北京上万中学人教版七年级上册数学期末试卷及答案-百度文库

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京上万中学人教版七年级上册数学期末试卷及答案-百度文库
一、选择题
1.在数3,﹣3,13,1
3
-中,最小的数为( ) A .﹣3
B .
1
3
C .13
-
D .3
2.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )
A .垂线段最短
B .经过一点有无数条直线
C .两点之间,线段最短
D .经过两点,有且仅有一条直线
3.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是( )
A .
B .
C .
D .
4.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103
B .3.84×104
C .3.84×105
D .3.84×106
5.下列方程中,以3
2
x =-为解的是( ) A .33x x =+ B .33x x =+ C .23x = D .3-3x x = 6.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3
B .﹣3
C .1
D .﹣1
7.方程312x -=的解是( ) A .1x =
B .1x =-
C .13
x =-
D .13
x =
8.15( ) A .1,2
B .2,3
C .3,4
D .4,5
9.有理数a 、b 在数轴上的位置如图所示,则下列结论中正确的是( )
A .a+b >0
B .ab >0
C .a ﹣b <o
D .a÷b >0
10.2019年3月15日,中山市统计局发布2018年统计数据,我市常住人口达3 310 000人.数据3 310 000用科学记数法表示为( ) A .3.31×105 B .33.1×105
C .3.31×106
D .3.31×107
11.下列计算正确的是( )
A .3a +2b =5ab
B .4m 2 n -2mn 2=2mn
C .-12x +7x =-5x
D .5y 2-3y 2=2
12.把 1,3,5,7,9,⋯排成如图所示的数表,用十字形框中表内的五个数,当把十字形上下左右移动,保证每次十字形要框中五个数,则框中的五个数的和不可能是( )
A .1685
B .1795
C .2265
D .2125
二、填空题
13.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.
14.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则
(1)2-⊕=__________.
15.如图,这是一种数值转换机的运算程序,若第一次输入的数为7,则第2018次输出的数是_____;若第一次输入的数为x ,使第2次输出的数也是x ,则x =_____.
16.已知23,9n m
n a
a -==,则m a =___________.
17.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.
18.52.42°=_____°___′___″.
19.若a 、b 是互为倒数,则2ab ﹣5=_____.
20.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________.
21.如图,∠AOB=∠COD=90°,∠AOD=140°,则∠BOC=_______.
22.若
2a +1与212
a +互为相反数,则a =_____. 23.小康家里养了8头猪,质量分别为:104,98.5,96,91.8,102.5,100.7,103,95.5(单位:kg ),每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为_____.
24.设一列数中相邻的三个数依次为m ,n ,p ,且满足p=m 2﹣n ,若这列数为﹣1,3,﹣2,a ,b ,128…,则b=________.
三、压轴题
25.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和
b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.
请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .
(1)请你在图②的数轴上表示出P ,Q 两点的位置;
(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);
(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ? 26.已知∠AOB =110°,∠COD =40°,OE 平分∠AOC ,OF 平分∠BOD . (1)如图1,当OB 、OC 重合时,求∠AOE ﹣∠BOF 的值;
(2)如图2,当∠COD 从图1所示位置绕点O 以每秒3°的速度顺时针旋转t 秒(0<t <10),在旋转过程中∠AOE ﹣∠BOF 的值是否会因t 的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.
(3)在(2)的条件下,当∠COF =14°时,t = 秒.
27.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),
COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,
请补全图形并加以说明.
28.如图,已知数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为10.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t (t >0)秒,数轴上点B 表示的数是 ,点P 表示的数是 (用含t 的代数式表示);(2)若点P 、Q 同时出发,求:①当点P 运动多少秒时,点P 与点Q 相遇?②当点P 运动多少秒时,点P 与点Q 间的距离为8个单位长度?
29.如图,P 是定长线段AB 上一点,C 、D 两点分别从P 、B 出发以1cm /s 、2cm /s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上)
(1)若C 、D 运动到任一时刻时,总有PD =2AC ,请说明P 点在线段AB 上的位置:
(2)在(1)的条件下,Q 是直线AB 上一点,且AQ ﹣BQ =PQ ,求
PQ
AB
的值.
(3)在(1)的条件下,若C 、D 运动5秒后,恰好有1
CD AB 2
=
,此时C 点停止运动,D 点继续运动(D 点在线段PB 上),M 、N 分别是CD 、PD 的中点,下列结论:①PM ﹣PN
的值不变;②MN
AB
的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.
30.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。

已知:点C 在直线AB 上,AC a =,BC b =,且a b ,点M 是AB 的中点,请按照
下面步骤探究线段MC 的长度。

(1)特值尝试
若10a =,6b =,且点C 在线段AB 上,求线段MC 的长度. (2)周密思考:
若10a =,6b =,则线段MC 的长度只能是(1)中的结果吗?请说明理由. (3)问题解决
类比(1)、(2)的解答思路,试探究线段MC 的长度(用含a 、b 的代数式表示). 31.如图所示,已知数轴上A ,B 两点对应的数分别为-2,4,点P 为数轴上一动点,其对应的数为x .
(1)若点P 到点A ,B 的距离相等,求点P 对应的数x 的值.
(2)数轴上是否存在点P ,使点P 到点A ,B 的距离之和为8?若存在,请求出x 的值;若不存在,说明理由.
(3)点A ,B 分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P 以5个单位长度/分的速度从O 点向左运动.当遇到A 时,点P 立即以同样的速度向右运动,并不停地往返于点A 与点B 之间.当点A 与点B 重合时,点P 经过的总路程是多少? 32.如图①,点O 为直线AB 上一点,过点O 作射线OC ,使∠AOC=120°,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方. (1)将图①中的三角板OMN 摆放成如图②所示的位置,使一边OM 在∠BOC 的内部,当OM 平分∠BOC 时,∠BO N= ;(直接写出结果)
(2)在(1)的条件下,作线段NO 的延长线OP (如图③所示),试说明射线OP 是∠AOC 的平分线;
(3)将图①中的三角板OMN 摆放成如图④所示的位置,请探究∠NOC 与∠AOM 之间的数量关系.(直接写出结果,不须说明理由)
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【解析】
【分析】
有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.
【详解】
解:∵3>1
3

1
3
->﹣3,
∴在数3,﹣3,1
3

1
3
-中,最小的数为﹣3.
故选:A.
【点睛】
此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.C
解析:C
【解析】
【详解】
用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,
∴线段AB的长小于点A绕点C到B的长度,
∴能正确解释这一现象的数学知识是两点之间,线段最短,
故选C.
【点睛】
根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.
3.B
解析:B
【解析】
【分析】
由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别进行计算,然后把它们相加即可得出正确答案.
【详解】
解:A、5+3×6+1×6×6=59(颗),故本选项错误;
B、1+3×6+2×6×6=91(颗),故本选项正确;
C、2+3×6+1×6×6=56(颗),故本选项错误;
D、1+2×6+3×6×6=121(颗),故本选项错误;
故选:B.
【点睛】
本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.
4.C
解析:C
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
试题分析:384 000=3.84×105.
故选C.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
5.A
解析:A
【解析】
【分析】

3
2
x=-代入方程,只要是方程的左右两边相等就是方程的解,否则就不是.
【详解】解:
A中、把
3
2
x=-代入方程得左边等于右边,故A对;
B中、把
3
2
x=-代入方程得左边不等于右边,故B错;
C中、把
3
2
x=-代入方程得左边不等于右边,故C错;
D中、把
3
2
x=-代入方程得左边不等于右边,故D错.
故答案为:A.
本题考查方程的解的知识,解题关键在于把x 值分别代入方程进行验证即可.
6.D
解析:D 【解析】 【分析】
根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值. 【详解】 解:
单项式3
122m
x y
+与1
33n x
y +的和是单项式,
3122m x y +∴与133n x y +是同类项,
则13123n m +=⎧⎨+=⎩
∴1
2m n =⎧⎨
=⎩
, 121m n ∴-=-=-
故选:D . 【点睛】
本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.
7.A
解析:A 【解析】
试题分析:将原方程移项合并同类项得:3x=3,解得:x=1. 故选A .
考点:解一元一次方程.
8.C
解析:C 【解析】 【分析】
. 【详解】 ∵9<15<16,
∴, 故选C. 【点睛】
本题考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.
解析:C 【解析】 【分析】
利用数轴先判断出a 、b 的正负情况以及它们绝对值的大小,然后再进行比较即可. 【详解】
解:由a 、b 在数轴上的位置可知:a <0,b >0,且|a |>|b |, ∴a +b <0,ab <0,a ﹣b <0,a ÷b <0. 故选:C .
10.C
解析:C 【解析】 【分析】
用科学记数法表示较大的数时,一般形式为a ×10n ,其中1≤|a |<10,n 为整数,据此判断即可. 【详解】
解:3310000=3.31×106. 故选:C . 【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n ,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.
11.C
解析:C 【解析】
试题解析:A.不是同类项,不能合并.故错误. B. 不是同类项,不能合并.故错误. C.正确.
D.222 532.y y y -=故错误. 故选C.
点睛:所含字母相同并且相同字母的指数也相同的项叫做同类项.
12.B
解析:B 【解析】 【分析】
寻找这五个数和的规律,设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,这五个数的和为5a ,用每个数字除以5,可得中间数字,结果的末位只能是3或5或7,不能是1或9. 【详解】
解:设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,1010225a a a a a a +-+++-++=,
A 选项51685,357a a ==,可以作为中间数;
B 选项51795,359a a ==,不能作为中间数;
C 选项52265,453a a ==,可以作为中间数;
D 选项52125,425a a ==,可以作为中间数. 故选:B 【点睛】
本题考查了数的表示及规律探究,找准这五个数与中间数的规律是解题的关键.
二、填空题
13.【解析】 【分析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可. 【详解】
买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a+3b)元 解析:(23)a b +
【解析】 【分析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可. 【详解】
买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元. 故选C. 【点睛】
此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.
14.8 【解析】 【分析】
根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果. 【详解】 解:因为; 所以 故填8. 【点睛】
本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解
解析:8
【解析】
【分析】
根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.
【详解】
解:因为22a b b ab ⊕=-;
所以2(1)222(1)28.-⊕=-⨯-⨯=
故填8.
【点睛】
本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解本题的关键. 15.2; 0或3或6
【解析】
【分析】
先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x 的值,使得输入的数和第2次输出的数相等即可.
【详解】
解析:2; 0或3或6
【解析】
【分析】
先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x 的值,使得输入的数和第2次输出的数相等即可.
【详解】
解:∵第1次输出的结果为7+3=10,
第2次输出的结果为
12
×10=5, 第3次输出结果为5+3=8,
第4次输出结果为12
×8=4, 第5次输出结果为12×4=2, 第6次输出结果为
12
×2=1, 第7次输出结果为1+3=4,
第8次输出结果为12
×4=2, …… ∴输出结果除去前3个数后,每3个数为一个周期循环,
∵(2018﹣3)÷3=671…2,
∴第2018次输出的数是2,如图,
若x=1
4
x,则x=0;
若x=1
2
x+3,则x=6;
若x=1
2
(x+3),则x=3;
故答案为:2、0或3或6.
【点睛】
此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.
16.27
【解析】
【分析】
首先根据an=9,求出a2n=81,然后用它除以a2n−m,即可求出am的值.【详解】
解:∵an=9,
∴a2n=92=81,
∴am=a2n÷a2n−m=81÷3=2
解析:27
【解析】
【分析】
首先根据a n=9,求出a2n=81,然后用它除以a2n−m,即可求出a m的值.
【详解】
解:∵a n=9,
∴a2n=92=81,
∴a m=a2n÷a2n−m=81÷3=27.
故答案为:27.
【点睛】
此题主要考查了同底数幂的除法的运算法则以及幂的乘方的运算法则,解题的关键是熟练掌握基本知识,属于中考常考题型.
17.2+
【解析】
【分析】
先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】
∵数轴上点A,B表示的数分别是1,–,
∴AB=1–(–)=1+,
则点C表示的数为1+1+
解析:2+2
【解析】
【分析】
先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.
【详解】
∵数轴上点A,B表示的数分别是1,–2,
∴AB=1–(–2)=1+2,
则点C表示的数为1+1+2=2+2,
故答案为2
【点睛】
本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.
18.52; 25; 12.
【解析】
【分析】
将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即
解析:52; 25; 12.
【解析】
【分析】
将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即可.
【详解】
52.42°=52°25′12″.
故答案为52、25、12.
【点睛】
此题主要考查了度分秒的换算,要熟练掌握,解答此题的关键是要明确:1度=60分,即1°=60′,1分=60秒,即1′=60″.
19.-3.
【解析】
【分析】
根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.
【详解】
解:∵a、b是互为倒数,
∴ab=1,
∴2ab﹣5=﹣3.
故答案为﹣3.
【点睛】
本题考查了倒
解析:-3.
【解析】
【分析】
根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.
【详解】
解:∵a、b是互为倒数,
∴ab=1,
∴2ab﹣5=﹣3.
故答案为﹣3.
【点睛】
本题考查了倒数的性质,掌握并灵活应用倒数的性质是解答本题的关键.
20.1或-7
【解析】
【分析】
设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可. 【详解】
设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,

解析:1或-7
【解析】
【分析】
设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可.
设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,
解得x=1或-7.
【点睛】
本题考查数轴的应用,使用两点间的距离公式列出方程是解题的关键.
21.40°
【解析】
解:由角的和差,得:∠AOC=∠AOD-∠COD=140°-
90°=50°.由余角的性质,得:∠COB=90°-∠AOC=90°-50°=40°.故答案为:40°.解析:40°
【解析】
解:由角的和差,得:∠AOC=∠AOD-∠COD=140°-90°=50°.由余角的性质,得:
∠COB=90°-∠AOC=90°-50°=40°.故答案为:40°.
22.﹣1
【解析】
【分析】
利用相反数的性质列出方程,求出方程的解即可得到a的值.
【详解】
根据题意得:
去分母得:a+2+2a+1=0,
移项合并得:3a=﹣3,
解得:a=﹣1,
故答案为:
解析:﹣1
【解析】
【分析】
利用相反数的性质列出方程,求出方程的解即可得到a的值.
【详解】
根据题意得:a2a1
10 22
+
++=
去分母得:a+2+2a+1=0,
移项合并得:3a=﹣3,
解得:a=﹣1,
故答案为:﹣1
【点睛】
本题考查了解一元一次方程的应用、解一元一次方程,掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1,是解题的关键,此外还需注意移项要变号.
【解析】
【分析】
利用有理数的减法运算即可求得答案.
【详解】
解:每头猪超过100kg的千克数记作正数,不足100kg的千克数记作负数.那么98.5对应的数记为﹣1.5.
故答案为:﹣1.
解析:5.
【解析】
【分析】
利用有理数的减法运算即可求得答案.
【详解】
解:每头猪超过100kg的千克数记作正数,不足100kg的千克数记作负数.那么98.5对应的数记为﹣1.5.
故答案为:﹣1.5.
【点睛】
本题考查了“正数”和“负数”..解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.依据这一点可以简化数的求和计算.
24.-7
【解析】
【分析】
先根据题意求出a的值,再依此求出b的值.
【详解】
解:根据题意得:a=32-(-2)=11,
则b=(-2)2-11=-7.
故答案为:-7.
【点睛】
本题考查探索与表
解析:-7
【解析】
【分析】
先根据题意求出a的值,再依此求出b的值.
【详解】
解:根据题意得:a=32-(-2)=11,
则b=(-2)2-11=-7.
故答案为:-7.
本题考查探索与表达规律——数字类规律探究. 熟练掌握变化规律,根据题意求出a 和b 是解决问题的关键.
三、压轴题
25.(1)见详解;(2)2x --,53x +,47x +;(3)当运动时间为5秒或9秒时,PQ=2cm.
【解析】
【分析】
(1)根据数轴的特点,所以可以求出点P ,Q 的位置;
(2)根据向左移动用减法,向右移动用加法,即可得到答案;
(3)根据题意,可分为两种情况进行分析:①点P 在点Q 的左边时;②点P 在点Q 的右边时;分别进行列式计算,即可得到答案.
【详解】
解:(1)如图所示:
.
(2)由(1)可知,点P 为2-,点Q 为5;
∴移动后的点P 为:2x --;移动后的点Q 为:53x +;
∴线段PQ 的长为:53(2)47x x x +---=+;
(3)根据题意可知,
当PQ=2cm 时可分为两种情况:
①当点P 在点Q 的左边时,有
(21)72t -=-,
解得:5t =;
②点P 在点Q 的右边时,有
(21)72t -=+,
解得:9t =;
综上所述,当运动时间为5秒或9秒时,PQ=2cm.
【点睛】
本题要是把方程和数轴结合起来,既要根据条件列出方程,又要把握数轴的特点.解题的关键是熟练掌握数轴上的动点运动问题,注意分类讨论进行解题.
26.(1)35°;(2)∠AOE ﹣∠BOF 的值是定值,理由详见解析;(3)4.
【解析】
【分析】
(1)首先根据角平分线的定义求得∠AOE 和∠BOF 的度数,然后根据∠AOE ﹣∠BOF 求解;
(2)首先由题意得∠BOC =3t°,再根据角平分线的定义得∠AOC =∠AOB+3t°,∠BOD =∠COD+3t°,然后由角平分线的定义解答即可;
(3)根据题意得∠BOF =(3t+14)°,故3314202t t +=+
,解方程即可求出t 的值. 【详解】
解:(1)∵OE 平分∠AOC ,OF 平分∠BOD , ∴11AOE AOC 11022︒∠=∠=⨯=55°,11AOF BOD 402022
︒︒∠=∠=⨯=, ∴∠AOE ﹣∠BOF =55°﹣20°=35°;
(2)∠AOE ﹣∠BOF 的值是定值
由题意∠BOC =3t°,
则∠AOC =∠AOB+3t°=110°+3t°,∠BOD =∠COD+3t°=40°+3t°,
∵OE 平分∠AOC ,OF 平分∠BOD ,
()11AOE AOC 1103t =22︒︒∴∠=
∠=⨯+3552t ︒︒+ ∴()
113BOF BOD 403t 20t 222︒︒︒︒∠=∠=+=+, ∴33AOE BOF 55t 20t 3522︒︒︒︒︒⎛⎫⎛⎫∠-∠=+-+= ⎪ ⎪⎝
⎭⎝⎭, ∴∠AOE ﹣∠BOF 的值是定值,定值为35°;
(3)根据题意得∠BOF =(3t+14)°, ∴3314202t t +=+
, 解得4t =.
故答案为4.
【点睛】
本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.
27.(1)41°;(2)见解析.
【解析】
【分析】
(1)根据角平分线的定义可得12AOC AOB ∠∠=,12AOE AOD ∠∠=,进而可得∠COE=()12
AOB AOD ∠∠-,即可得答案;(2)分别讨论OA 在∠BOD 内部和外部的情况,根据求得结果进行判断即可.
【详解】
(1)∵射线OC 平分AOB ∠、射线OE 平分AOD ∠, ∴12AOC AOB ∠∠=,12
AOE AOD ∠∠=,
∴COE AOC AOE ∠∠∠=- =
1122
AOB AOD ∠∠- =()12
AOB AOD ∠∠- =12BOD ∠ =
01822
⨯ =41°
(2)α与β之间的数量关系发生变化, 如图,当OA 在BOD ∠内部,
∵射线OC 平分AOB ∠、 射线OE 平分AOD ∠,
∴11O ,22
AOC A B AOE AOD ∠∠∠∠=
=, ∴COE AOC AOE β∠∠∠==+ =
1122
AOB AOD ∠∠+ =()12
AOB AOD ∠∠+ =12α
如图,当OA 在BOD ∠外部,
∵射线OC 平分AOB ∠、射线OE 平分AOD ∠,
∴11,22
AOC AOB AOE AOD ∠∠∠∠=
=, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠=
+ =()12
AOB AOD ∠∠+
=()013602
BOD ∠- =()
013602α- =011802
α-
∴α与β之间的数量关系发生变化.
【点睛】
本题考查角平分线的定义,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.
28.(1)﹣4,6﹣5t ;(2)①当点P 运动5秒时,点P 与点Q 相遇;②当点P 运动1或9秒时,点P 与点Q 间的距离为8个单位长度.
【解析】
【分析】
(1)根据题意可先标出点A ,然后根据B 在A 的左侧和它们之间的距离确定点B ,由点P 从点A 出发向左以每秒5个单位长度匀速运动,表示出点P 即可;
(2)①由于点P 和Q 都是向左运动,故当P 追上Q 时相遇,根据P 比Q 多走了10个单位长度列出等式,根据等式求出t 的值即可得出答案;
②要分两种情况计算:第一种是点P 追上点Q 之前,第二种是点P 追上点Q 之后.
【详解】
解:(1)∵数轴上点A 表示的数为6,
∴OA =6,
则OB =AB ﹣OA =4,
点B 在原点左边,
∴数轴上点B 所表示的数为﹣4;
点P 运动t 秒的长度为5t ,
∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,
∴P 所表示的数为:6﹣5t ,
故答案为﹣4,6﹣5t ;
(2)①点P 运动t 秒时追上点Q ,
根据题意得5t =10+3t ,
解得t=5,
答:当点P运动5秒时,点P与点Q相遇;
②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,
当P不超过Q,则10+3a﹣5a=8,解得a=1;
当P超过Q,则10+3a+8=5a,解得a=9;
答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.
【点睛】
在数轴上找出点的位置并标出,结合数轴求追赶和相遇问题是本题的考点,正确运用数形结合解决问题是解题的关键,注意不要漏解.
29.(1)点P在线段AB上的1
3
处;(2)
1
3
;(3)②MN
AB
的值不变.
【解析】
【分析】
(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在
线段AB上的1
3
处;
(2)由题设画出图示,根据AQ-BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ 与AB的关系;
(3)当点C停止运动时,有CD=1
2
AB,从而求得CM与AB的数量关系;然后求得以AB
表示的PM与PN的值,所以MN=PN−PM=
1
12
AB.
【详解】
解:(1)由题意:BD=2PC
∵PD=2AC,
∴BD+PD=2(PC+AC),即PB=2AP.
∴点P在线段AB上的1
3
处;
(2)如图:
∵AQ-BQ=PQ,∴AQ=PQ+BQ,∵AQ=AP+PQ,∴AP=BQ,
∴PQ=1
3 AB,

1
3 PQ AB
(3)②MN
AB
的值不变.
理由:如图,
当点C停止运动时,有CD=
1
2
AB,
∴CM=
1
4
AB,
∴PM=CM-CP=
1
4
AB-5,
∵PD=
2
3
AB-10,
∴PN=
12
23
(AB-10)=
1
3
AB-5,
∴MN=PN-PM=
1
12
AB,
当点C停止运动,D点继续运动时,MN的值不变,
所以
1
1
12
12
AB
MN
AB AB
==.
【点睛】
本题考查了比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.
30.(1)2(2)8或2;(3)见解析.
【解析】
【分析】
(1)根据线段之间的和差关系求解即可;
(2)由于B点的位置不能确定,故应分当B点在线段AC的上和当B点在线段AC的延长线上两种情况进行分类讨论;
(3)由(1)(2)可知MC=
1
2
(a+b)或
1
2
(a-b).
【详解】
解:解:(1)∵AC=10,BC=6,
∴AB=AC+BC=16,
∵点M是AB的中点,
∴AM=
1
2
AB
∴MC=AC-AM=10-8=2.
(2)线段MC的长度不只是(1)中的结果,
由于点B的位置不能确定,故应分当B点在线段AC的上和当B点在线段AC的延长线上两种情况:
①当B点在线段AC上时,
∵AC=10,BC=6,
∴AB=AC-BC=4,
∵点M是AB的中点,
∴AM=1
2
AB=2,
∴MC=AC-AM=10-2=8.
②当B点在线段AC的延长线上,
此时MC=AC-AM=10-8=2.
(3)由(1)(2)可知MC=AC-AM=AC-1
2
AB 因为当B点在线段AC的上,AB=AC-BC,
故MC=AC-1
2
(AC-BC)=
1
2
AC+
1
2
BC=
1
2
(a+b)
当B点在线段AC的延长线上,AB=AC+BC,
故MC=AC-1
2
(AC+BC)=1
2
AC-
1
2
BC=
1
2
(a-b)
【点睛】
主要考察两点之间的距离,但是要注意题目中的点不确定性,需要分情况讨论. 31.(1)x=1;(2) x=-3或x=5;(3) 30.
【解析】
【分析】
(1)根据题意可得4-x=x-(-2),解出x的值;
(2)此题分为两种情况,当点P在B的右边时,当点P在B的左边时,分别列出方程求解即可;
(3)设经过x分钟点A与点B重合,根据题意得:2x=6+x进而求出即可.
【详解】
(1)4-x=x-(-2),解得:x=1,(2)①当点P在B的右边时得:
x-(-2)+x-4=8,解得:x=5,②当点P在B的左边时得:-2-x+4-x=8,解得:x=-3,则x=-3或x=5.(3)设经过x分钟点A与点B重合,根据题意得:
2x=6+x,解得:x=6,则5x=30,故答案为30个单位长度.
【点睛】
本题主要考查了一元二次方程的应用,解此题的要点在于根据数轴得出点的位置. 32.(1)60°;(2)射线OP是∠AOC的平分线;(3)30°.
【解析】
整体分析:
(1)根据角平分线的定义与角的和差关系计算;(2)计算出∠AOP的度数,再根据角平分线的定义判断;(3)根据∠AOC,∠AON,∠NOC,∠MON,∠AOM的和差关系即可得到∠NOC 与∠AOM之间的数量关系.
解:(1)如图②,∠AOC=120°,
∴∠BOC=180°﹣120°=60°,
又∵OM平分∠BOC,
∴∠BOM=30°,
又∵∠NOM=90°,
∴∠BOM=90°﹣30°=60°,
故答案为60°;
(2)如图③,∵∠AOP=∠BOM=60°,∠AOC=120°,
∴∠AOP=1
2
∠AOC,
∴射线OP是∠AOC的平分线;
(3)如图④,∵∠AOC=120°,
∴∠AON=120°﹣∠NOC,
∵∠MON=90°,
∴∠AON=90°﹣∠AOM,
∴120°﹣∠NOC=90°﹣∠AOM,即∠NOC﹣∠AOM=30°.。

相关文档
最新文档