DP590冷轧板热处理的组织和性能
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DP590冷轧板热处理的组织和性能
霍刚;李振兴;岑一鸣;李国栋
【摘要】为了加速国内双相钢的开发和应用,采用CAS-300Ⅱ模拟退火实验机,通过模拟退火实验,研究了加热速率、临界区退火温度、过时效温度、过时效时间对DP590双相钢组织性能的影响.结果表明,加热速率在5~60℃/s内增加时,屈服强度、抗拉强度均增加,延伸率、强塑积均减小;临界区退火温度在780~850℃内增加时,屈服强度、抗拉强度先减小后增加,延伸率、强塑积均增加;过时效温度在260 ~400℃内增加时,屈服强度增加,抗拉强度减小,延伸率整体呈增加趋势,屈强比增加;在280℃进行过时效,过时效时间在240~480 s内增加时,屈服强度、抗拉强度均减小,延伸率、强塑积先减小后增加.
【期刊名称】《东北大学学报(自然科学版)》
【年(卷),期】2013(034)007
【总页数】5页(P944-947,970)
【关键词】冷轧板;双相钢;热处理;显微组织;力学性能
【作者】霍刚;李振兴;岑一鸣;李国栋
【作者单位】东北大学轧制技术及连轧自动化国家重点实验室,辽宁沈阳110819;东北大学轧制技术及连轧自动化国家重点实验室,辽宁沈阳110819;东北大学轧制技术及连轧自动化国家重点实验室,辽宁沈阳110819;东北大学轧制技术及连轧自动化国家重点实验室,辽宁沈阳110819;本钢浦项冷轧薄板有限责任公司,辽宁本溪117000
【正文语种】中文
【中图分类】TG156.1
双相钢是由低碳钢或低合金钢经过临界区热处理或控轧控冷获得,其组织主要由铁素体和马氏体组成[1-2].与传统的低合金高强钢相比,双相钢具有较低的屈强比,较高的初始加工硬化率、烘烤硬化值以及优良的成型性能等特点,成为一种新型的冲压用钢,并广泛应用于汽车工业[3-4].
双相钢的研究起始于20世纪70年代,1968年Mcfarlan提出了关于双相钢的第一个专利.Hayami和Furukawa[5]详细阐述了双相钢的化学成分、显微组织、力学性能等.Son[6]采用等通道角度挤压法试制了超细晶粒双相钢,发现在500 ℃进行4%的应变,然后于730 ℃保温10 min后淬火,可得到性能优良的超细晶粒双相钢.韩会全等[7]研究了两相区热处理对不同初始组态钢板组织性能的影响,发现相同工艺下,初始晶粒越细,马氏体体积分数越多.Krebs等[8]对双相钢中带状组织的影响因素进行了研究,发现奥氏体化温度越低,冷却速度越小,带状组织越明显.
目前,冷轧双相钢主要采用连续退火的方式生产,工艺比较成熟,但生产周期长、效率低,表面质量难以保证,并且易出现带状组织.退火工艺参数是决定双相钢组织性能的关键因素,并且其与生产效率密切相关.因此本文以国内某钢厂提供的DP590冷轧板为原料,通过模拟退火实验研究了加热速率、临界区退火温度、过时效温度、过时效时间的作用,供实际工业生产参考.
1 实验材料和方法
1.1 实验材料
实验采用某钢厂提供的DP590冷轧板,其化学成分(质量分数/%)为:0.080C,
0.479Si,1.810Mn,0.162Cr,0.014P,0.004S,0.004N,0.040Als.冷轧板的原始组织由铁素体和珠光体组成,图1为实验钢经过4%的硝酸酒精溶液腐蚀后的显微组织图片,灰白色组织为铁素体,黑色组织为珠光体.模拟退火的试样尺寸为500 mm×150 mm×1.4 mm.
图1 实验钢的显微组织Fig.1 The microstructure of the steelusing in the experiment
1.2 实验方法
采用CAS-300Ⅱ模拟退火实验机,对加热速率、临界区退火温度、过时效温度、过时效时间分别进行了实验研究.基本工艺参数为:以30 ℃/s的速度将实验钢板加热到800 ℃,保温110 s后,以2 ℃/s的速度缓慢冷却至680 ℃,然后以
35 ℃/s的速度快速冷却至280 ℃进行过时效,过时效时间为420 s,然后以
5 ℃/s的速度冷却至45 ℃.在此基础上,通过改变单一的工艺参数,研究其对力学性能的影响.
按照GB/T228—2002切取标距为50 mm拉伸试样,然后采用Inston系列4206-006型高速拉伸试验机测定力学性能.再切取金相试样磨制、抛光,经4%的硝酸酒精腐蚀后,分别采用LEICA Q550IW金相显微镜、ZWISS扫描电子显微镜观察其显微组织.
2 实验结果与分析
2.1 显微组织
图2为不同加热速率下实验钢的显微组织.灰白色组织为铁素体,深灰色组织为马氏体.可以看出,加热速率在5~60 ℃/s内增加时,铁素体、马氏体晶粒均发生细化,马氏体体积分数增加.这是由于加热速率增加时,加热温度达到两相区后奥氏体形核点较多,其形核率的增加大于长大速度,奥氏体长大受到抑制,晶粒发生细化.由于组织遗传性,使得最终的铁素体、马氏体晶粒尺寸较小,并且马氏体体积
分数略微增加.
图2 不同加热速率下实验钢的显微组织Fig.2 The microstructures of experimentalsteels at different heating speeds(a)—5 ℃/s; (b)—15 ℃/s;(c)—30 ℃/s; (d)—60 ℃/s.
图3为不同退火温度下实验钢的显微组织.可以看出,退火温度在780~850 ℃内
增加时,马氏体晶粒由岛状向块状过渡,马氏体晶粒尺寸变大.此外,利用Photoshop软件统计分析,退火温度分别为780,800,830,850 ℃时,相应
的马氏体体积分数分别约为30%,26%,20%,21%.
图3 不同退火温度下实验钢的显微组织Fig.3 The microstructures of the tested steelsat different annealing temperatures(a)—780 ℃; (b)—800 ℃;(c)—830 ℃; (d)—850 ℃.
图4为不同过时效温度下实验钢的扫描照片,颜色较浅、凸起的组织为马氏体.可
以看出,过时效温度为260 ℃时,马氏体基本不分解,马氏体边界较清晰;280 ℃时,少量马氏体开始分解,边界较为模糊;400 ℃时马氏体大量分解.
图4 不同过时效温度下实验钢的扫描照片Fig.4 The SEM micrographs of the tested steelsat different overaging temperatures(a)—260 ℃; (b)—280 ℃;
(c)—320 ℃; (d)—400 ℃.
图5为过时效温度为280 ℃时,不同过时效时间下实验钢的显微组织图片.过时效时间在240~480 s内增加时,马氏体逐渐分解.过时效时间小于300 s时,铁素
体基体上存在较多的粒状M-A岛,超过420 s时,粒状M-A岛基本消失.
2.2 力学性能
图6显示了不同加热速率下实验钢的力学性能.加热速率在5~60 ℃/s内变化时,随加热速率增加,屈服强度、抗拉强度均增加,延伸率、强塑积均减小,屈强比在0.44~0.46范围内变化.随
图5 不同过时效时间下实验钢的显微组织Fig.5 The microstructures of the experimentalsteels at different overaging time(a)—240 s; (b)—300 s;(c)—420 s; (d)—480 s.
图6 不同加热速率下实验钢的力学性能Fig.6 The mechanical properties of experimentalsteels at different heating speeds
加热速率的增加,铁素体、马氏体晶粒均发生细化,马氏体体积分数增加,因此屈服强度、抗拉强度均增加.加热速率较大时,铁素体中碳氮化物溶解量较小,缓慢
冷却过程中铁素体析出净化作用减弱,结果,延伸率随加热速率的增加呈减小趋势. 图7显示了不同退火温度下实验钢的力学性能.退火温度在780~850 ℃内变化时,随着退火温度的增加,实验钢的屈服强度、抗拉强度先减小,然后略微增加.延伸率、强塑积均呈增加趋势.退火温度在一定范围内升高时,奥氏体体积分数增加,
奥氏体中平均碳含量减小,其稳定性下降,随后缓慢冷却过程中,由于冷却速度较小,低碳奥氏体重新分解,附生铁素体体积分数增加,马氏体体积分数减小,结果屈服强度、抗拉强度都有下降趋势,屈强比、延伸率得到明显改善[9].但退火温度
进一步升高时,奥氏体体积分数不断增加,最终马氏体体积分数增加,使得强度略微增加.
图7 不同退火温度下实验钢的力学性能Fig.7 The mechanical properties of experimentalsteels at different annealing temperatures
图8显示了不同过时效温度下实验钢的力学性能.过时效温度在260~400 ℃内变
化时,随着过时效温度的增加,屈服强度增加,抗拉强度减小,延伸率整体呈增加趋势.
图8 不同过时效温度下实验钢的力学性能Fig.8 The mechanical properties of experimentalsteels at different overaging temperatures
过时效相当于对淬硬的马氏体进行在线回火,可改善最终的力学性能.但随着过时
效温度的增加,马氏体逐渐分解,并且晶格畸变程度减小,使得抗拉强度下降.过时效温度较高时,铁素体、马氏体相界面处大量位错对消或重新排列,使得可动位错密度减小,屈服强度增加.并且在较高温度下铁素体中有碳化物或细小沉淀相析出,间隙原子扩散集聚成间隙原子团,共同钉扎位错,使得屈服强度进一步增加,甚至出现屈服平台[10].
图9显示了不同过时效时间下实验钢的力学性能.过时效温度为280 ℃,过时效时间在240~480 s内变化时,随过时效时间增加,屈服强度、抗拉强度均减小,延伸率、强塑积先减小后增加.随过时效时间的增加,马氏体发生回复,马氏体内的位错密度减小,使得其硬度降低、强度下降,抗拉强度减小.而且马氏体与周围铁素体的塑性应变不相容性减小,因此马氏体对铁素体变形的阻碍作用减小,屈服强度降低,延伸率得到改善.
图9 不同过时效时间下实验钢的力学性能Fig.9 The mechanical properties of experimentalsteels at different overaging time
3 结论
1) 加热速率在5~60 ℃/s内变化时,随加热速率增加,屈服强度、抗拉强度均增加,延伸率、强塑积均减小,屈强比在0.44~0.46范围内变化.
2) 退火温度在780~850 ℃内变化时,随着退火温度的增加,实验钢屈服强度、抗拉强度先减小后增加,延伸率、强塑积均呈增加趋势.
3) 过时效温度在260~400 ℃内变化时,随着过时效温度增加,屈服强度增加,抗拉强度减小,延伸率整体呈增加趋势,屈强比明显增加.
4) 过时效温度为280 ℃,过时效时间在240~
480 s内变化时,随过时效时间增加,屈服强度、抗拉强度均减小,延伸率、强塑积先减小后增加.
参考文献:
[1] Wycliffe P.Microanalysis of dual phase steels[J].Scripta Metallurgica,1984,18(4):327-332.
[2] Buzzichelli G,Anelli E.Present status and perspectives of European research in the field of advanced structural steels[J].ISIJ International,2002,42(12):1354-1363.
[3] Lanzillotto C A N,Pickering F B.Structure-property relationships in dual-phase steels[J].Metal Science,1982,16(8):371-382.
[4] Sarwar M,Priestner R.Hardenability of austenite in a dual-phase steel[J].Journal of Materials Engineering and Performance,1999,8(3):380-384.
[5] Hayami S,Furukawa T.Micro-alloying[M].New York:Union Carbide Corp,1977.
[6] Son Y,Lee Y K,Park K T,et al.Ultrafine grained ferrite-martensite dual phase steels fabricated via equal channel pressing:microstructure and tensile properties[J].Acta Materialia,2005,53(11):3125-3134. [7] 韩会全,刘彦春,张弛,等.两相区热处理对不同初始组态钢板组织性能的影响[J].东北大学学报:自然科学版,2008,29(3):339-343.
(Han Hui-quan,Liu Yan-chun,Zhang Chi,et al.The effect of heat
treat ment in γ+α region on microstructures and properties of strips with different intial structures[J].Journal of Northeastern Universtity:Natural Science,2008,29(3):339-343.)
[8] Krebs B,Germain L,Hazotte A,et al.Banded structure in dual phase steels in relation with the austenite-to-ferrite transformation mechanisms[J].Journal of Materials Science,2011,46(21):7026-7038.
[9] Hüseyin A,Hawa K Z,Ceylan K.Effect of intercritical annealing parameters on dual phase behavior of commercial low-alloyed
steels[J].Journal of Iron and Steel Research,International,2010,17(4):73-78.
[10]Fonstein N,Kapustin M,Pottore N,et al.Factors that determine the level of the yield strength and the return of the yield-point elongation in low-alloy ferrite—martensite steels[J].The Physics of Metals and Metallography,2007,104(3):315-323.。