1=11个,
所以满足条件的个数为4+11=15个.
故选B
4.【答案】A
【解析】解:由三视图知几何体为半个圆锥,且圆锥的底面圆半径为1,高为2,
∴母线长为,
圆锥的表面积S=S
底面+S侧面=×π×12+×2×2+×π×=2+.
故选A.
【点评】本题考查了由三视图求几何体的表面积,解题的关键是判断几何体的形状及三视图的数据所对应的几何量.
5.【答案】A
【解析】解:令f(x)=x3﹣,
∵f′(x)=3x2﹣ln=3x2+ln2>0,
∴f(x)=x3﹣在R上单调递增;
又f(1)=1﹣=>0,
f(0)=0﹣1=﹣1<0,
∴f(x)=x3﹣的零点在(0,1),
∵函数y=x3与y=()x的图象的交点为(x0,y0),
∴x0所在的区间是(0,1).
故答案为:A.
6.【答案】A
【解析】解:椭圆的焦点为(±4,0),
由双曲线的焦点与椭圆的重合,可得=4,解得m=12.
故选:A.
7.【答案】D
【解析】
试题分析:因为直线a平面α,直线b⊆平面α,所以//a b或与异面,故选D.考点:平面的基本性质及推论.
8.【答案】A
【解析】
考点:线性规划.
【方法点晴】本题是一道关于线性规划求最值的题目,采用线性规划的知识进行求解;关键是弄清楚的几何意义直线z x my =+截距为
z
m
,作0my x :L =+,向可行域内平移,越向上,则的值越大,从而可得当直线直线z x my =+过点A 时取最大值,⎩⎨
⎧==+00001m x y y x 可求得点A 的坐标可求的最大值,然后由z 2,>解不等式可求m
的范围.
9. 【答案】D
【解析】解析:本题考查复数的点的表示与复数的乘法运算,21z
i i
=-+,(1)(2)3z i i i =+-=+,选D . 10.【答案】D
【解析】解:∵方程x 2+ky 2
=2
,即
表示焦点在y 轴上的椭圆
∴故0<k <1
故选D .
【点评】本题主要考查了椭圆的定义,属基础题.
二、填空题
11.
1 【
解
析
】
12.
【答案】2
【解析】试题分析:根据题意易得:()'2f x ax b =+,由()()'f x f x ≥得:()2
20ax b a x c b +-+-≥在R
上恒成立,等价于:0{ 0a >≤,可解得:()22444b ac a a c a ≤-=-,则:22
2222241441c b ac a a
a c a c c a ⎛⎫- ⎪-⎝⎭≤=++⎛⎫
+ ⎪⎝⎭
,
令1,(0)c t t a =->
,24422222t y t t t t
==≤=++++,故22
2
b a
c +
的最大值为2. 考点:1.函数与导数的运用;2.恒成立问题;3.基本不等式的运用 13.【答案】 ②④
【解析】解:根据题意得:圆心(k ﹣1,3k ),
圆心在直线y=3(x+1)上,故存在直线y=3(x+1)与所有圆都相交,选项②正确; 考虑两圆的位置关系,
圆k :圆心(k ﹣1,3k ),半径为k 2,
圆k+1:圆心(k ﹣1+1,3(k+1)),即(k ,3k+3),半径为
(k+1)2
,
两圆的圆心距d==
,
两圆的半径之差R ﹣r=
(k+1)2
﹣
k 2
=2
k+
,
任取k=1或2时,(R ﹣r >d ),C k 含于C k+1之中,选项①错误; 若k 取无穷大,则可以认为所有直线都与圆相交,选项③错误;
将(0,0)带入圆的方程,则有(﹣k+1)2+9k 2=2k 4,即10k 2﹣2k+1=2k 4
(k ∈N*),
因为左边为奇数,右边为偶数,故不存在k 使上式成立,即所有圆不过原点,选项④正确. 则真命题的代号是②④. 故答案为:②④
【点评】本题是一道综合题,要求学生会将直线的参数方程化为普通方程,会利用反证法进行证明,会利用数形结合解决实际问题.
14.【答案】 (4)
【解析】解:(1)命题p :菱形的对角线互相垂直平分,为真命题.命题q :菱形的对角线相等为假命题;则p ∨q 是真命题,故(1)错误,
(2)命题“若x 2
﹣4x+3=0,则x=3或x=1”,即原命题为假命题,则命题的逆否命题为假命题,故(2)错误,
(3)由x 2﹣4x+3<0得1<x <3,则“1<x <3”是“x 2
﹣4x+3<0”的充要条件,故(3)错误,
(4)若命题p :∀x ∈R ,x 2
+4x+5≠0,则¬p :
.正确,
故答案为:(4)
【点评】本题主要考查命题的真假判断,涉及复合命题的真假关系,四种命题,充分条件和必要条件以及含有量词的命题的否定,知识点较多,属于中档题.
15.【答案】
.
【解析】由题意,y ′=ln x +1−2mx
令f ′(x )=ln x −2mx +1=0得ln x =2mx −1,
函数()()ln f x x x mx =-有两个极值点,等价于f ′(x )=ln x −2mx +1有两个零点, 等价于函数y =ln x 与y =2mx −1的图象有两个交点,
,
当m =
1
2
时,直线y =2mx −1与y =ln x 的图象相切, 由图可知,当0<m <1
2
时,y =ln x 与y =2mx −1的图象有两个交点,
则实数m 的取值范围是(0,1
2
),
故答案为:(0,1
2
).
16.【答案】①② 【解析】
试题分析:子集的个数是2n
,故①正确.根据奇函数的定义知②正确.对于③()2
41f x x =-为偶函数,故错误.
对于④0x =没有对应,故不是映射.对于⑤减区间要分成两段,故错误. 考点:子集,函数的奇偶性与单调性.
【思路点晴】集合子集的个数由集合的元素个数来决定,一个个元素的集合,它的子集的个数是2n
个;对于
奇函数来说,如果在0x =处有定义,那么一定有()00f =,偶函数没有这个性质;函数的奇偶性判断主要根据定义()()()(),f x f x f x f x -=-=-,注意判断定义域是否关于原点对称.映射必须集合A 中任意一个
元素在集合B 中都有唯一确定的数和它对应;函数的定义域和单调区间要区分清楚,不要随意写并集.1
三、解答题
17.【答案】
【解析】解:(Ⅰ)∵,
∴
(x >0),
当a=2时,则
在(0,+∞)上恒成立,
当1<a<2时,若x∈(a﹣1,1),则f′(x)<0,若x∈(0,a﹣1)或x∈(1,+∞),则f′(x)>0,
当a>2时,若x∈(1,a﹣1),则f′(x)<0,若x∈(0,1)或x∈(a﹣1,+∞),则f′(x)>0,
综上所述:当1<a<2时,函数f(x)在区间(a﹣1,1)上单调递减,
在区间(0,a﹣1)和(1,+∞)上单调递增;
当a=2时,函数(0,+∞)在(0,+∞)上单调递增;
当a>2时,函数f(x)在区间(0,1)上单调递减,在区间(0,1)和(a﹣1,+∞)上单调递增.
(Ⅱ)若a=2,则,由(Ⅰ)知函数f(x)在区间(0,+∞)上单调递增,
(1)因为a1=10,所以a2=f(a1)=f(10)=30+ln10,可知a2>a1>0,
假设0<a k<a k+1(k≥1),因为函数f(x)在区间(0,+∞)上单调递增,
∴f(a k+1)>f(a k),即得a k+2>a k+1>0,
由数学归纳法原理知,a n+1>a n对于一切正整数n都成立,
∴数列{a n}为递增数列.
(2)由(1)知:当且仅当0<a1<a2,数列{a n}为递增数列,
∴f(a1)>a1,即(a1为正整数),
设(x≥1),则,
∴函数g(x)在区间上递增,
由于,g(6)=ln6>0,又a1为正整数,
∴首项a1的最小值为6.
【点评】本题考查导数的运用:求单调区间,同时考查函数的零点存在定理和数学归纳法的运用,考查运算能力,属于中档题.
选做题:本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分7分.如果多做,则按所做的前两题计分.【选修4-2:矩阵与变换】
18.【答案】
【解析】解:(1)∵函数.
∴函数f(x)=2sin(2x+).
∴f(x)的周期T==π
即T=π
(2)∵
∴,
∴﹣1≤sin(2x+)≤2
最大值2,2x=,此时,
最小值﹣1,2x=此时
【点评】本题简单的考察了三角函数的性质,单调性,周期性,熟练化为一个角的三角函数形式即可.
19.【答案】
【解析】解:(Ⅰ)f(x)=2|x﹣1|﹣|2x+m|=|2x﹣2|﹣|2x+m|≤|(2x﹣2)﹣(2x+m)|=|m+2|
∵m≥0,∴f(x)≤|m+2|=m+2,当x=1时取等号,
∴f(x)max=m+2,又f(x)的最大值为3,∴m+2=3,即m=1.
(Ⅱ)根据柯西不等式得:(a2+b2+c2)[12+(﹣2)2+12]≥(a﹣2b+c)2,
∵a﹣2b+c=m=1,∴,
当,即时取等号,∴a2+b2+c2的最小值为.
【点评】本题考查绝对值不等式、柯西不等式,考查学生分析解决问题的能力,属于中档题.
20.【答案】
【解析】解:(1)由椭圆+=1,得a2=8,b2=4,
∴c2=a2﹣b2=4,则焦点坐标为F(2,0),
∵直线y=x为双曲线的一条渐近线,
∴设双曲线方程为(λ>0),
即,则λ+3λ=4,λ=1.
∴双曲线方程为:;
(2)由3x﹣4y﹣12=0,得,
∴直线在两坐标轴上的截距分别为(4,0),(0,﹣3),
∴分别以(4,0),(0,﹣3)为焦点的抛物线方程为:
y2=16x或x2=﹣12y.
【点评】本题考查椭圆方程和抛物线方程的求法,对于(1)的求解,设出以直线为一条渐近线的双曲线方程是关键,是中档题.
21.【答案】
【解析】解:(1)由导数的几何意义f′(a+1)=12
∴3(a+1)2﹣3a(a+1)=12
∴3a=9∴a=3
(2)∵f′(x)=3x2﹣3ax,f(0)=b
∴
由f′(x)=3x(x﹣a)=0得x1=0,x2=a
∵x∈[﹣1,1],1<a<2
∴当x∈[﹣1,0)时,f′(x)>0,f(x)递增;当x∈(0,1]时,f′(x)<0,f(x)递减.
∴f(x)在区间[﹣1,1]上的最大值为f(0)
∵f(0)=b,
∴b=1
∵,
∴f(﹣1)<f(1)
∴f(﹣1)是函数f(x)的最小值,
∴
∴
∴f(x)=x3﹣2x2+1
【点评】曲线在切点处的导数值为曲线的切线斜率;求函数的最值,一定要注意导数为0的根与定义域的关系.
22.【答案】
【解析】
【专题】应用题;概率与统计.
【分析】(1)利用所给的数据画出散点图;
(2)先做出横标和纵标的平均数,做出利用最小二乘法求线性回归方程的系数的量,做出系数,求出a,写出线性回归方程.
(3)根据上一问做出的线性回归方程,使得函数值小于或等于10,解出不等式.
【解答】解:(1)画出散点图,如图所示:
(2)=12.5,=8.25,∴b=≈0.7286,
a=﹣0.8575
∴回归直线方程为:y=0.7286x﹣0.8575;
(3)要使y≤10,则0.728 6x﹣0.8575≤10,x≤14.901 9.故机器的转速应控制在14.9转/秒以下.
【点评】本题考查线性回归分析,考查线性回归方程,考查线性回归方程的应用,考查不等式的解法,是一个综合题目.。