备战高考物理电磁感应现象的两类情况推断题综合经典题附答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
备战高考物理电磁感应现象的两类情况推断题综合经典题附答案解析
一、电磁感应现象的两类情况
1.如图甲所示,相距d 的两根足够长的金属制成的导轨,水平部分左端ef 间连接一阻值为2R 的定值电阻,并用电压传感器实际监测两端电压,倾斜部分与水平面夹角为37°.长度也为d 、质量为m 的金属棒ab 电阻为R ,通过固定在棒两端的金属轻滑环套在导轨上,滑环与导轨上MG 、NH 段动摩擦因数μ=
1
8
(其余部分摩擦不计).MN 、PQ 、GH 相距为L ,MN 、PQ 间有垂直轨道平面向下、磁感应强度为B 1的匀强磁场,PQ 、GH 间有平行于斜面但大小、方向未知的匀强磁场B 2,其他区域无磁场,除金属棒及定值电阻,其余电阻均不计,sin 37°=0.6,cos 37°=0.8,当ab 棒从MN 上方一定距离由静止释放通过MN 、PQ 区域(运动过程中ab 棒始终保持水平),电压传感器监测到U -t 关系如图乙所示.
(1)求ab 棒刚进入磁场B 1时的速度大小. (2)求定值电阻上产生的热量Q 1.
(3)多次操作发现,当ab 棒从MN 以某一特定速度进入MNQP 区域的同时,另一质量为2m ,电阻为2R 的金属棒cd 只要以等大的速度从PQ 进入PQHG 区域,两棒均可同时匀速通过各自场区,试求B 2的大小和方向.
【答案】(1)11.5U B d (2)2
221934-mU mgL B d
;(3)32B 1 方向沿导轨平面向上 【解析】 【详解】
(1)根据ab 棒刚进入磁场B 1时电压传感器的示数为U ,再由闭合电路欧姆定律可得此时的感应电动势:
1 1.52U
E U R U R
=+
⋅= 根据导体切割磁感线产生的感应电动势计算公式可得:
111E B dv =
计算得出:111.5U
v B d
=
. (2)设金属棒ab 离开PQ 时的速度为v 2,根据图乙可以知道定值电阻两端电压为2U ,根据闭合电路的欧姆定律可得:
12
222B dv R U R R
⋅=+
计算得出:213U
v B d
=
;棒ab 从MN 到PQ ,根据动能定理可得: 222111sin 37cos3722
mg L mg L W mv mv μ︒︒⨯-⨯-=
-安 根据功能关系可得产生的总的焦耳热 :
=Q W 总安
根据焦耳定律可得定值电阻产生的焦耳热为:
122R
Q Q R R
=
+总 联立以上各式得出:
2
12211934mU Q mgL B d
=-
(3)两棒以相同的初速度进入场区匀速经过相同的位移,对ab 棒根据共点力的平衡可得:
221sin 37cos3702B d v
mg mg R
μ︒
︒
--=
计算得出:22
1mgR
v B d =
对cd 棒分析因为:
2sin 372cos370mg mg μ︒︒-⋅>
故cd 棒安培力必须垂直导轨平面向下,根据左手定则可以知道磁感应强度B 2沿导轨平面向上,cd 棒也匀速运动则有:
1212sin 372cos37022B dv mg mg B d R μ︒︒⎛⎫
-+⨯⨯⨯= ⎪⎝⎭
将22
1mgR
v B d =
代入计算得出:2132B B =. 答:(1)ab 棒刚进入磁场1B 时的速度大小为
11.5U
B d
; (2)定值电阻上产生的热量为2
2211934mU mgL B d
-; (3)2B 的大小为132B ,方向沿导轨平面向上.
2.如图()a ,平行长直导轨MN 、PQ 水平放置,两导轨间距0.5L m =,导轨左端MP 间接有一阻值为0.2R =Ω的定值电阻,导体棒ab 质量0.1m kg =,与导轨间的动摩擦因数
0.1μ=,导体棒垂直于导轨放在距离左端 1.0d m =处,导轨和导体棒电阻均忽略不计.整
个装置处在范围足够大的匀强磁场中,0t =时刻,磁场方向竖直向下,此后,磁感应强度B 随时间t 的变化如图()b 所示,不计感应电流磁场的影响.当3t s =时,突然使ab 棒获得
向右的速度08/v m s =,同时在棒上施加一方向水平、大小可变化的外力F ,保持ab 棒具有大小为恒为24/a m s =、方向向左的加速度,取210/g m s =.
()1求0t =时棒所受到的安培力0F ;
()2分析前3s 时间内导体棒的运动情况并求前3s 内棒所受的摩擦力f 随时间t 变化的关系
式;
()3从0t =时刻开始,当通过电阻R 的电量 2.25q C =时,ab 棒正在向右运动,此时撤去
外力F ,此后ab 棒又运动了2 6.05s m =后静止.求撤去外力F 后电阻R 上产生的热量Q .
【答案】(1)0 0.025F N =,方向水平向右(2) ()0.01252?f t N =-(3) 0.195J
【解析】 【详解】 解:()1由图b 知:
0.2
0.1T /s 2
B t V V == 0t =时棒的速度为零,故回路中只有感生感应势为:
0.05V B E Ld t t
Φ===V V V V
感应电流为:0.25A E
I R
==
可得0t =时棒所受到的安培力:
000.025N F B IL ==,方向水平向右;
()2ab 棒与轨道间的最大摩擦力为:00.10.025N m f mg N F μ==>=
故前3s 内导体棒静止不动,由平衡条件得: f BIL = 由图知在03s -内,磁感应强度为:00.20.1B B kt t =-=- 联立解得: ()0.01252(3s)f t N t =-<;
()3前3s 内通过电阻R 的电量为:10.253C 0.75C q I t V =⨯=⨯=
设3s 后到撤去外力F 时又运动了1s ,则有:
1
1BLs q q I t R R
Φ-===V V &
解得:16m s =
此时ab 棒的速度设为1v ,则有:22
1012v v as -=
解得:14m /s v =
此后到停止,由能量守恒定律得: 可得:2
1210.195J 2
Q mv mgs μ=
-=
3.如图所示,足够长且电阻忽略不计的两平行金属导轨固定在倾角为α=30°绝缘斜面上,导轨间距为l =0.5m 。
沿导轨方向建立x 轴,虚线EF 与坐标原点O 在一直线上,空间存在
垂直导轨平面的磁场,磁感应强度分布为1
()00.60.8()0T x B x T x -<⎧=⎨
+≥⎩
(取磁感应强度B 垂直斜面向上为正)。
现有一质量为10.3m =kg ,边长均为l =0.5m 的U 形框cdef 固定在导轨平面上,c 点(f 点)坐标为x =0。
U 形框由金属棒de 和两绝缘棒cd 和ef 组成,棒de 电阻为10.2R =Ω。
另有一质量为20.1=m kg ,长为l =0.5m ,电阻为20.2R =Ω的金属棒ab 在离EF 一定距离处获得一沿斜面向下的冲量I 后向下运动。
已知金属棒和U 形框与导轨间的动摩擦因数均为3
μ=。
(1)若金属棒ab 从某处释放,且I =0.4N·s ,求释放瞬间金属棒ab 上感应电流方向和电势差ab U ;
(2)若金属棒ab 从某处释放,同时U 形框解除固定,为使金属棒与U 形框碰撞前U 形框能保持静止,求冲量I 大小应满足的条件。
(3)若金属棒ab 在x =-0.32m 处释放,且I =0.4N·
s ,同时U 形框解除固定,之后金属棒ab 运动到EF 处与U 形框发生完全非弹性碰撞,求金属棒cd 最终静止的坐标。
【答案】(1)感应电流方向从b 到a ;0.1V;(2)0.48N ⋅s ;(3)2.5m 【解析】 【分析】 【详解】
(1)金属棒获得冲量I 后,速度为
2
4m/s I
v m =
= 根据右手定则,感应电流方向从b 到a ; 切割磁感线产生的电动势为
1E B lv =
其中11B =T ;
金属棒ab 两端的电势差为
1212
0.1V ab B lv
U R R R =
=+
(2)由于ab 棒向下运动时,重力沿斜面的分力与摩擦力等大反向,因此在安培力作用下运动,ab 受到的安培力为
2212212
B l v F m a R R ==+
做加速度减小的减速运动;由左手定则可知,cd 棒受到安培力方向沿轨道向上,大小为
21212
B B l v F R R =+安
其中21T B =;
因此获得冲量一瞬间,cd 棒受到的安培力最大,最容易发生滑动 为使线框静止,此时摩擦力沿斜面向下为最大静摩擦力,大小为
11cos sin m f m g m g μαα==
因此安培力的最大值为12sin m g θ; 可得最大冲量为
()12122
122sin 0.48m m g R R I B B l
α
+=
=N·s (3)当I =0.4N·
s 时,金属棒获得的初速度为04/v m s =,其重力沿斜面分力与摩擦力刚好相等,在安培力作用下做加速度减小的减速,而U 形框在碰撞前始终处于静止; 设到达EF 时速度为1v ,取沿斜面向下为正,由动量定理得
22212012
B l vt
m v m v R R -=-+ 其中0.32m vt x == 解得
12m/s v =
金属棒与U 形线框发生完全非弹性碰撞,由动量守恒得
()11122m v m m v =+
因此碰撞后U 形框速度为
20.5m/s v =
同理:其重力沿斜面的分力与滑动摩擦力等大反向,只受到安培力的作用,当U 形框速度为v 时,其感应电流为
12
de ab B lv B lv
I R R -=
+
其中,de B ,ab B 分别为de 边和ab 边处的磁感应强度,电流方向顺时针,受到总的安培力为
()22
12
de
ab de ab
B B l v
F B Il B Il R R -=-=+
其中,,0.8cd ab B B kl k -== 由动量定理得
()2412212
0k l vt
m m v R R -=-++ 因此向下运动的距离为
()()1221224
2m m m v R R s k l ++=
=
此时cd 边的坐标为
x =2.5m
4.如图所示,足够长的U 型金属框架放置在绝缘斜面上,斜面倾角30θ=︒,框架的宽度
0.8m L =,质量0.2kg M =,框架电阻不计。
边界相距 1.2m d =的两个范围足够大的磁
场I 、Ⅱ,方向相反且均垂直于金属框架,磁感应强度均为0.5T B =。
导体棒ab 垂直放置在框架上,且可以无摩擦的滑动。
现让棒从MN 上方相距0.5m x =处由静止开始沿框架下滑,当棒运动到磁场边界MN 处时,框架与斜面间摩擦力刚好达到最大值3N m f =(此时框架恰能保持静止)。
已知棒与导轨始终垂直并良好接触,棒的电阻0.16R =Ω,质量0.4kg m =,重力加速度210m/s g =,试求:
(1)棒由静止开始沿框架下滑到磁场边界MN 处的过程中,流过棒的电量q ; (2)棒运动到磁场Ⅰ、Ⅱ的边界MN 和PQ 时,棒的速度1v 和2v 的大小;
(3)通过计算分析:棒在经过磁场边界MN 以后的运动过程中,U 型金属框架能否始终保持静止状态?
【答案】(1) 1.25C q =;(2)12m/s v =,24m/s v =;(3)框架能够始终保持静止状态 【解析】 【分析】
本题考查导体棒在磁场中的运动,属于综合题。
【详解】 (1)平均电动势为
BLx
E t t
∆Φ=
=∆∆ 平均电流
E
I R
=
则流过棒的电量为
BLx
q I t R
=∆=
代入数据解得 1.25C q =。
(2)棒向下加速运动时,U 形框所受安培力沿斜面向下,静摩擦力向上,当棒运动到磁场边界MN 处时,框架与斜面间摩擦力刚好达到最大值3N m f =,由平衡条件,有
221
sin m B L v Mg f R
θ+=
解得12m/s v =。
棒经过MN 后做匀加速直线运动,加速度
3sin 5m/s a g θ==
由2
2
212v v ad -=,解得
24m/s v =
(3)棒在两边界之间运动时,框架所受摩擦力大小为
1sin 1N m f Mg f θ==<
方向沿斜面向上棒进入PQ 时,框架受到的安培力沿斜面向上,所受摩擦力大小为
222
2sin 3N m B L v f Mg f R
θ=-==
向沿斜面向下以后,棒做加速度减小的减速运动,最后做匀速运动。
匀速运动时,框架所受安培力为
22sin 2N B L v F mg R
θ===安
方向沿斜面向上。
摩擦力大小为
223sin 1N m B L v f Mg f R
θ=-=<
方向沿斜面向下。
综上可知,框架能够始终保持静止状态。
5.如图所示,两根粗细均匀的金属棒M N 、,用两根等长的、不可伸长的柔软导线将它
们连接成闭合回路,并悬挂在光滑绝缘的水平直杆上,并使两金属棒水平。
在M 棒的下方有高为H 、宽度略小于导线间距的有界匀强磁场,磁感应强度为B ,磁场方向垂直纸面向里,此时M 棒在磁场外距上边界高h 处(h <H ,且h 、H 均为未知量),N 棒在磁场内紧贴下边界。
已知:棒M 、N 质量分别为3m 、m ,棒在磁场中的长度均为L ,电阻均为R 。
将M 棒从静止释放后,在它将要进入磁场上边界时,加速度刚好为零;继续运动,在N 棒未离开磁场上边界前已达匀速。
导线质量和电阻均不计,重力加速度为g : (1)求M 棒将要进入磁场上边界时回路的电功率;
(2)若已知M 棒从静止释放到将要进入磁场的过程中,经历的时间为t ,求该过程中M 棒上产生的焦耳热Q ;
(3)在图2坐标系内,已定性画出从静止释放M 棒,到其离开磁场的过程中“v -t 图像”的部分图线,请你补画出M 棒“从匀速运动结束,到其离开磁场”的图线,并写出两纵坐标a 、b 的值。
【答案】(1)22
22
8Rm g B L ;(2)222222412⎛⎫- ⎪⎝⎭Rm g mR t B L B L ;(3),图见解析,224mgR a B L =,22
mgR
b B L =
【解析】 【分析】 【详解】
(1)由牛顿第二定律得
3mg mg BIL -=
M 棒将要进入磁场上边界时回路的电功率
22
2
22
82Rm g P I R B L
== (2)N 棒产生的感应电动势
2E IR BLv ==
由动量守恒得
(3)4mg mg t BLIt mv --=
通过N 棒的电荷量
2BLh
It q R
==
根据能量守恒得
21
(3)422
mg mg h mv Q -=⨯+
联立得2222
22412Rm g mR Q t B L B L ⎛⎫=- ⎪⎝⎭(或22322
2244
448Rm g m g R Q t B L B L =-) (3)对M 棒受力分析
2232B L v
mg mg R
-=
解得22
4mgR
a B L
= 由
2'
322BLv mg mg BL
R
-= 解得22
mgR
b B L
=
6.如图,水平面(纸面)内同距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上,t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.0t 时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求
(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.
【答案】0F E Blt g m μ⎛⎫=- ⎪⎝⎭ ; R =220
B l t m
【解析】 【分析】
【详解】
(1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得:ma=F-μmg ① 设金属杆到达磁场左边界时的速度为v ,由运动学公式有:v =at 0 ②
当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为:E=Blv ③ 联立①②③式可得:0F E Blt g m μ⎛⎫
=-
⎪⎝⎭
④ (2)设金属杆在磁场区域中匀速运动时,金属杆的电流为I ,根据欧姆定律:I=E
R
⑤ 式中R 为电阻的阻值.金属杆所受的安培力为:f BIl = ⑥ 因金属杆做匀速运动,由牛顿运动定律得:F –μmg–f=0 ⑦
联立④⑤⑥⑦式得: R =220
B l t m
7.如图(a)所示,平行长直金属导轨水平放置,间距L =0.4 m .导轨右端接有阻值R =1 Ω的电阻,导体棒垂直放置在导轨上,且接触良好.导体棒及导轨的电阻均不计,导轨间正方形区域abcd 内有方向竖直向下的匀强磁场,bd 连线与导轨垂直,长度也为L .从0时刻开始,磁感应强度B 的大小随时间t 变化,规律如图(b)所示;同一时刻,棒从导轨左端开始向右匀速运动,1 s 后刚好进入磁场.若使棒在导轨上始终以速度v =1 m/s 做直线运动,求:
(1)棒进入磁场前,回路中的电动势E 大小;
(2)棒在运动过程中受到的最大安培力F ,以及棒通过三角形abd 区域时电流I 与时间t 的关系式.
【答案】(1)0.04 V ; (2)0.04 N , I =22Bv t
R
;
【解析】 【分析】 【详解】
⑴在棒进入磁场前,由于正方形区域abcd 内磁场磁感应强度B 的变化,使回路中产生感应电动势和感应电流,根据法拉第电磁感应定律可知,在棒进入磁场前回路中的电动势为E =
=0.04V
⑵当棒进入磁场时,磁场磁感应强度B =0.5T 恒定不变,此时由于导体棒做切割磁感线运动,使回路中产生感应电动势和感应电流,根据法拉第电磁感应定律可知,回路中的电动势为:e =Blv ,当棒与bd 重合时,切割有效长度l =L ,达到最大,即感应电动势也达到最
大e m=BLv=0.2V>E=0.04V
根据闭合电路欧姆定律可知,回路中的感应电流最大为:i m==0.2A
根据安培力大小计算公式可知,棒在运动过程中受到的最大安培力为:F m=i m LB=0.04N
在棒通过三角形abd区域时,切割有效长度l=2v(t-1)(其中,1s≤t≤+1s)
综合上述分析可知,回路中的感应电流为:i==(其中,1s≤t≤+1s)
即:i=t-1(其中,1s≤t≤1.2s)
【点睛】
注意区分感生电动势与动生电动势的不同计算方法,充分理解B-t图象的含义.
8.如图,两根相距l=0.4m、电阻不计的平行光滑金属导轨水平放置,一端与阻值R=0.15Ω的电阻相连.导轨x>0一侧存在沿x方向均匀增大的稳恒磁场,其方向与导轨平面垂直,变化率k=0.5T/m,x=0处磁场的磁感应强度B0=0.5T.一根质量m=0.1kg、电阻r =0.05Ω的金属棒置于导轨上,并与导轨垂直.棒在外力作用下从x=0处以初速度v0=
2m/s沿导轨向右运动,运动过程中电阻上消耗的功率不变.求:
(1)同路中的电流;
(2)金属棒在x=2m处的速度;
(3)金属棒从x=0运动到x=2m过程中安培力做功的大小;
(4)金属棒从x=0运动到x=2m过程中外力的平均功率.
【答案】(1)2(2)(3)1.6(4)0.71
【解析】
【分析】
【详解】
(1)因为运动过程中电阻上消耗的功率不变,所以回路中电流不变,感应电动势不变
x=0处导体棒切割磁感线产生电动势
电流
(2) x=2m处
解得
(3)
F-X 图像为一条倾斜的直线,图像围成的面积就是二者的乘积即 x =0时,F=0.4N x =2m 时,F=1.2N
(4) 从x =0运动到x =2m ,根据动能定理
解得
解得
所以
【点睛】
(1)由法拉第电磁感应定律与闭合电路欧姆定律相结合,来计算感应电流的大小;(2)由因棒切割产生感应电动势,及电阻的功率不变,即可求解;(3)分别求出x=0与x=2m 处的安培力的大小,然后由安培力做功表达式,即可求解;(4)依据功能关系,及动能定理可求出外力在过程中的平均功率.
9.如图所示,宽度L =0.5 m 的光滑金属框架MNPQ 固定于水平面内,并处在磁感应强度大小B =0.4 T ,方向竖直向下的匀强磁场中,框架的电阻非均匀分布.将质量m =0.1 kg ,电阻可忽略的金属棒ab 放置在框架上,并与框架接触良好.以P 为坐标原点,PQ 方向为
x 轴正方向建立坐标.金属棒从0x 1?m =
处以0v 2?m /s =的初速度,沿x 轴负方向做2a 2?m /s =的匀减速直线运动,运动中金属棒仅受安培力作用.求:
(1)金属棒ab 运动0.5 m ,框架产生的焦耳热Q ;
(2)框架中aNPb 部分的电阻R 随金属棒ab 的位置x 变化的函数关系;
(3)为求金属棒ab 沿x 轴负方向运动0.4 s 过程中通过ab 的电荷量q ,某同学解法为:先算出经过0.4 s 金属棒的运动距离x ,以及0.4 s 时回路内的电阻R ,然后代入BLx
q R R
==求解.指出该同学解法的错误之处,并用正确的方法解出结果. 【答案】(1)0.1 J (2)R 0.4x =(3)0.4C 【解析】 【分析】
【详解】
(1)金属棒仅受安培力作用,其大小
0.120.2?F ma N ⨯===
金属棒运动0.5 m ,框架中产生的焦耳热等于克服安培力做的功
所以0.20.50.1?
Q Fx J ===⨯. (2)金属棒所受安培力为
F BIL =
E BLv I R R ==所以22B L R
F ma v
==
由于棒做匀减速直线运动v
所以R ===(3)错误之处是把0.4 s 时回路内的电阻R 代入BLx
q R
=进行计算. 正确的解法是q It = 因为F BIL ma ==
所以ma 0.12
q t 0.40.4?C BL 0.40.5
⨯⨯⨯=
== 【点睛】
电磁感应中的功能关系是通过安培力做功量度外界的能量转化成电能.找两个物理量之间的关系是通过物理规律一步一步实现的.用公式进行计算时,如果计算的是过程量,我们要看这个量有没有发生改变.
10.“801所”设计的磁聚焦式霍尔推进器可作为太空飞船的发动机,其原理如下:系统捕获宇宙中大量存在的等离子体(由电量相同的正、负离子组成)经系统处理后,从下方以恒定速率v 1向上射入有磁感应强度为B 1、垂直纸面向里的匀强磁场区域Ⅰ内.当栅极MN 、PQ 间形成稳定的电场后,自动关闭区域Ⅰ系统(关闭粒子进入通道、撤去磁场B 1).区域Ⅱ内有磁感应强度大小为B 2、垂直纸面向外的匀强磁场,磁场右边界是直径为D 、与上下极板相切的半圆(圆与下板相切于极板中央A ).放在A 处的放射源能够向各个方向均匀发射速度大小相等的氙原子核,氙原子核经过该区域后形成宽度为D 的平行氙粒子束,经过栅极MN 、PQ 之间的电场加速后从PQ 喷出,在加速氙原子核的过程中探测器获得反向推力(不计氙原子核、等离子体的重力,不计粒子之间相互作用于相对论效应).已知极板长RM =2D ,栅极MN 和PQ 间距为d ,氙原子核的质量为m 、电荷量为q ,求:
(1)氙原子核在A 处的速度大小v 2; (2)氙原子核从PQ 喷出时的速度大小v 3;
(3)因区域Ⅱ内磁场发生器故障,导致区域Ⅱ中磁感应强度减半并分布在整个区域Ⅱ中,求能进入区域Ⅰ的氙原子核占A 处发射粒子总数的百分比.
【答案】(1)22B Dq m (2222
1122
84B v qdm B D q m
+(3)090FAN ∠= 13 【解析】 【分析】 【详解】
(1)离子在磁场中做匀速圆周运动时:2
2
22v B qv m r
=
根据题意,在A 处发射速度相等,方向不同的氙原子核后,形成宽度为D 的平行氙原子核束,即2
D r = 则:222B Dq
v m
=
(2)等离子体由下方进入区域I 后,在洛伦兹力的作用下偏转,当粒子受到的电场力等于洛伦兹力时,形成稳定的匀强电场,设等离子体的电荷量为q ' ,则11Eq B v q ='' 即11E B v =
氙原子核经过区域I 加速后,离开PQ 的速度大小为3v ,根据动能定理可知:
22321122
Uq mv mv =
- 其中电压11U Ed B v d ==
联立可得222
11232
84B v qdm B D q
v m
+=(3)根据题意,当区域Ⅱ中的磁场变为2
B '之后,根据2
mv
r B q =''可知,2r r D '==
①根据示意图可知,沿着AF 方向射入的氙原子核,恰好能够从M 点沿着轨迹1进入区域I ,而沿着AF 左侧射入的粒子将被上极板RM 挡住而无法进入区域I .
该轨迹的圆心O 1,正好在N 点,11AO MO D ==,所以根据几何关系关系可知,此时
090FAN ∠=;
②根据示意图可知,沿着AG 方向射入的氙原子核,恰好从下极板N 点沿着轨迹2进入区域I ,而沿着AG 右侧射入的粒子将被下极板SN 挡住而无法进入区域I .
22AO AN NO D ===,所以此时入射角度030GAN ∠=.
根据上述分析可知,只有060FAG ∠=这个范围内射入的粒子还能进入区域I .该区域的
粒子占A 处总粒子束的比例为00601
==1803
η
11.如图所示,两电阻不计的足够长光滑平行金属导轨与水平面夹角θ,导轨间距l ,所在平面的正方形区域abcd 内存在有界匀强磁场,磁感应强度为B ,方向垂直斜面向上.将甲乙两电阻阻值相同、质量均为m 的相同金属杆如图放置在导轨上,甲金属杆处在磁场的上边界,甲乙相距l .静止释放两金属杆的同时,在甲金属杆上施加一个沿着导轨的外力F ,使甲金属杆在运动过程中始终做沿导轨向下的匀加速直线运动,加速度大小.sin g θ.
(1)乙金属杆刚进入磁场时,发现乙金属杆作匀速运动,则甲乙的电阻R 各为多少? (2))以刚释放时t =0,写出从开始到甲金属杆离开磁场,外力F 随时间t 的变化关系,并说明F 的方向.
(3)乙金属杆在磁场中运动时,乙金属杆中的电功率多少?
(4)若从开始释放到乙金属杆离开磁场,乙金属杆中共产生热量Q ,试求此过程中外力F 对甲做的功.
【答案】(1)
R =(222(322(4)
2sin Q mgl θ-
【解析】 【分析】 【详解】
(1)由于甲乙加速度相同,当乙进入磁场时,甲刚出磁场:乙进入磁场时
v =
受力平衡有:22sin 2B l v mg R θ==
解得:
R =
; (2)甲在磁场用运动时,外力F 始终等于安培力: 2A Blv
F F BIl Bl R
===, 速度为:
sin v g t θ=
可得:
22sin
2A Blg t F Bl R θ==,
F 沿导轨向下
(3)乙金属杆在磁场中运动时,乙金属杆中的电功率为:
2
222
2Blv P I R R R ⎛⎫
===
⎪⎝⎭
; (4)乙进入磁场前匀加速运动中,甲乙发出相同热量,设为Q 1, 此过程中甲一直在磁场中,外力F 始终等于安培力,则有:F 12W W Q ==安 乙在磁场中运动发出热量Q 2, 利用动能定理:2sin 20mgl Q θ=- 可得:
2sin 2
mgl Q θ=
, 由于甲出磁场以后,外力F 为零,可得:
F 2sin W Q mgl θ=-。
12.某电子天平原理如图所示,E 形磁铁的两侧为N 极,中心为S 极,两极间的磁感应强度大小均为B ,磁极宽度均为L ,忽略边缘效应,一正方形线圈套于中心磁极,其骨架与秤
盘连为一体,线圈两端C 、D 与外电路连接,当质量为m 的重物放在秤盘上时,弹簧被压缩,秤盘和线圈一起向下运动(骨架与磁极不接触),随后外电路对线圈供电,秤盘和线圈恢复到未放重物时的位置并静止,由此时对应的供电电流I 可确定重物的质量.已知线圈匝数为n ,线圈电阻为R ,重力加速度为g.问:
(1)线圈向下运动过程中,线圈中感应电流是从C 端还是从D 端流出? (2)供电电流I 是从C 端还是从D 端流入?求重物质量与电流的关系; (3)若线圈消耗的最大功率为P ,该电子天平能称量的最大质量是多少? 【答案】(1)感应电流从C 端流出 (2)2nBL
m I g =(3)02nBL P
m g
R
=【解析】 【分析】 【详解】
(1)根据右手定则,线圈向下切割磁感线,电流应从D端流入,从C端流出
(2)根据左手定则可知,若想使弹簧恢复形变,安培力必须向上,根据左手定则可知电流应从D 端流入,根据受力平衡2mg nBI L =⋅① 解得2nBL
m I g
=
② (3)根据最大功率2P I R =得P I R
= ②③联立解得:02nBL P
m g R
=
13.如图所示,两根金属平行导轨MN 和PQ 放在水平面上,左端向上弯曲且光滑,导轨间距为L ,电阻不计.水平段导轨所处空间有两个有界匀强磁场,相距一段距离不重叠,磁场Ⅰ左边界在水平段导轨的最左端,磁感强度大小为B ,方向竖直向上;磁场Ⅱ的磁感应强度大小为2B ,方向竖直向下.质量均为m 、电阻均为R 的金属棒a 和b 垂直导轨放置在其上,金属棒b 置于磁场Ⅱ的右边界CD 处.现将金属棒a 从弯曲导轨上某一高处由静止释放,使其沿导轨运动.设两金属棒运动过程中始终与导轨垂直且接触良好.
(1)若水平段导轨粗糙,两金属棒与水平段导轨间的最大摩擦力均为1
5
mg ,将金属棒a 从距水平面高度h 处由静止释放.求:
①金属棒a 刚进入磁场Ⅰ时,通过金属棒b 的电流大小;
②若金属棒a 在磁场Ⅰ内运动过程中,金属棒b 能在导轨上保持静止,通过计算分析金属棒a 释放时的高度h 应满足的条件;
(2)若水平段导轨是光滑的,将金属棒a 仍从高度h 处由静止释放,使其进入磁场Ⅰ.设两磁场区域足够大,求金属棒a 在磁场Ⅰ内运动过程中,金属棒b 中可能产生焦耳热的最大值.
【答案】(1)①22BL gh R
;② 22
44
50m gR h B L <; (2)110mgh 【解析】 【详解】
(1)① a 棒从h 0高处释放后在弯曲导轨上滑动时机械能守恒,有
①
解得:
②
a 棒刚进入磁场I 时 ③, 此时通过a 、
b 的感应电流大小为 2E
I R
=
解得:
④
② a 棒刚进入磁场I 时,b 棒受到的安培力大小 ⑤
为使b 棒保持静止必有 ⑥ 由④ ⑤ ⑥联立解得:
⑦
(2)由题意知当金属棒a 进入磁场I 时,由左手定则判断知a 棒向右做减速运动;b 棒向左运动加速运动.
二者产生的感应电动势相反,故当二者的感应电动势大小相等时闭合回路的电流为零,此后二者均匀速运动,故金属棒a 、b 均匀速运动时金属棒b 中产生焦耳热最大, 设此时a 、b 的速度大小分别为
与
,由以上分析有:BL
=2BL
⑧
对金属棒a 应用动量定理有: ⑨
对金属棒b 应用动量定理有: ⑩
联立⑧⑨⑩解得
;
由功能关系得电路产生的总电热为:
故金属棒b 中产生焦耳热最大值为11
210
Q Q mgh =
=总
14.研究小组同学在学习了电磁感应知识后,进行了如下的实验探究(如图所示):两个足够长的平行导轨(MNPQ 与M 1P 1Q 1)间距L =0.2m ,光滑倾斜轨道和粗糙水平轨道圆滑连接,水平部分长短可调节,倾斜轨道与水平面的夹角θ=37°.倾斜轨道内存在垂直斜面方向向上的匀强磁场,磁感应强度B =0.5T ,NN 1右侧没有磁场;竖直放置的光滑半圆轨道PQ 、P 1Q 1分别与水平轨道相切于P 、P 1,圆轨道半径r 1=0.lm ,且在最高点Q 、Q 1处安装了压力传感器.金属棒ab 质量m =0.0lkg ,电阻r =0.1Ω,运动中与导轨有良好接触,并且垂直于导轨;定值电阻R =0.4Ω,连接在MM 1间,其余电阻不计:金属棒与水平轨道间动摩擦因数μ=0.4.实验中他们惊奇地发现:当把NP 间的距离调至某一合适值d ,则只要金属棒从倾斜轨道上离地高h =0.95m 及以上任何地方由静止释放,金属棒ab 总能到达QQ 1处,且压力传感器的读数均为零.取g =l 0m /s 2,sin37°=0.6,cos37°=0.8.则:
(1)金属棒从0.95m 高度以上滑下时,试定性描述金属棒在斜面上的运动情况,并求出它在斜面上运动的最大速度;
(2)求从高度h =0.95m 处滑下后电阻R 上产生的热量; (3)求合适值d .
【答案】(1)3m /s ;(2)0.04J ;(3)0.5m . 【解析】 【详解】
(1)导体棒在斜面上由静止滑下时,受重力、支持力、安培力,当安培力增加到等于重力的下滑分量时,加速度减小为零,速度达到最大值;根据牛顿第二定律,有:
A 0mgsin F θ-=
安培力:A F BIL = BLv I R r
=
+。