【易错题】高考数学一模试卷带答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【易错题】高考数学一模试卷带答案
一、选择题
1.设1i
2i 1i
z -=++,则||z = A .0
B .
12
C .1
D .2
2.如图所示的圆锥的俯视图为( )
A .
B .
C .
D .
3.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为y =0.85x-85.71,则下列结论中不正确的是 A .y 与x 具有正的线性相关关系 B .回归直线过样本点的中心(x ,y )
C .若该大学某女生身高增加1cm ,则其体重约增加0.85kg
D .若该大学某女生身高为170cm ,则可断定其体重必为58.79kg
4.设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( ) A .若a b ,与α所成的角相等,则a b ∥ B .若a αβ∥,b ∥,αβ∥,则a b ∥ C .若a b a b αβ⊂⊂,,,则αβ∥ D .若a b αβ⊥⊥,,αβ⊥,则a b ⊥ 5.设函数()()21,04,0
x
log x x f x x ⎧-<=⎨≥⎩,则()()233f f log -+=( )
A .9
B .11
C .13
D .15
6.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为 A .23 B .35
C .
25
D .
15
7.设01p <<,随机变量ξ的分布列如图,则当p 在()0,1内增大时,( )
ξ012
P
1
2
p
-1
22
p
A.()
Dξ减小B.()
Dξ增大
C.()
Dξ先减小后增大D.()
Dξ先增大后减小
8.已知P为双曲线
22
22
:1(0,0)
x y
C a b
a b
-=>>上一点,12
F F
,为双曲线C的左、右焦
点,若
112
PF F F
=,且直线
2
PF与以C的实轴为直径的圆相切,则C的渐近线方程为()
A.
4
3
y x
=±B.
3
4
y x C.
3
5
y x
=±D.
5
3
y x
=±
9.一个几何体的三视图如图所示,其中正视图是一个正三角形,俯视图是一个等腰直角三角形,则该几何体的外接球的表面积为()
A.
4
3
π
B.
8
3
π
C.
16
3
π
D.
20
3
π
10.已知函数()
25,1,
,1,
x ax x
f x a
x
x
⎧---≤
⎪
=⎨
>
⎪⎩
是R上的增函数,则a的取值范围是()A.30
a
-≤<B.0
a<
C.2
a≤-D.32
a
--
≤≤
11.函数()
2
3x
f x
x
+
=的图象关于( )
A.x轴对称B.原点对称C.y轴对称D.直线y x
=对称12.已知全集{}
1,0,1,2,3
U=-,集合{}
0,1,2
A=,{}
1,0,1
B=-,则
U
A B=()A.{}1-B.{}
0,1
C.{}
1,2,3
-D.{}
1,0,1,3
-
二、填空题
13.设函数()21
2
log ,0log (),0x x f x x x >⎧⎪
=⎨-<⎪⎩ ,若()()f a f a >-,则实数a 的取值范围是
__________.
14.若不等式|3|4x b -<的解集中的整数有且仅有1,2,3,则b 的取值范围是 15.事件,,A B C 为独立事件,若()()()111
,,688
P A B P B C P A B C ⋅=
⋅=⋅⋅=,则()P B =_____.
16.已知椭圆22
195
x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中
点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是_______.
17.已知0x >,0y >,0z >
,且6x z ++=,则32
3x y z ++的最小值为
_________.
18.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.
19.在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆2cos ρθ=相切,则
a =__________.
20.记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_____________.
三、解答题
21.已知()ln x
e f x a x ax x
=+-.
(1)若0a <,讨论函数()f x 的单调性;
(2)当1a =-时,若不等式1()()0x
f x bx b e x x
+---≥在[1,)+∞上恒成立,求b 的取值范围.
22.随着移动互联网的发展,与餐饮美食相关的手机APP 软件层出不穷,现从某市使用
A 和
B 两款订餐软件的商家中分别随机抽取100个商家,对它们的“平均送达时间”进行统计,得到频率分布直方图如下:
(1)已知抽取的100个使用A 未订餐软件的商家中,甲商家的“平均送达时间”为18分钟,现从使用A 未订餐软件的商家中“平均送达时间”不超过20分钟的商家中随机抽取3个商家进行市场调研,求甲商家被抽到的概率;
(2)试估计该市使用A 款订餐软件的商家的“平均送达时间”的众数及平均数;
(3)如果以“平均送达时间”的平均数作为决策依据,从A 和B 两款订餐软件中选择一款订餐,你会选择哪款?
23.已知0,0a b >>. (1)求证:
211ab a
b
≥
+ ; (2)若a b >,且2ab =,求证:22
4a b a b
+≥-.
24.商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单
位:元/千克)满足关系式
,其中
,为常数,已知销售价
格为5元/千克时,每日可售出该商品11千克. (1) 求的值;
(2) 若商品的成品为3元/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大
25.如图,四棱锥P ABCD -中,//AB DC ,2
ADC π
∠=,1
22
AB AD CD ==
=,6PD PB ==,PD BC ⊥.
(1)求证:平面PBD ⊥平面PBC ;
(2)在线段PC 上是否存在点M ,使得平面ABM 与平面PBD 所成锐二面角为3
π
?若存在,求
CM
CP
的值;若不存在,说明理由.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数z,然后求解复数的模.
详解:
()()
()()
1i1i
1i
2i2i 1i1i1i
z
--
-
=+=+ +-+
i2i i
=-+=,
则1
z=,故选c.
点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.
2.C
解析:C
【解析】
【分析】
找到从上往下看所得到的图形即可.
【详解】
由圆锥的放置位置,知其俯视图为三角形.故选C.
【点睛】
本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,本题容易误选B,属于基础题.
3.D
解析:D
【解析】
根据y与x的线性回归方程为 y=0.85x﹣85.71,则
=0.85>0,y 与 x 具有正的线性相关关系,A正确;
回归直线过样本点的中心(,x y),B正确;
该大学某女生身高增加 1cm,预测其体重约增加 0.85kg,C正确;
该大学某女生身高为 170cm,预测其体重约为0.85×170﹣85.71=58.79kg,D错误.
故选D.
4.D
解析:D
【解析】
【分析】
【详解】
试题分析:A 项中两直线a b ,还可能相交或异面,错误; B 项中两直线a b ,还可能相交或异面,错误; C 项两平面αβ,还可能是相交平面,错误; 故选D.
5.B
解析:B 【解析】 【分析】
根据自变量所在的范围代入相应的解析式计算即可得到答案. 【详解】
∵函数2log (1),0
()4,0x
x x f x x -<⎧=⎨≥⎩
, ∴()2l 23
og 2(3)log 3log 44f f -+=+=2+9=11.
故选B . 【点睛】
本题考查函数值的求法,考查指对函数的运算性质,是基础题.
6.B
解析:B 【解析】 【分析】
本题首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式求解. 【详解】
设其中做过测试的3只兔子为,,a b c ,剩余的2只为,A B ,则从这5只中任取3只的所有取法有{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B ,
{,c,},{,c,},{b,,},{c,,}b A b B A B A B 共10种.其中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,c,},{,c,}b A b B 共6种,
所以恰有2只做过测试的概率为63
105
=,选B . 【点睛】
本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.
7.D
解析:D 【解析】 【分析】
先求数学期望,再求方差,最后根据方差函数确定单调性.
【详解】
111
()0122222
p p E p ξ-=⨯+⨯+⨯=+, 2222111111()(0)(1)(2)2222224
p p D p p p p p ξ-∴=
--+--+--=-++, 1
(0,1)2
∈,∴()D ξ先增后减,因此选D. 【点睛】
2
221
1
1
(),()(())().n
n
n
i i i i i i i i i E x p D x E p x p E ξξξξ=====-=-∑∑∑
8.A
解析:A 【解析】 【分析】
依据题意作出图象,由双曲线定义可得1122PF F F c ==,又直线PF 2与以C 的实轴为直径的圆相切,可得2MF b =,对2OF M ∠在两个三角形中分别用余弦定理及余弦定义列方程,即可求得2b a c =+,联立222c a b =+,即可求得4
3
b a =,问题得解. 【详解】
依据题意作出图象,如下:
则1122PF F F c ==,OM a =, 又直线PF 2与以C 的实轴为直径的圆相切, 所以2OM PF ⊥, 所以222MF c a b =
-=
由双曲线定义可得:212PF PF a -=,所以222PF
c a =+, 所以()()()()
222
22222cos 2222c a c c b OF M c c a c ++-∠==⨯⨯+
整理得:2b a c =+,即:2b a c -= 将2c b a =-代入222c a b =+,整理得:4
3
b a =, 所以C 的渐近线方程为43
b y x x a =±=± 故选A 【点睛】
本题主要考查了双曲线的定义及圆的曲线性质,还考查了三角函数定义及余弦定理,考查计算能力及方程思想,属于难题.
9.C
解析:C 【解析】 【分析】
根据三视图知几何体是三棱锥,且一侧面与底面垂直,结合图中数据求出三棱锥外接球的半径,从而求出球的表面积公式. 【详解】
由三视图知,该几何体是如图所示的三棱锥,且三棱锥的侧面SAC ⊥底面ABC ,高为
3SO =;
其中1OA OB OC ===,SO ⊥平面ABC ,
其外接球的球心在SO 上,设球心为M ,OM x =,根据SM=MB 得到:在三角形MOB 中,21SM 3x x +=,213x x +=, 解得3
x =
∴外接球的半径为3233R ==;
∴三棱锥外接球的表面积为223164(3
S ππ=⨯=.
故选:C .
【点睛】
本题考查了三视图复原几何体形状的判断问题,也考查了三棱锥外接球的表面积计算问题,是中档题.一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.
10.D
解析:D 【解析】 【分析】
根据分段函数的单调性特点,两段函数在各自的定义域内均单调递增,同时要考虑端点处的函数值. 【详解】
要使函数在R 上为增函数,须有()f x 在(,1]-∞上递增,在(1,)+∞上递增,
所以21,20,115,
1a a a a ⎧-≥⎪⎪
<⎨⎪⎪--⨯-≤⎩
,解得32a --≤≤.
故选D. 【点睛】
本题考查利用分段函数的单调性求参数的取值范围,考查数形结合思想、函数与方程思想的灵活运用,求解时不漏掉端点处函数值的考虑.
11.C
解析:C 【解析】 【分析】
求函数的定义域,判断函数的奇偶性即可. 【详解】 解:
(
)f x =
0x ∴≠解得0x ≠
()f x ∴的定义域为()(),00,D =-∞+∞,D 关于原点对称.
任取x D ∈,都有()
()f x f x x
-=
==,
()f x ∴是偶函数,其图象关于y 轴对称,
故选:C . 【点睛】
本题主要考查函数图象的判断,根据函数的奇偶性的定义判断函数的奇偶性是解决本题的关键.
12.A
解析:A 【解析】 【分析】
本题根据交集、补集的定义可得.容易题,注重了基础知识、基本计算能力的考查. 【详解】
={1,3}U C A -,则(){1}U C A B =-
【点睛】
易于理解集补集的概念、交集概念有误.
二、填空题
13.【解析】【分析】【详解】由题意或或或则实数的取值范围是故答案为 解析:(1,0)(1,
)
【解析】 【分析】 【详解】
由题意()()f a f a >-⇒2120 log log a a a >⎧⎪⎨>⎪⎩或()()1220
log log a a a <⎧⎪⎨->-⎪⎩01a a a >⎧⎪
⇒⎨>⎪⎩或
11
a a a a
<⎧⎪⇒>⎨->-⎪⎩或10a -<<,则实数a 的取值范围是()()1,01,-⋃+∞,故答案为()()1,01,-⋃+∞.
14.【解析】【分析】【详解】由得由整数有且仅有123知解得 解析:(5,7)
【解析】 【分析】 【详解】
由|3|4x b -<得
44
33
b b x -+<< 由整数有且仅有1,2,3知4013
4343b b -⎧
≤<⎪⎪⎨+⎪<≤⎪⎩
,解得57b <<
15.【解析】【分析】【详解】分析:根据独立事件的关系列出方程解出详解:设因为所以所以所以点睛:本题主要考查相互独立事件的概率的乘法公式及对立事件的概率关系属于中档题 解析:
1
2
【解析】 【分析】 【详解】
分析:根据独立事件的关系列出方程,解出()P B . 详解:设()()()P A a,P B b,P C c ===, 因为()()()111,,688
P A B P B C P A B C ⋅=
⋅=⋅⋅=, 所以()()16118118ab b c ab c ⎧
=⎪⎪
⎪
-=⎨⎪
⎪
-=⎪⎩
所以111
a ,
b ,324
c =
== 所以()1
P B 2
=
点睛:本题主要考查相互独立事件的概率的乘法公式及对立事件的概率关系,属于中档题.
16.【解析】【分析】结合图形可以发现利用三角形中位线定理将线段长度用坐标表示成圆的方程与椭圆方程联立可进一步求解利用焦半径及三角形中位线定理则更为简洁【详解】方法1:由题意可知由中位线定理可得设可得联立
【解析】 【分析】
结合图形可以发现,利用三角形中位线定理,将线段长度用坐标表示成圆的方程,与椭圆方程联立可进一步求解.利用焦半径及三角形中位线定理,则更为简洁.
方法1:由题意可知||=|2
OF OM|=c=,
由中位线定理可得
12||4
PF OM
==,设
(,)
P x y可得22
(2)16
x y
-+=,
联立方程
22
1 95
x y
+=
可解得
321
,
22
x x
=-=(舍),点P在椭圆上且在x轴的上方,
求得
315
,
2
P
⎛⎫
-
⎪
⎪
⎝⎭
,所以
15
215
1
2
PF
k==
方法2:焦半径公式应用
解析1:由题意可知|2
OF|=|OM|=c=,
由中位线定理可得
12||4
PF OM
==,即
3
4
2
p p
a ex x
-=⇒=-
求得
315
,
22
P
⎛
-
⎝⎭
,所以
15
215
1
2
PF
k==
【点睛】
本题主要考查椭圆的标准方程、椭圆的几何性质、直线与圆的位置关系,利用数形结合思想,是解答解析几何问题的重要途径.
17.【解析】【分析】利用已知条件目标可转化为构造分别求最小值即可【详解】解:令在上递减在上递增所以当时有最小值:所以的最小值为故答案为【点睛】本题考查三元函数的最值问题利用条件减元构造新函数借助导数知识
解析:37 4
【解析】
利用已知条件目标可转化为2
323
45334x y z x x y ⎛++=-++ ⎝⎭,构造
()3
3f x x x =-,()2
454g y y ⎛=-+ ⎝⎭
,分别求最小值即可. 【详解】
解:32
3x y z ++= ()
3236x y x ++-- 2
345324x x y ⎛=-+-+ ⎝⎭
令()3
3f x x x =-,()2
4524g y y ⎛=-+ ⎝⎭
, ()()()2'33311f x x x x =-=-+,0x >, ()f x 在()0,1上递减,在()1,+∞上递增,
所以,()()min 12f x f ==-
当2
y =
时,()g y 有最小值:()min 454g y =
所以,3
2
3x y z ++的最小值为4537244
-+
= 故答案为
37
4
【点睛】
本题考查三元函数的最值问题,利用条件减元,构造新函数,借助导数知识与二次知识处理问题.考查函数与方程思想,减元思想,属于中档题.
18.60【解析】【分析】采用分层抽样的方法从该校四个年级的本科生中抽取一个容量为300的样本进行调查的【详解】∵该校一年级二年级三年级四年级的本科生人数之比为4:5:5:6∴应从一年级本科生中抽取学生人
解析:60 【解析】 【分析】
采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查的. 【详解】
∵该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6, ∴应从一年级本科生中抽取学生人数为:4
300604556
⨯=+++.
故答案为60.
19.【解析】【分析】根据将直线与圆极坐标方程化为直角坐标方程再根据圆
心到直线距离等于半径解出【详解】因为由得由得即即因为直线与圆相切所以【点睛】(1)直角坐标方程化为极坐标方程只要运用公式及直接代入并化
解析:1【解析】 【分析】
根据2
2
2
,cos ,sin x y x y ρρθρθ=+==将直线与圆极坐标方程化为直角坐标方程,再根据圆心到直线距离等于半径解出a . 【详解】
因为222,cos ,sin x y x y ρρθρθ=+==, 由cos sin (0)a a ρθρθ+=>,得(0)x y a a +=>,
由2cos ρθ=,得2
=2cos ρρθ,即22=2x y x +,即22(1)1x y -+=,
1101a a a =∴=±>∴=+,,
【点睛】
(1)直角坐标方程化为极坐标方程,只要运用公式cos x ρθ=及sin y ρθ=直接代入并化简即可;
(2)极坐标方程化为直角坐标方程时常通过变形,构造形如2
cos ,sin ,ρθρθρ的形式,
进行整体代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.
20.【解析】【分析】首先根据题中所给的类比着写出两式相减整理得到从而确定出数列为等比数列再令结合的关系求得之后应用等比数列的求和公式求得的值【详解】根据可得两式相减得即当时解得所以数列是以-1为首项以2 解析:63-
【解析】 【分析】
首先根据题中所给的21n n S a =+,类比着写出1121n n S a ++=+,两式相减,整理得到
12n n a a +=,从而确定出数列{}n a 为等比数列,再令1n =,结合11,a S 的关系,求得
11a =-,之后应用等比数列的求和公式求得6S 的值.
【详解】
根据21n n S a =+,可得1121n n S a ++=+, 两式相减得1122n n n a a a ++=-,即12n n a a +=, 当1n =时,11121S a a ==+,解得11a =-, 所以数列{}n a 是以-1为首项,以2为公比的等比数列,
所以66(12)
6312
S --==--,故答案是63-.
点睛:该题考查的是有关数列的求和问题,在求解的过程中,需要先利用题中的条件,类比着往后写一个式子,之后两式相减,得到相邻两项之间的关系,从而确定出该数列是等比数列,之后令1n =,求得数列的首项,最后应用等比数列的求和公式求解即可,只要明确对既有项又有和的式子的变形方向即可得结果.
三、解答题
21.(1)见解析;(2)1[,)e
+∞. 【解析】 【分析】
(1)()f x 的定义域为()0,+∞,且()()()2
1x x e ax f x x --'=,据此确定函数的单调性即
可;
(2)由题意可知()10x
b x e lnx --≥在[
)1,+∞上恒成立,分类讨论0b ≤和0b >两种情
况确定实数b 的取值范围即可. 【详解】
(1)()f x 的定义域为()0,+∞ ∵()()()2
1x x e ax f x x --'=
,0a <,
∴当()0,1x ∈时,()0f x '<;()1,x ∈+∞时,()0f x '> ∴函数()f x 在()0,1上单调递减;在()1,+∞上单调递增. (2)当1a =-时,()1x f x bx b e x x ⎛⎫+--
- ⎪⎝⎭
()1x
b x e lnx =-- 由题意,()10x
b x e lnx --≥在[
)1,+∞上恒成立
①若0b ≤,当1x ≥时,显然有()10x
b x e lnx --≤恒成立;不符题意.
②若0b >,记()()1x
h x b x e lnx =--,则()1x
h x bxe x
'=-
, 显然()h x '在[
)1,+∞单调递增, (i )当1
b e
≥
时,当1x ≥时,()()110h x h be ≥=-'≥' ∴[
)1,x ∈+∞时,()()10h x h ≥= (ii )当10b e <<,()110h be -'=<,1
110b h e b e b ⎛⎫
=-> ⎝'->⎪⎭
∴存在01x >,使()0h x '=.
当()01,x x ∈时,()0h x '<,()0,x x ∈+∞时,()0h x '> ∴()h x 在()01,x 上单调递减;在()0,x +∞上单调递增 ∴当()01,x x ∈时,()()10h x h <=,不符合题意
综上所述,所求b 的取值范围是1,e ⎡⎫
+∞⎪⎢⎣⎭
【点睛】
本题主要考查导数研究函数的单调性,导数研究恒成立问题,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力. 22.(1)1
2
; (2)40; (3)选B 款订餐软件. 【解析】 【分析】
⑴运用列举法给出所有情况,求出结果 ⑵由众数结合题意求出平均数
⑶分别计算出使用A 款订餐、使用B 款订餐的平均数进行比较,从而判定 【详解】
(1)使用A 款订餐软件的商家中“平均送达时间”不超过20分钟的商家共有
1000.006106⨯⨯=个,分别记为甲,,,,,,a b c d e
从中随机抽取3个商家的情况如下:共20种.
{},a b 甲,,{},a c 甲,,{},a d 甲,,{},a e 甲,,{},b c 甲,,{},b d 甲,,{},b e 甲,,{}{},,c d c e 甲,甲,,{},d e 甲,,{},,a b c ,{},,a b d ,{},,a b e ,{},,a c d ,{},,a c e ,{},,a d e ,{},,b c d ,{},,b c e ,{},,b d e ,{},,c d e .
甲商家被抽到的情况如下:共10种.
{},a b 甲,,{},a c 甲,,{},a d 甲,,{},a e 甲,,{},b c 甲,,{},b d 甲,,{},b e 甲,,{},c d 甲,,{},c e 甲,,{},d e 甲,
记事件A 为甲商家被抽到,则()101202
P A =
=. (2)依题意可得,使用A 款订餐软件的商家中“平均送达时间”的众数为55,平均数为
150.06250.34350.12450.04550.4650.0440⨯+⨯++⨯+⨯+⨯=. (3)使用B 款订餐软件的商家中“平均送达时间”的平均数为
150.04250.2350.56450.14550.04650.023540⨯+⨯+⨯+⨯+⨯+⨯=< 所以选B 款订餐软件. 【点睛】
本题主要考查了频率分布直方图,平均数和众数,古典概率等基础知识,考查了数据处理能力以及运算求解能力和应用意识,属于基础题. 23.(1)见解析;(2)见解析
【分析】
(1) 已知0,0a b >>直接对
11
a b
+使用均值不等式; (2)不等式分母为-a b ,通过降次构造-a b ,再使用均值不等式. 【详解】
证明:(1)22 “”
1111
2?
ab a b a b a b
≤===+,当且仅当时取; (2)()()()()2
2
22
2444
2?
4a b ab a b a b a b a b a b a b a b a b
a b
-+-++===-+≥-=-----,当且仅当13,13a b =+=-+或13,13a b =-=--时取“=”. 【点睛】
“一正二定三相等”,不能直接使用均值不等式的化简变形再用均值不等式. 24.(1)因为
时
,所以
;
(2)由(1)知该商品每日的销售量,所以商场每日销售该商品所获得的
利润:222
()(3)[
10(6)]210(3)(6),363
f x x x x x x x =-+-=+--<<-; /2()10[(6)2(3)(6)]30(4)(6)f x x x x x x =-+-----,令/()0f x =得4x =函数
在(3,4)上递增,在(4,6)上递减, 所以当时函数
取得最大值
答:当销售价格时,商场每日销售该商品所获得的利润最大,最大值为42.
【解析】
(1)利用销售价格为5元/千克时,每日可售出该商品11千克.把x=5,y=11代入
,解关于a 的方程即可求a..
(2)在(1)的基础上,列出利润关于x 的函数关系式,
利润=销售量⨯(销售单价-成品单价),然后利用导数求其最值即可. 25.(1)见证明;(2)见解析 【解析】 【分析】
(1)利用余弦定理计算BC ,根据勾股定理可得BC ⊥BD ,结合BC ⊥PD 得出BC ⊥平面PBD ,于是平面PBD ⊥平面PBC ;(2)建立空间坐标系,设CM
CP
=λ,计算平面ABM 和平面PBD 的法向量,令法向量的夹角的余弦值的绝对值等于
1
2
,解方程得出λ的值,即可
【详解】
(1)证明:因为四边形ABCD 为直角梯形, 且//AB DC , 2AB AD ==,2
ADC π
∠
=,
所以22BD =, 又因为4,4
CD BDC π
=∠=
.根据余弦定理得22,BC =
所以222CD BD BC =+,故BC BD ⊥.
又因为BC PD ⊥, PD BD D ⋂=,且BD ,PD ⊂平面PBD ,所以BC ⊥平面PBD , 又因为BC ⊂平面PBC ,所以PBC PBD ⊥平面平面 (2)由(1)得平面ABCD ⊥平面PBD , 设E 为BD 的中点,连结PE ,因为6PB PD ==,
所以PE BD ⊥,2PE =,又平面ABCD ⊥平面PBD ,
平面ABCD
平面PBD BD =,
PE ⊥平面ABCD .
如图,以A 为原点分别以AD ,AB 和垂直平面ABCD 的方向为,,x y z 轴正方向,建立空间直角坐标系A xyz -,
则(0,0,0)A ,(0,2,0)B ,(2,4,0)C ,(2,0,0)D ,(1,1,2)P , 假设存在(,,)M a b c 满足要求,设(01)CM
CP
λλ=≤≤,即CM CP λ=, 所以(2-,4-3,2)λλλM ,
易得平面PBD 的一个法向量为(2,2,0)BC =.
设(,,)n x y z =为平面ABM 的一个法向量,(0,2,0)AB =, =(2-,4-3,2)λλλAM
由00n AB n AM ⎧⋅=⎨⋅=⎩
得20(2)(43)20y x y z λλλ=⎧⎨-+-+=⎩,不妨取(2,0,2)n λλ=-.
因为平面PBD 与平面ABM 所成的锐二面角为3π22412
224(2)λλλ=+-,
解得2
,23
λλ=
=-,(不合题意舍去).
故存在M点满足条件,且
2
3 CM
CP
.
【点睛】
本题主要考查空间直线与直线、直线与平面的位置关系及平面与平面所成的角等基础知识,面面角一般是定义法,做出二面角,或者三垂线法做出二面角,利用几何关系求出二面角,也可以建系来做.。