2020版高考物理教科版大一轮温习讲义第十三章专题强化十四应用气体实验定律解决“三类模型问题”
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题强化十四 应用气体实验定律解决“三类模型问题” 专题解读 1.本专题是气体实验定律在玻璃管液封模型、汽缸活塞类模型、变质量气体模型中的应用,高考在选考模块中通常以计算题的形式命题.
2.学好本专题能够帮忙同窗们熟练的选取研究对象和状态转变进程,把握处置三类模型问题的大体思路和方式.
3.本专题用到的相关知识和方式有:受力分析、压强的求解方式、气体实验定律等.
命题点一 “玻璃管液封”模型
1.三大气体实验定律
(1)玻意耳定律(等温转变):p 1V 1=p 2V 2或pV =C (常数).
(2)查理定律(等容转变):p 1T 1=p 2T 2或p
T
=C (常数). (3)盖—吕萨克定律(等压转变):V 1T 1=V 2T 2或V
T
=C (常数). 2.利用气体实验定律及气态方程解决问题的大体思路
3.玻璃管液封模型
求液柱封锁的气体压强时,一样以液柱为研究对象分析受力、列平稳方程,要注意:
(1)液体因重力产生的压壮大小为p =ρgh (其中h 为至液面的竖直高度);
(2)不要漏掉大气压强,同时又要尽可能平稳掉某些大气的压力;
(3)有时可直接应用连通器原理——连通器内静止的液体,同种液体在同一水平面上遍地压强相等;
(4)当液体为水银时,可灵活应用压强单位“cmHg”等,使计算进程简捷.
类型1 单独气体问题
例1 (2017·全国卷Ⅲ·33(2))一种测量稀薄气体压强的仪器如图1(a)所示,玻璃泡M 的上端和下端别离连通两竖直玻璃细管K 1和长为l ,顶端封锁,K 2上端与待测气体连通;M 下端经橡皮软管与充有水银的容器R 连通.开始测量时,M 与K 2相通;慢慢提升R ,直到K 2中水银面与K 1顶端等高,现在水银已进入K 1,且K 1中水银面比顶端低h ,如图(b)所示.设测量进程中温度、与K 2相通的待测气体的压强均维持不变.已知K 1和K 2的内径均为d ,M 的容积为V 0,水银的密度为ρ,重力加速度大小为g .求:
图1
(1)待测气体的压强;
(2)该仪器能够测量的最大压强.
答案 (1)ρπgh 2d 24V 0+πd 2(l -h )
(2)πρgl 2d 2
4V 0 解析 (1)水银面上升至M 的下端使玻璃泡中气体恰好被封住,设现在被封锁的气体的体积为V ,压强等于待测气体的压强p .提升R ,直到K 2中水银面与K 1顶端等高时,K 1中水银面比顶端低h ;设现在封锁气体的压强为p 1,体积为V 1,那么
V =V 0+14
πd 2l ① V 1=14
πd 2h ② 由力学平稳条件得
p 1=p +ρgh ③
整个进程为等温进程,由玻意耳定律得
pV =p 1V 1④
联立①②③④式得
p =ρπgh 2d 24V 0+πd 2(l -h )
⑤ (2)由题意知
h ≤l ⑥
联立⑤⑥式有
p ≤πρgl 2d 24V 0
⑦ 该仪器能够测量的最大压强为
p max =πρgl 2d 24V 0
. 变式1 (2018·山西省吕梁市第一次模拟)如图2所示,一根两头开口、横截面积为S =2 cm 2、足够长的玻璃管竖直插入水银槽中并固定(插入水银槽中的部份足够深).管中有一个质量不计的滑腻活塞,活塞下封锁着长L =21 cm 的气柱,气体的温度为t 1=7 ℃,外界大气压强取p 0=×105 Pa.
图2
(1)假设在活塞上放一个质量为m = kg 的砝码,维持气体的温度t 1不变,那么平稳后气柱为多长? (g =10 m/s 2)
(2)假设维持砝码的质量不变,对气体加热,使其温度升高到t 2=77 ℃,现在气柱为多长?
(3)假设在(2)进程中,气体吸收的热量为10 J ,那么气体的内能增加多少?
答案 (1)20 cm (2)25 cm (3) J
解析 (1)被封锁气体的初状态为p 1=p 0=×105 Pa
V 1=LS =42 cm 3,T 1=280 K
末状态为p 2=p 0+mg S
=×105 Pa , V 2=L 2S ,T 2=T 1=280 K
依照玻意耳定律,有p 1V 1=p 2V 2,即p 1L =p 2L 2,得L 2=20 cm
(2)对气体加热后,气体的压强不变,p 3=p 2,V 3=L 3S ,T 3=350 K
依照盖-吕萨克定律,
有V2 T2=V3
T3
,即L2
T2
=L3
T3
,得L3=25 cm.
(3)外界对气体做的功W=-p2Sh=-p2S(L3-L2)=-J
依照热力学第必然律ΔU=Q+W
得ΔU=10 J+(-J)=J,
即气体的内能增加了J.
类型2关联气体问题
例2(2018·全国卷Ⅲ·33(2))如图3所示,在两头封锁、粗细均匀的U形细玻璃管内有一段水银柱,水银柱的两头各封锁有一段空气.当U形管两头竖直朝上时,左、右两边空气柱的长度别离为l1=cm和l2=cm,左侧气体的压强为cmHg.现将U形管缓慢平放在水平桌面上,没有气体从管的一边通过水银逸入另一边.求U形管平放时两边空气柱的长度.(在整个进程中,气体温度不变)
图3
答案cm cm
解析设U形管两头竖直朝上时,左、右两边气体的压强别离为p1和形管水平放置时,两边气体压强相等,设为p.
现在原左、右两边气柱长度别离变成l1′和l2′.由力的平稳条件有p1=p2+ρg(l1-l2)①
式中ρ为水银密度,g为重力加速度大小.
由玻意耳定律有
p1l1=pl1′②
p2l2=pl2′③
两边气柱长度的转变量大小相等
l1′-l1=l2-l2′④
由①②③④式和题给条件得
l1′=cm
l2′=cm.
变式2(2018·山东省青岛市二模)竖直放置的粗细均匀的U形细玻璃管两臂别离灌有水银,水平管部份有一空气柱,各部份长度如图4所示,单位为厘米.现将管的右端封锁,从左管口缓慢倒入水银,恰好使右边的水银全数进入竖直右管中,已知大气压强p0=75 cmHg,环境温度不变,左管足够长.求:
图4
(1)现在右管封锁气体的压强;
(2)左侧管中需要倒入水银柱的长度.
答案(1)100 cmHg(2) cm
解析设管内的横截面积为S,
(1)对右管中封锁气体,水银恰好全数进入竖直右管后
p0×40S=p1×(40-10)S,
解得:p1=100 cmHg
(2)对水平部份气体,末态压强:
p′=(100+15+10) cmHg=125 cmHg,
由玻意耳定律:(p0+15)×15S=p′LS
解得:L=cm
因此加入水银柱的长度为:
125 cm-75 cm+10 cm-cm=cm.
命题点二 “汽缸活塞类”模型
汽缸活塞类问题是热学部份典型的物理综合题,它需要考虑气体、汽缸或活塞等多个研究对象,涉及热学、力学等物理知识,需要灵活、综合地应用知识来解决问题.
1.一样思路
(1)确信研究对象,一样地说,研究对象分两类:一类是热学研究对象(必然质量的理想气体);另一类是力学研究对象(汽缸、活塞或某系统).
(2)分析物理进程,对热学研究对象分析清楚初、末状态及状态转变进程,依据气体实验定律列出方程;对力学研究对象要正确地进行受力分析,依据力学规律列出方程.
(3)挖掘题目的隐含条件,如几何关系等,列出辅助方程.
(4)多个方程联立求解.对求解的结果注意查验它们的合理性.
2.常见类型
(1)气体系统处于平稳状态,需综合应用气体实验定律和物体的平稳条件解题.
(2)气体系统处于力学非平稳状态,需要综合应用气体实验定律和牛顿运动定律解题.
(3)两个或多个汽缸封锁着几部份气体,而且汽缸之间彼此关联的问题,解答时应别离研究各部份气体,找出它们各自遵循的规律,并写出相应的方程,还要写出各部份气体之间压强或体积的关系式,最后联立求解.
类型1 单独气体问题
例3 (2018·全国卷Ⅱ·33(2))如图5,一竖直放置的汽缸上端开口,汽缸壁内有卡口a 和b ,a 、b 间距为h ,a 距缸底的高度为H ;活塞只能在a 、b 间移动,其下方密封有必然质量的理想气体.已知活塞质量为m ,面积为S ,厚度可忽略;活塞和汽缸壁均绝热,不计它们之间的摩擦.开始时活塞处于静止状态,上、下方气体压强均为p 0,温度均为T 0.现用电热丝缓慢加热汽缸中的气体,直至活塞恰好抵达b 处.求现在汽缸内气体的温度和在此进程中气体对外所做的功.(重力加速度大小为g )
图5
答案 ⎝⎛⎭⎫1+h H ⎝⎛⎭
⎫1+mg p 0S T 0 (p 0S +mg )h 解析 开始时活塞位于a 处,加热后,汽缸中的气体先经历等容进程,直至活塞开始运动.设现在汽缸中气体的温度为T 1,压强为p 1,依照查理定律有
p 0T 0=p 1T 1
① 依照力的平稳条件有
p 1S =p 0S +mg ②
联立①②式可得
T 1=⎝⎛⎭
⎫1+mg p 0S T 0③ 尔后,汽缸中的气体经历等压进程,直至活塞恰好抵达b 处,设现在汽缸中气体的温度为T 2;活塞位于a 处和b 处时气体的体积别离为V 1和V 2.依照盖—吕萨克定律有
V 1T 1=V 2T 2
④ 式中
V 1=SH ⑤
V 2=S (H +h )⑥
联立③④⑤⑥式解得
T 2=⎝⎛⎭⎫1+h H ⎝⎛⎭⎫1+mg p 0
S T 0⑦ 从开始加热到活塞抵达b 处的进程中,汽缸中的气体对外做的功为
W =(p 0S +mg )h .⑧
类型2 关联气体问题
例4 (2018·全国卷Ⅰ·33(2))如图6,容积为V 的汽缸由导热材料制成,面积为S 的活塞将汽缸分成容积相等的上下两部份,汽缸上部通过细管与装有某种液体的容器相连,细管上有一阀门K.开始时,K 关闭,汽缸内上下两部份气体的压强均为p 0.现将K 打开,容器内的液
体缓慢地流入汽缸,当流入的液体体积为V 8
时,将K 关闭,活塞平稳时其下方气体的体积减小了V 6
.不计活塞的质量和体积,外界温度维持不变,重力加速度大小为g .求流入汽缸内液体的质量.
图6
答案 15p 0S 26g 解析 设活塞再次平稳后,活塞上方气体的体积为V 1,压强为p 1,下方气体的体积为V 2,压强为p 2.在活塞下移的进程中,活塞上、下方气体的温度均维持不变,由玻意耳定律得 p 0·V 2
=p 1V 1 p 0·V 2
=p 2V 2 由已知条件得
V 1=V 2+V 6-V 8=1324
V V 2=V 2-V 6=V 3
设活塞上方液体的质量为m ,由力的平稳条件得
p 2S =p 1S +mg
联立以上各式得
m =15p 0S 26g
. 变式3 (2017·全国卷Ⅰ·33(2))如图7,容积均为V 的汽缸A 、B 下端有细管(容积可忽略)连通,阀门K 2位于细管的中部,A 、B 的顶部各有一阀门K 1、K 3;B 中有一可自由滑动的活塞(质量、体积都可忽略).初始时,三个阀门均打开,活塞在B 的底部;关闭K 2、K 3,通过K 1给汽缸充气,使A 中气体的压强达到大气压p 0的3倍后关闭K 1.已知室温为27 ℃,汽缸导热.
图7
(1)打开K 2,求稳固时活塞上方气体的体积和压强;
(2)接着打开K 3,求稳固时活塞的位置;
(3)再缓慢加热汽缸内气体使其温度升高20 ℃,求现在活塞下方气体的压强.
答案 (1)V 2 2p 0 (2)B 的顶部 (3) 解析 (1)设打开K 2后,稳固时活塞上方气体的压强为p 1,体积为V 1.依题意,被活塞分开的两部份气体都经历等温进程.由玻意耳定律得
p 0V =p 1V 1①
3p 0V =p 1(2V -V 1)②
联立①②式得
V 1=V 2
③ p 1=2p 0④
(2)打开K 3后,由④式知,活塞必然上升.设在活塞下方气体与A 中气体的体积之和为V 2(V 2≤2V )时,活塞下气体压强为p 2,由玻意耳定律得
3p 0V =p 2V 2⑤
由⑤式得
p 2=3V V 2
p 0⑥ 由⑥式知,打开K 3后活塞上升直到B 的顶部为止;
现在p 2=32
p 0 (3)设加热后活塞下方气体的压强为p 3,气体温度从T 1=300 K 升高到T 2=320 K 的等容进程
中,由查理定律得p 2T 1=p 3T 2
⑦ 将有关数据代入⑦式得
p 3=.
例5 (2018·福建省泉州市模拟三)如图8,在固定的汽缸A 和B 中别离用活塞封锁必然质量的理想气体,活塞面积之比为S A ∶S B =1∶2.两活塞以穿过B 的底部的刚性细杆相连,可沿水平方向无摩擦滑动.两个汽缸都不漏气.初始时,A 、B 中气体的体积皆为V 0,温度皆为T 0=300 K ,A 中气体压强p A =,p 0是汽缸外的大气压强.现对A 加热,使其中气体的压强升到p A ′=,同时维持B 中气体的温度不变.求现在A 中气体温度T A ′.
图8
答案 500 K
解析 活塞平稳时,由平稳条件得: p A S A +p B S B =p 0(S A +S B ) p A ′S A +p B ′S B =p 0(S A +S B ) 已知S B =2S A
B 中气体初、末态温度相等,设末态体积为V B , 由玻意耳定律得:p B V 0=p B ′V B
设A 中气体末态的体积为V A ,因为两活塞移动的距离相等, 故有V A -V 0S A =V B -V 0
S B
对气体A ,由理想气体状态方程得:p A V 0T 0=p A ′V A
T A ′
解得:T A ′=500 K.
变式4 (2018·福建省南平市适应性检测)如图9所示,结构相同的绝热汽缸A 与导热汽缸B 均固定于地面,由水平刚性细杆连接横截面积相同的绝热活塞a 、b ,绝热活塞a 、b 与两汽缸间均无摩擦.将必然质量的气体封锁在两汽缸中,开始时活塞静止,活塞与各自汽缸底部距离均相等,B 汽缸中气体压强等于大气压强p 0=×105 Pa ,A 汽缸中气体温度T A =300 K ,设环境温度始终不变.现通过电热丝缓慢加热A 汽缸中的气体,停止加热达到稳固后,汽缸B 中活塞距缸底的距离为开始状态的4
5
,求:
图9
(1)B 汽缸气体的压强; (2)A 汽缸气体的温度. 答案 (1)×105 Pa (2)450 K
解析 (1)对汽缸B 中的气体,由玻意耳定律: p 0V =p B 4
5
V ①
解得p B =×105 Pa ②
(2)加热前A 汽缸中的气体压强等于B 汽缸中的气体压强p 0=×105 Pa 由于通过刚性细杆连接活塞,加热稳固后有:p A =p B ③ V A =65
V ④
由气体状态方程得:p 0V
T A =p A 65V T A ′⑤
联立②③④⑤得:T A ′=450 K.
命题点三 “变质量气体”模型
分析变质量气体问题时,要通过巧妙地选择研究对象,使变质量气体问题转化为定质量气体问题,用气体实验定律求解.
(1)打气问题:选择原有气体和即将充入的气体作为研究对象,就可把充气进程中气体质量转变问题转化为定质量气体的状态转变问题.
(2)抽气问题:将每次抽气进程中抽出的气体和剩余气体作为研究对象,质量不变,故抽气进程能够看成是等温膨胀进程.
(3)灌气问题:把大容器中的剩余气体和多个小容器中的气体整体作为研究对象,可将变质量问题转化为定质量问题.
(4)漏气问题:选容器内剩余气体和漏出气体整体作为研究对象,即可使问题变成必然质量气体的状态转变,可用理想气体的状态方程求解.
例6 (2018·广东省茂名市第二次模拟)一名救火员在火灾现场发觉一个容积为V 0的废弃的氧气罐(以为容积不变),经检测,内部封锁气体压强为(p 0为1个标准大气压).为了排除平安隐患,消防队员拟用下面两种处置方案:
(1)冷却法:通过合理冷却,使罐内气体温度降为27 ℃,现在气体压强降为p 0,求氧气罐内气体原先的温度是多少摄氏度?
(2)放气法:维持罐内气体温度不变,缓慢地放出一部份气体,使罐内气体压强降为p 0,求氧气罐内剩余气体的质量与原先总质量的比值. 答案 (1)87 ℃ (2)5
6
解析 (1)对气体由查理定律有p 0T 0=p 1T 1,解得T 1=p 1
p 0T 0=360 K ,
气体原先温度为t =(360-273) ℃=87 ℃.
(2)假设将放出的气体先搜集起来,并维持压强与氧气罐内相同,以全数气体为研究对象,由气体的玻意耳定律有p 1V 0=p 0V ,
解得V =p 1
p 0
V 0=,
那么剩余气体与原先气体的质量比为m 剩m 总=ρV 0ρV =5
6
.
变式5 (2018·河南省郑州市第二次质量预测)如图10所示为喷洒农药用的某种喷雾器.其药液桶的总容积为15 L ,装入药液后,封锁在药液上方的空气体积为2 L ,打气筒活塞每次能够打进1 atm 、150 cm 3的空气,忽略打气和喷药进程气体温度的转变.
图10
(1)假设要使气体压强增大到 atm ,应打气多少次?
(2)若是压强达到 atm 时停止打气,并开始向外喷药,那么当喷雾器不能再向外喷药时,桶内剩下的药液还有多少升? 答案 (1)20 (2)10 L
解析 (1)设应打气n 次,初态为: p 1=1 atm ,V 1=150 cm 3·n +2 L = L +2 L 末态为:p 2= atm ,V 2=2 L 依照玻意耳定律得:p 1V 1=p 2V 2 解得:n =20
(2)由题意可知:p 2′=1 atm 依照玻意耳定律得:p 2V 2=p 2′V 2′ 代入数据解得:V 2′=5 L
剩下的药液为:V =15 L -5 L =10 L.
1.(2018·安徽省宣城市第二次调研)如图1甲所示,左端封锁、内径相同的U 形细玻璃管竖直放置,左管中封锁有长为L =20 cm 的空气柱,两管水银面相平,水银柱足够长.已知大气压强为p 0=75 cmHg.
图1
(1)假设将装置缓慢翻转180°,使U形细玻璃管竖直倒置(水银未溢出),如图乙所示.当管中水银静止时,求左管中空气柱的长度;
(2)假设将图甲中的阀门S打开,缓慢流出部份水银,然后关闭阀门S,右管水银面下降了H =35 cm,求左管水银面下降的高度.
答案(1)20 cm或cm(2)10 cm
解析(1)将装置缓慢翻转180°,设左管中空气柱的长度增加量为h,由玻意耳定律得p0L=(p0-2h)(L+h)
解得h=0或h=cm
那么左管中空气柱的长度为20 cm或cm
(2)设左管水银面下降的高度为x,左、右管水银面的高度差为y,由几何关系:x+y=H,由玻意耳定律得p0L=(p0-y)(L+x)
联立两式解得x2+60x-700=0
解得:x=10 cm,x=-70 cm(舍去),故左管水银面下降的高度为10 cm.
2.(2018·江西省五市八校第二次联考)竖直平面内有一直角形内径处处相同的细玻璃管,A端封锁,C端开口,最初AB段处于水平状态,中间有一段水银将气体封锁在A端,各部份尺寸如图2所示,外界大气压强p0=75 cmHg.
图2
(1)假设从C端缓慢注入水银,使水银与上端管口平齐,需要注入水银的长度为多少?
(2)假设在竖直平面内将玻璃管顺时针缓慢转动90°(水银未溢出),最终AB段处于竖直,BC 段处于水平位置时,封锁气体的长度变成多少?(结果保留三位有效数字)
答案(1)24 cm(2) cm
解析(1)以cmHg为压强单位.设A侧空气柱长度为l1=30 cm-10 cm=20 cm时的压强为
p 1;
当双侧水银面的高度差为h =25 cm 时,空气柱的长度为l 2,压强为p 2 由玻意耳定律得p 1l 1=p 2l 2
其中p 1=(75+5) cmHg =80 cmHg , p 2=(75+25) cmHg =100 cmHg 解得l 2=16 cm , 故需要注入的水银长度
Δl =20 cm -16 cm +25 cm -5 cm =24 cm.
(2)设顺时针转动90°后,水银未溢出,且AB 部份留有x 长度的水银, 由玻意耳定律得p 1l 1=(p 0-x )(30-x ) 解得x 1=105-5337
2 cm ≈ cm>0符合题意,
x 2=105+53372 cm 不合题意,舍去.
故最终封锁气体的长度为30-x = cm.
3.(2018·山西省晋中市适应性调研)一端开口的长直圆筒,在开口端放置一个传热性能良好的活塞,活塞与筒壁无摩擦且不漏气.现将圆筒开口端竖直向下缓慢地放入27 ℃的水中.当筒底与水平面平齐时,恰好平稳,这时筒内空气柱长52 cm ,如图3所示.当水温缓慢升至87 ℃时,试求稳固后筒底露出水面多少?(不计筒壁及活塞的厚度,不计活塞的质量,圆筒的质量为M ,水的密度为ρ水,大气压强为p 0)
图3
答案 cm
解析 设气体压强为p ,活塞横截面积为S 因此p =p 0+ρ水gh ①
以圆筒作为研究对象,有pS-p0S=Mg②
联立①②两式,得ρ水ghS=Mg
因此h=M
ρ水S
可见,当温度发生转变时,液面高度维持不变,气体发生等压转变以气体作为研究对象,设稳固后筒底露出水面的高度为x
有V1 T1=V2 T2
代入数据,有52 cm·S
300 K =
(52 cm+x)S
360 K
解得x=cm.
4.(2016·全国卷Ⅲ·33(2))一U形玻璃管竖直放置,左端开口,右端封锁,左端上部有一滑腻的轻活塞.初始时,管内汞柱及空气柱长度如图4所示.使劲向下缓慢推活塞,直至管内两边汞柱高度相等时为止.求现在右边管内气体的压强和活塞向下移动的距离.已知玻璃管的横截面积处处相同;在活塞向下移动的进程中,没有发动气体泄漏;大气压强p0=cmHg.环境温度不变.(保留三位有效数字)
图4
答案144 cmHg cm
解析设初始时,右管中空气柱的压强为p1,长度为l1;左管中空气柱的压强为p2=p0,长度为l2.活塞被下推h后,右管中空气柱的压强为p1′,长度为l1′;左管中空气柱的压强为p2′,长度为l2′.以cmHg为压强单位.由题给条件得
p1=p0+-cmHg=90 cmHg l1=cm①
l1′=-错误!) cm=cm②
由玻意耳定律得p1l1S=p1′l1′S③
联立①②③式和题给条件得
p1′=144 cmHg④
依题意p2′=p1′⑤
l 2′= cm +错误! cm -h = cm -h ⑥ 由玻意耳定律得p 2l 2S =p 2′l 2′S ⑦ 联立④⑤⑥⑦式和题给条件得 h ≈ cm.
5.(2019·山西省大同市模拟)如图5所示,圆柱形喷雾器高为h ,内有高度为h
2的水,上部封锁
有压强为p 0、温度为T 0的空气.将喷雾器移到室内,一段时刻后打开喷雾阀门K ,恰好有水流出.已知水的密度为ρ,大气压强恒为p 0,喷雾口与喷雾器等高.忽略喷雾管的体积,将空气看做理想气体.(室内温度不变)
图5
(1)求室内温度.
(2)在室内用打气筒缓慢向喷雾器内充入空气,直到水完全流出,求充入空气与原有空气的质量比.
答案 (1)(1+ρgh
2p 0)T 0 (2)2p 0+3ρgh 2p 0+ρgh
解析 (1)设喷雾器的横截面积为S ,室内温度为T 1,喷雾器移到室内一段时刻后,封锁气体的压强
p 1=p 0+ρg ·h 2,V 0=S ·h
2
气体做等容转变:p 0
T 0=p 0+ρg ·
h
2T 1
解得:T 1=(1+ρgh
2p 0
)T 0
(2)以充气终止后喷雾器内空气为研究对象,排完水后,压强为p 2,体积为V 2=hS .此气体经等温转变,压强为p 1时,体积为V 3 则p 2=p 0+ρgh ,p 1V 3=p 2V 2 即(p 0+ρg ·h
2
)V 3=(p 0+ρgh )hS
同温度下同种气体的质量比等于体积比,设充入气体的质量为Δm 则
Δm m 0=V 3-V 0
V 0
代入得Δm m 0=2p 0+3ρgh 2p 0+ρgh
6.(2018·福建省漳州市期末调研)如图6,一圆柱形绝热汽缸竖直放置,在距汽缸底2h 处有固定卡环(活塞可不能被顶出).质量为M 、横截面积为S 、厚度可忽略的绝热活塞能够无摩擦地上下移动,活塞下方距汽缸底h 处还有一固定的可导热的隔板将容器分为A 、B 两部份,A 、B 中别离封锁着必然质量的同种理想气体.初始时气体的温度均为27 ℃,B 中气体压强为,外界大气压为p 0,活塞距汽缸底的高度为.现通过电热丝缓慢加热气体,当活塞恰好抵达汽缸卡环处时,求B 中气体的压强和温度.(重力加速度为g ,汽缸壁厚度不计)
图6
答案 3p 0 600 K
解析 A 中气体做等压转变,其压强始终为p A =p 0+Mg S
V A 1=,T 1=300 K ,V A 2=Sh 设活塞抵达卡环处时气体温度为T 2 依照盖-吕萨克定律:V A 1T 1=V A 2T 2
解得:T 2=600 K B 中气体做等容转变
p B 1=,T 1=300 K ,T 2=600 K 设加热后气体压强为p B 2 依照查理定律p B 1T 1=p B 2
T 2
得p B 2=3p 0.。