京山县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

京山县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 从5名男生、1名女生中,随机抽取3人,检查他们的英语口语水平,在整个抽样过程中,若这名女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是( )
A .
B .
C .
D .
2. 已知点A (0,1),B (﹣2,3)C (﹣1,2),D (1,5),则向量在
方向上的投影为(

A .
B .﹣
C .
D .﹣
3. 某几何体的三视图如图所示,则该几何体的表面积为(

A .12π+15
B .13π+12
C .18π+12
D .21π+15
4. 等比数列的前n 项,前2n 项,前3n 项的和分别为A ,B ,C ,则(

A .
B 2=AC
B .A+C=2B
C .B (B ﹣A )=A (C ﹣A )
D .B (B ﹣A )=C (C ﹣A )
5. 若函数则的值为( )
1,0,
()(2),0,
x x f x f x x +≥⎧=⎨+<⎩(3)f -A .5
B .
C .
D .2
1-7-6. 执行如图所示的程序框图,若输出的S=88,则判断框内应填入的条件是(

A .k >7
B .k >6
C .k >5
D .k >4
7. 设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (﹣2)=0,当x >0时,xf ′(x )﹣f (x )<0,则使得f (x )>0成立的x 的取值范围是( )
A .(﹣∞,﹣2)∪(0,2)
B .(﹣∞,﹣2)∪(2,+∞)
C .(﹣2,0)∪(2,+∞)
D .(﹣2,0)∪(0,
2)
8. 已知函数f (x )=sin 2(ωx )﹣(ω>0)的周期为π,若将其图象沿x 轴向右平移a 个单位(a >0),所得图象关于原点对称,则实数a 的最小值为( )
A .π
B .
C .
D .
9. 设0<a <1,实数x ,y 满足
,则y 关于x 的函数的图象形状大致是(

A .
B .
C .
D .
10.与圆C 1:x 2+y 2﹣6x+4y+12=0,C 2:x 2+y 2﹣14x ﹣2y+14=0都相切的直线有( )A .1条B .2条C .3条D .4条
11.已知实数,,则点落在区域 内的概率为( )
[1,1]x ∈-[0,2]y ∈(,)P x y 20210220x y x y x y +-⎧⎪
-+⎨⎪-+⎩
………
A.
B.
C.
D.
34
38
14
18
【命题意图】本题考查线性规划、几何概型等基础知识,意在考查数形结合思想及基本运算能力.12.若a <b <0,则( )A .0<<1B .ab <b 2
C .>
D .<
二、填空题
13.在极坐标系中,O 是极点,设点A ,B 的极坐标分别是(2,
),(3,
),则O 点到直线AB
的距离是 .
14.设函数
,若用表示不超过实数m 的最大整数,则函数的值域为 .
15.若x ,y 满足线性约束条件
,则z=2x+4y 的最大值为 .
16.某工厂的某种型号的机器的使用年限x 和所支出的维修费用y (万元)的统计资料如表:x 681012y 2356根据上表数据可得y 与x 之间的线性回归方程
=0.7x+
,据此模型估计,该机器使用年限为14年时的维修
费用约为 万元. 
17.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…其中从第三个数起,每一个数都等于他前面两个数的和.该数列是一个非常美丽、和谐的数列,有很多奇妙的属性.比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887….人们称该数列{a n }为“斐波那契数列”.若把该数列{a n }的每一项除以4所得的余数按相对应的顺序组成新数列{b n },在数列{b n }中第2016项的值是 . 
18.一船以每小时12海里的速度向东航行,在A 处看到一个灯塔B 在北偏东60°,行驶4小时后,到达C 处,看到这个灯塔B 在北偏东15°,这时船与灯塔相距为 海里.
三、解答题
19.(本题满分15分)
若数列满足:
(为常数, ),则称为调和数列,已知数列为调和数{}n x 111
n n
d x x +-=d *n N ∈{}n x {}n a 列,且,.
11a =12345
11111
15a a a a a ++++=
(1)求数列的通项;
{}n a n a (2)数列的前项和为,是否存在正整数,使得?若存在,求出的取值集合;若不存
2{}n
n
a n n S n 2015n S ≥n 在,请说明理由.
【命题意图】本题考查数列的通项公式以及数列求和基础知识,意在考查运算求解能力.
20.求下列函数的定义域,并用区间表示其结果.
(1)y=+

(2)y=

21.某同学用“五点法”画函数f (x )=Asin (ωx+φ)+B (A >0,ω>0,|φ|<)在某一个周期内的图象时,
列表并填入的部分数据如表: x x 1x 2x 3ωx+φ
0π2π
Asin (ωx+φ)+B

(Ⅰ)请求出表中的x 1,x 2,x 3的值,并写出函数f (x )的解析式;
(Ⅱ)将f (x )的图象向右平移个单位得到函数g (x )的图象,若函数g (x )在区间[0,m](3<m <4)上的图象的最高点和最低点分别为M ,N ,求向量

夹角θ的大小.
22.已知双曲线C:与点P(1,2).
(1)求过点P(1,2)且与曲线C只有一个交点的直线方程;
(2)是否存在过点P的弦AB,使AB的中点为P,若存在,求出弦AB所在的直线方程,若不存在,请说明理由.
23.巳知二次函数f(x)=ax2+bx+c和g(x)=ax2+bx+c•lnx(abc≠0).
(Ⅰ)证明:当a<0时,无论b为何值,函数g(x)在定义域内不可能总为增函数;
(Ⅱ)在同一函数图象上取任意两个不同的点A(x1,y1),B(x2,y2),线段AB的中点C(x0,y0),记直线AB的斜率为k若f(x)满足k=f′(x0),则称其为“K函数”.判断函数f(x)=ax2+bx+c与g(x)=ax2+bx+c•lnx 是否为“K函数”?并证明你的结论.
24.在某班级举行的“元旦联欢会”有奖答题活动中,主持人准备了两个问题,规定:被抽签抽到的答题同学,答对问题可获得分,答对问题可获得200分,答题结果相互独立互不影响,先回答哪个问
题由答题同学自主决定;但只有第一个问题答对才能答第二个问题,否则终止答题.答题终止后,获得的总分
决定获奖的等次.若甲是被抽到的答题同学,且假设甲答对问题的概率分别为.
(Ⅰ)记甲先回答问题再回答问题得分为随机变量,求的分布列和数学期望;
(Ⅱ)你觉得应先回答哪个问题才能使甲的得分期望更高?请说明理由.
京山县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题
1.【答案】B
【解析】解:由题意知,女生第一次、第二次均未被抽到,她第三次被抽到,
这三个事件是相互独立的,
第一次不被抽到的概率为,
第二次不被抽到的概率为,
第三次被抽到的概率是,
∴女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是=,
故选B.
2.【答案】D
【解析】解:∵;
∴在方向上的投影为==.
故选D.
【点评】考查由点的坐标求向量的坐标,一个向量在另一个向量方向上的投影的定义,向量夹角的余弦的计算公式,数量积的坐标运算.
3.【答案】C
【解析】解:由三视图知几何体为半个圆锥,圆锥的底面圆半径为1,高为2,
∴圆锥的母线长为5,
∴几何体的表面积S=×π×42+×π×4×5+×8×3=18π+12.
故选:C.
4.【答案】C
【解析】解:若公比q=1,则B,C成立;
故排除A,D;
若公比q≠1,
则A=S n=,B=S2n=,C=S3n=,
B (B ﹣A )=(﹣)=
(1﹣q n )(1﹣q n )(1+q n )A (C ﹣A )=(﹣)=
(1﹣q n )(1﹣q n )(1+q n );
故B (B ﹣A )=A (C ﹣A );故选:C .
【点评】本题考查了等比数列的性质的判断与应用,同时考查了分类讨论及学生的化简运算能力.
5. 【答案】D111]【解析】
试题分析:.()()()311112f f f -=-==+=考点:分段函数求值.6. 【答案】 C
【解析】解:程序在运行过程中各变量值变化如下表:
K S
是否继续循环
循环前 1 0第一圈 2 2 是第二圈 3 7 是第三圈 4 18 是第四圈 5 41 是第五圈 6 88 否
故退出循环的条件应为k >5?
故答案选C .
【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.
7. 【答案】A
【解析】解:设g (x )=,则g (x )的导数为:
g ′(x )=

∵当x >0时总有xf ′(x )﹣f (x )<0成立,即当x >0时,g ′(x )<0,
∴当x>0时,函数g(x)为减函数,
又∵g(﹣x)====g(x),
∴函数g(x)为定义域上的偶函数,
∴x<0时,函数g(x)是增函数,
又∵g(﹣2)==0=g(2),
∴x>0时,由f(x)>0,得:g(x)<g(2),解得:0<x<2,
x<0时,由f(x)>0,得:g(x)>g(﹣2),解得:x<﹣2,
∴f(x)>0成立的x的取值范围是:(﹣∞,﹣2)∪(0,2).
故选:A.
8.【答案】D
【解析】解:由函数f(x)=sin2(ωx)﹣=﹣cos2ωx (ω>0)的周期为=π,可得ω=1,
故f(x)=﹣cos2x.
若将其图象沿x轴向右平移a个单位(a>0),可得y=﹣cos2(x﹣a)=﹣cos(2x﹣2a)的图象;
再根据所得图象关于原点对称,可得2a=kπ+,a=+,k∈Z.
则实数a的最小值为.
故选:D
【点评】本题主要考查三角恒等变换,余弦函数的周期性,函数y=Acos(ωx+φ)的图象变换规律,正弦函数、余弦函数的奇偶性,属于基础题.
9.【答案】A
【解析】解:0<a<1,实数x,y满足,即y=,故函数y为偶函数,它的图象关于y
轴对称,
在(0,+∞)上单调递增,且函数的图象经过点(0,1),
故选:A.
【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题.
10.【答案】C
【解析】
【分析】先求出两圆的圆心和半径,判断两个圆的位置关系,从而确定与它们都相切的直线条数.
【解答】解:∵圆C1:x2+y2﹣6x+4y+12=0,C2:x2+y2﹣14x﹣2y+14=0的方程可化为,
;;
∴圆C1,C2的圆心分别为(3,﹣2),(7,1);半径为r1=1,r2=6.
∴两圆的圆心距=r2﹣r1;
∴两个圆外切,
∴它们只有1条内公切线,2条外公切线.
故选C.
11.【答案】B
【解析】
12.【答案】A
【解析】解:∵a<b<0,
∴0<<1,正确;
ab<b2,错误;
<<0,错误;
0<<1<,错误;
故选:A.
二、填空题
13.【答案】 .
【解析】解:根据点A,B的极坐标分别是(2,),(3,),可得A、B的直角坐标分别是(3,
)、(﹣,),
故AB的斜率为﹣,故直线AB的方程为y﹣=﹣(x﹣3),即x+3y﹣12=0,
所以O点到直线AB的距离是=,
故答案为:.
【点评】本题主要考查把点的极坐标化为直角坐标的方法,点到直线的距离公式的应用,属于基础题. 
14.【答案】 {0,1} .
【解析】解:
=[﹣]+[+]
=[﹣]+[+],
∵0<<1,
∴﹣<﹣<,<+<,
①当0<<时,
0<﹣<,<+<1,
故y=0;
②当=时,
﹣=0,+=1,
故y=1;
③<<1时,
﹣<﹣<0,1<+<,
故y=﹣1+1=0;
故函数的值域为{0,1}.
故答案为:{0,1}.
【点评】本题考查了学生的化简运算能力及分类讨论的思想应用.
15.【答案】 38 .
【解析】解:作出不等式组对应的平面区域如图:
由z=2x+4y得y=﹣x+,
平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点A时,直线y=﹣x+的截距最大,此时z最大,
由,解得,
即A(3,8),
此时z=2×3+4×8=6+32=32,
故答案为:38
16.【答案】 7.5 
【解析】解:∵由表格可知=9,=4,
∴这组数据的样本中心点是(9,4),
根据样本中心点在线性回归直线=0.7x+上,
∴4=0.7×9+,
∴=﹣2.3,
∴这组数据对应的线性回归方程是=0.7x﹣2.3,
∵x=14,
∴=7.5,
故答案为:7.5
【点评】本题考查线性回归方程,考查样本中心点,做本题时要注意本题把利用最小二乘法来求线性回归方程的系数的过程省掉,只要求a 的值,这样使得题目简化,注意运算不要出错.
17.【答案】 0 .
【解析】解:1,1,2,3,5,8,13,…除以4所得的余数分别为1,1,2,3,1,0,;1,1,2,3,1,0…,
即新数列{b n }是周期为6的周期数列,
∴b 2016=b 336×6=b 6=0,
故答案为:0.
【点评】本题主要考查数列的应用,考查数列为周期数性,属于中档题.
18.【答案】 24 
【解析】解:根据题意,可得出∠B=75°﹣30°=45°,
在△ABC 中,根据正弦定理得:BC==24海里,
则这时船与灯塔的距离为24
海里.故答案为:24. 
三、解答题
19.【答案】(1),(2)详见解析. 1n a n

时,…………13分
8n =911872222015S =⨯+>>∴存在正整数,使得的取值集合为,…………15分
n 2015n S ≥{}*|8,n n n N ≥∈20.【答案】
【解析】解:(1)∵y=+,
∴,
解得x ≥﹣2且x ≠﹣2且x ≠3,
∴函数y 的定义域是(﹣2,3)∪(3,+∞);
(2)∵y=,
∴,
解得x ≤4且x ≠1且x ≠3,
∴函数y 的定义域是(﹣∞,1)∪(1,3)∪(3,4].
21.【答案】
【解析】解:(Ⅰ)由条件知,,,∴,,
∴,.
(Ⅱ)∵函数f(x)的图象向右平移个单位得到函数g(x)的图象,
∴,
∵函数g(x)在区间[0,m](m∈(3,4))上的图象的最高点和最低点分别为M,N,
∴最高点为,最低点为,∴,,∴,又0≤θ≤π,∴.
【点评】本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,函数y=Asin(ωx+φ)的图象变换,向量夹角公式的应用,属于基本知识的考查.
22.【答案】
【解析】解:(1)当直线l的斜率不存在时,l的方程为x=1,与曲线C有一个交点.…
当直线l的斜率存在时,设直线l的方程为y﹣2=k(x﹣1),代入C的方程,
并整理得(2﹣k2)x2+2(k2﹣2k)x﹣k2+4k﹣6=0 (*)
(ⅰ)当2﹣k2=0,即k=±时,方程(*)有一个根,l与C有一个交点
所以l的方程为…
(ⅱ)当2﹣k2≠0,即k≠±时
△=[2(k2﹣2k)]2﹣4(2﹣k2)(﹣k2+4k﹣6)=16(3﹣2k),
①当△=0,即3﹣2k=0,k=时,方程(*)有一个实根,l与C有一个交点.
所以l的方程为3x﹣2y+1=0…
综上知:l的方程为x=1或或3x﹣2y+1=0…
(2)假设以P为中点的弦存在,设为AB,且A(x1,y1),B(x2,y2),
则2x12﹣y12=2,2x22﹣y22=2,
两式相减得2(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2)…
又∵x1+x2=2,y1+y2=4,
∴2(x1﹣x2)=4(y1﹣y2)
即k AB==,…
∴直线AB的方程为y﹣2=(x﹣1),…
代入双曲线方程2x2﹣y2=2,可得,15y2﹣48y+34=0,
由于判别式为482﹣4×15×34>0,则该直线AB存在.…
【点评】本题考查了直线和曲线的交点问题,考查直线方程问题,考查分类讨论思想,是一道中档题. 
23.【答案】
【解析】解:(Ⅰ)证明:如果g(x)是定义域(0,+∞)上的增函数,
则有g′(x)=2ax+b+=>0;
从而有2ax2+bx+c>0对任意x∈(0,+∞)恒成立;
又∵a<0,则结合二次函数的图象可得,2ax2+bx+c>0对任意x∈(0,+∞)恒成立不可能,
故当a<0时,无论b为何值,函数g(x)在定义域内不可能总为增函数;
(Ⅱ)函数f(x)=ax2+bx+c是“K函数”,g(x)=ax2+bx+c•lnx不是“K函数”,
事实上,对于二次函数f(x)=ax2+bx+c,
k==a(x1+x2)+b=2ax0+b;
又f′(x0)=2ax0+b,
故k=f′(x0);
故函数f(x)=ax2+bx+c是“K函数”;
对于函数g(x)=ax2+bx+c•lnx,
不妨设0<x1<x2,则k==2ax0+b+;
而g′(x0)=2ax0+b+;
故=,化简可得,
=;
设t=,则0<t<1,lnt=;
设s(t)=lnt﹣;则s′(t)=>0;
则s(t)=lnt﹣是(0,1)上的增函数,
故s(t)<s(1)=0;
则lnt≠;
故g(x)=ax2+bx+c•lnx不是“K函数”.
【点评】本题考查了导数的综合应用及学生对新定义的接受能力,属于中档题.
24.【答案】
【解析】【知识点】随机变量的期望与方差随机变量的分布列
【试题解析】(Ⅰ)的可能取值为.


分布列为:
(Ⅱ)设先回答问题,再回答问题得分为随机变量,则的可能取值为.



分布列为:

应先回答所得分的期望值较高.。

相关文档
最新文档