宾县实验中学2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宾县实验中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 函数f (x )的定义域为[﹣1,1],图象如图1所示:函数g (x )的定义域为[﹣2,2],图象如图2所示,方程f (g (x ))=0有m 个实数根,方程g (f (x ))=0有n 个实数根,则m+n=( )
A .14
B .12
C .10
D .8
2.
不等式组在坐标平面内表示的图形的面积等于( )
A

B

C

D

3. “x >0”是“
>0”成立的( )
A .充分非必要条件
B .必要非充分条件
C .非充分非必要条件
D .充要条件
4. 从1,2,3,4中任取两个数,则其中一个数是另一个数两倍的概率为( ) A

B

C

D

5. 已知全集U=R ,集合A={1,2,3,4,5},B={x ∈R|x ≥3},图中阴影部分所表示的集合为
( )
A .{1}
B .{1,2}
C .{1,2,3}
D .{0,1,2}
6. 若集合A ={-1,1},B ={0,2},则集合{z|z =x +y ,x ∈A ,y ∈B}中的元素的个数为( )
A5 B4 C3 D2
7. 已知点A (0,1),B (3,2),C (2,0),若AD →=2DB →,则|CD →
|为( )
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A .1 B.43 C.53
D .2
8. 已知,,a b c 为ABC ∆的三个角,,A B C 所对的边,若3cos (13cos )b C c B =-,则sin :sin C A =( )
A .2︰3
B .4︰3
C .3︰1
D .3︰2 【命题意图】本题考查正弦定理、余弦定理,意在考查转化能力、运算求解能力.
9. 若多项式 x 2+x 10=a 0+a 1(x+1)+…+a 8(x+1)8+a 9(x+1)9+a 10(x+1)10,则 a 8=( ) A .45 B .9 C .﹣45 D .﹣9
10.下列说法正确的是( ) A .类比推理是由特殊到一般的推理 B .演绎推理是特殊到一般的推理 C .归纳推理是个别到一般的推理 D .合情推理可以作为证明的步骤
11.已知数列{}n a 是各项为正数的等比数列,点22(2,log )M a 、25(5,log )N a 都在直线1y x =-上,则数列
{}n a 的前n 项和为( )
A .22n
- B .1
2
2n +- C .21n - D .121n +-
12.若某程序框图如图所示,则输出的n 的值是( )
A .3
B .4
C .5
D .6
二、填空题
13.命题“(0,)2
x π
∀∈,sin 1x <”的否定是 ▲ .
14.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,P 为BD 1的中点,则△PAC 在该正方体各个面上的射影可能是 .
15.设x R ∈,记不超过x 的最大整数为[]x ,令{}[]x x x =-.现有下列四个命题: ①对任意的x ,都有1[]x x x -<≤恒成立; ②若(1,3)x ∈,则方程{}2
2sin
cos []1x x +=的实数解为6π-;
③若3n n a ⎡⎤
=⎢⎥⎣⎦
(n N *∈),则数列{}n a 的前3n 项之和为2
3
1
22n n -;
④当0100x ≤≤时,函数{}22
()sin []sin 1f x x x =+-的零点个数为m ,函数{}()[]13
x
g x x x =⋅-
-的 零点个数为n ,则100m n +=.
其中的真命题有_____________.(写出所有真命题的编号)
【命题意图】本题涉及函数、函数的零点、数列的推导与归纳,同时又是新定义题,应熟悉理解新定义,将问题转化为已知去解决,属于中档题。

16.已知三次函数f (x )=ax 3+bx 2+cx+d 的图象如图所示,则
= .
17.设数列{a n }满足a 1=1,且a n+1﹣a n =n+1(n ∈N *),则数列{}的前10项的和为 .
18.(文科)与直线10x -=垂直的直线的倾斜角为___________.
三、解答题
19.(本题满分12分)如图所示,在正方体ABCD —A 1B 1C 1D 1中, E 、F 分别是棱DD 1 、C 1D 1的中点. (1)求直线BE 和平面ABB 1A 1所成角θ的正弦值; (2)证明:B 1F ∥平面A 1BE .
20.(本小题满分10分)选修4-1:几何证明选讲
如图所示,BC 是半圆O 的直径,AD BC ⊥,垂足为D ,AB AF
=,BF 与AD 、AO 分别交于点E 、G . A 1 B 1
C 1
D 1 C B A
E F
F A
∠=∠;
(1)证明:DAO FBC
=.
(2)证明:AE BE
21.如图,椭圆C1:的离心率为,x轴被曲线C2:y=x2﹣b截得的线段长等于椭圆C1的短轴长.C2与y轴的交点为M,过点M的两条互相垂直的直线l1,l2分别交抛物线于A、B两点,交椭圆于D、E两点,
(Ⅰ)求C1、C2的方程;
(Ⅱ)记△MAB,△MDE的面积分别为S1、S2,若,求直线AB的方程.
22.(本小题满分12分)△ABC的三内角A,B,C的对边分别为a,b,c,已知k sin B=sin A+sin C(k为正常数),a=4c.
(1)当k=5
时,求cos B;
4
(2)若△ABC面积为3,B=60°,求k的值.
23.(本小题满分12分)
两个人在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中 放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设,,x y z 分别表示甲,乙,丙3个 盒中的球数.
(1)求0x =,1y =,2z =的概率;
(2)记x y ξ=+,求随机变量ξ的概率分布列和数学期望.
【命题意图】本题考查频离散型随机变量及其分布列等基础知识,意在考查学生的统计思想和基本的运算能力.
24.已知函数f (x )=x 3+x .
(1)判断函数f (x )的奇偶性,并证明你的结论; (2)求证:f (x )是R 上的增函数;
(3)若f (m+1)+f (2m ﹣3)<0,求m 的取值范围.
(参考公式:a 3﹣b 3=(a ﹣b )(a 2+ab+b 2
))
宾县实验中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1.【答案】A
【解析】解:由图象可知,
若f(g(x))=0,
则g(x)=﹣1或g(x)=0或g(x)=1;
由图2知,g(x)=﹣1时,x=﹣1或x=1;
g(x)=0时,x的值有3个;
g(x)=1时,x=2或x=﹣2;
故m=7;
若g(f(x))=0,
则f(x)=﹣1.5或f(x)=1.5或f(x)=0;
由图1知,
f(x)=1.5与f(x)=﹣1.5各有2个;
f(x)=0时,x=﹣1,x=1或x=0;
故n=7;
故m+n=14;
故选:A.
2.【答案】B
【解析】解:作出不等式组对应的平面区域,
则对应的平面区域为矩形OABC,
则B(3,0),
由,解得,即C(,),
∴矩形OABC的面积S=2S△0BC=2×=,
故选:B
【点评】本题主要考查二元一次不等式组表示平面区,利用数形结合是解决本题的关键.
3.【答案】A
【解析】解:当x>0时,x2>0,则>0
∴“x>0”是“>0”成立的充分条件;
但>0,x2>0,时x>0不一定成立
∴“x>0”不是“>0”成立的必要条件;
故“x>0”是“>0”成立的充分不必要条件;
故选A
【点评】判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p 为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
4.【答案】C
【解析】解:从1,2,3,4中任取两个数,有(1,2),(1,3),
(1,4),(2,3),(2,4),(3,4)共6种情况,
其中一个数是另一个数两倍的为(1,2),(2,4)共2个,
故所求概率为P==
故选:C
【点评】本题考查列举法计算基本事件数及事件发生的概率,属基础题.
5.【答案】B
【解析】解:图中阴影部分表示的集合中的元素是在集合A中,但不在集合B中.
由韦恩图可知阴影部分表示的集合为(C U B)∩A,
又A={1,2,3,4,5},B={x∈R|x≥3},
∵C U B={x|x <3}, ∴(C U B )∩A={1,2}.
则图中阴影部分表示的集合是:{1,2}.
故选B . 【点评】本小题主要考查Venn 图表达集合的关系及运算、Venn 图的应用等基础知识,考查数形结合思想.属
于基础题.
6. 【答案】C 【解析】由已知,得{z|z =x +y ,x ∈A ,y ∈B}={-1,1,3},所以集合{z|z =x +y ,x ∈A ,y ∈B}中的元素的个
数为3. 7. 【答案】
【解析】解析:选C.设D 点的坐标为D (x ,y ), ∵A (0,1),B (3,2),AD →=2DB →

∴(x ,y -1)=2(3-x ,2-y )=(6-2x ,4-2y ),
∴⎩
⎪⎨⎪⎧x =6-2x ,y -1=4-2y 即x =2,y =53

∴CD →
=(2,53)-(2,0)=(0,53
),
∴|CD →
|=02+(53)2=53,故选C.
8. 【答案】C
【解析】由已知等式,得3cos 3cos c b C c B =+,由正弦定理,得sin 3(sin cos sin cos )C B C C B =+,则
sin 3sin()3sin C B C A =+=,所以sin :sin 3:1C A =,故选C .
9. 【答案】A
【解析】解:a 8 是 x 10=[﹣1+(x+1)]10的展开式中第九项(x+1)8
的系数,
∴a 8=
=45,
故选:A .
【点评】本题主要考查二项展开式的通项公式,二项展开式系数的性质以及多项恒等式系数相等的性质,属于基础题.
10.【答案】C
【解析】解:因为归纳推理是由部分到整体的推理;类比推理是由特殊到特殊的推理;演绎推理是由一般到特殊的推理;合情推理的结论不一定正确,不可以作为证明的步骤,
故选C .
【点评】本题考查合情推理与演绎推理,考查学生分析解决问题的能力,属于基础题.
11.【答案】C
【解析】解析:本题考查等比数列的通项公式与前n 项和公式.22log 1a =,25log 4a =,∴22a =,516a =,∴11a =,2q =,数列{}n a 的前n 项和为21n
-,选C .
12.【答案】C
【解析】解:由程序框图知:算法的功能是求满足P=1+3+…+(2n ﹣1)>20的最小n 值,
∵P=1+3+…+(2n ﹣1)=×n=n 2>20,∴n ≥5,
故输出的n=5. 故选:C .
【点评】本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是关键.
二、填空题
13.【答案】()
0,2x π
∃∈,sin 1≥
【解析】
试题分析:“(0,)2x π
∀∈,sin 1x <”的否定是()
0,2
x π
∃∈,sin 1≥
考点:命题否定
【方法点睛】(1)对全称(存在性)命题进行否定的两步操作:①找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;②对原命题的结论进行否定.(2)判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中的每个元素x ,证明p (x )成立;要判定一个全称命题是假命题,只要举出集合M 中的一个特殊值x 0,使p (x 0)不成立即可.要判断存在性命题是真命题,只要在限定集合内至少能找到一个x =x 0,使p (x 0)成立即可,否则就是假命题. 14.【答案】 ①④ .
【解析】解:由所给的正方体知, △PAC 在该正方体上下面上的射影是①, △PAC 在该正方体左右面上的射影是④, △PAC 在该正方体前后面上的射影是④ 故答案为:①④
15.【答案】①③
【解析】对于①,由高斯函数的定义,显然1[]x x x -<≤,①是真命题;对于②,由{}2
2sin
cos []1x x +=得,
{}22sin 1cos []x x =-,即{}22sin sin []x x =.当12x << 时,011x <-<,0sin(1)sin1x <-<,此时
{}22sin sin []x x =化为22sin (1)sin 1x -=,方程无解;当23x ≤< 时,021x ≤-<,0sin(2)sin1x ≤-<,此时{}2
2sin
sin []x x =化为sin(2)sin 2x -=,所以22x -=或22x π-+=,即4x =或x π=,所以原方
程无解.故②是假命题;对于③,∵3n n a ⎡⎤
=⎢⎥⎣⎦(n N *∈),∴1103a ⎡⎤==⎢⎥⎣⎦,2203a ⎡⎤==⎢⎥⎣⎦,3313a ⎡⎤
==⎢⎥⎣⎦
,4413a ⎡⎤==⎢⎥⎣⎦,…,31311[]133n n a n n --⎡⎤==-=-⎢⎥⎣⎦,33[]3n n a n n ⎡⎤
===⎢⎥⎣⎦
,所以数列{}n a 的前3n 项之和
为3[12(1)]n n +++-+=
23122
n n -,故③是真命题;对于④,由
16.【答案】 ﹣5 .
【解析】解:求导得:f ′(x )=3ax 2
+2bx+c ,结合图象可得 x=﹣1,2为导函数的零点,即f ′(﹣1)=f ′(2)=0,

,解得
故==﹣5
故答案为:﹣5
17.【答案】

【解析】解:∵数列{a n }满足a 1=1,且a n+1﹣a n =n+1(n ∈N *
),
∴当n ≥2时,a n =(a n ﹣a n ﹣1)+…+(a 2﹣a 1)+a 1=n+…+2+1=.
当n=1时,上式也成立,
∴a n =.
∴=2

∴数列{}的前n 项的和S n =
=
=

∴数列{
}的前10项的和为

故答案为:.
18.【答案】3
π 【解析】
3
π. 考点:直线方程与倾斜角.
三、解答题
19.【答案】解:(1)设G 是AA 1的中点,连接GE ,BG .∵E 为DD 1的中点,ABCD —A 1B 1C 1D 1为正方体,∴GE ∥AD ,又∵AD ⊥平面ABB 1A 1,∴GE ⊥平面ABB 1A 1,且斜线BE 在平面ABB 1A 1内的射影为BG ,∴Rt △BEG 中的∠EBG 是直线BE 和平面ABB 1A 1所成角,即∠EBG =θ.设正方体的棱长为a ,∴a GE =,
a BG 25=
,a GE BG BE 2
3
22=+=, ∴直线BE 和平面ABB 1A 1所成角θ的正弦值为:=
θsin 3
2
=BE GE ;……6分 (2)证明:连接EF 、AB 1、C 1D ,记AB 1与A 1B 的交点为H ,连接EH . ∵H 为AB 1的中点,且B 1H =
21C 1D ,B 1H ∥C 1D ,而EF =2
1
C 1
D ,EF ∥C 1D , ∴B 1H ∥EF 且B 1H =EF ,四边形B 1FEH 为平行四边形,即B 1F ∥EH ,
又∵B 1F ⊄平面A 1BE 且EH ⊆平面A 1BE ,∴B 1F ∥平面A 1BE . ……12分 20.【答案】
【解析】(1)连接FC ,OF , ∵AB AF =,OB OF =, ∴点G 是BF 的中点,OG BF ⊥. ∵BC 是O 的直径,∴CF BF ⊥. ∴//OG CF .∴AOB FCB ∠=∠,
∴90,90DAO AOB FBC FCB ∠=︒-∠∠=︒-∠, ∴DAO FBC ∠=∠.
(2)在Rt OAD ∆与Rt OBG ∆中, 由(1)知DAO GBO ∠=∠, 又OA OB =,
∴OAD ∆≅OBG ∆,于是OD OG =. ∴AG OA OG OB OD BD =-=-=. 在Rt AGE ∆与Rt BDE ∆中, 由于DAO FBC ∠=∠,AG BD =, ∴AGE ∆≅BDE ∆,∴AE BE =.
21.【答案】
【解析】解:(Ⅰ)∵椭圆C 1

的离心率为,
∴a 2=2b 2,
令x 2﹣b=0可得x=
±

∵x 轴被曲线C 2:y=x 2
﹣b 截得的线段长等于椭圆C 1的短轴长,

2=2b ,
∴b=1,
∴C 1、C 2
的方程分别为
,y=x 2
﹣1; …
(Ⅱ)设直线MA 的斜率为k 1,直线MA 的方程为y=k 1x ﹣1与y=x 2﹣1联立得x 2
﹣k 1x=0 ∴x=0或x=k 1,∴A (k 1,k 12
﹣1) 同理可得B (k 2,k 22
﹣1)…
∴S 1
=
|MA||MB|=
•|k 1||k 2|…
y=k 1x ﹣1与椭圆方程联立,可得D

),
同理可得E
() …
B
A
O
C
G F
E
∴S 2=|MD||ME|=•• …

若则
解得或
∴直线AB 的方程为


【点评】本题考查椭圆的标准方程,考查直线与抛物线、椭圆的位置关系,考查三角形面积的计算,联立方程,确定点的坐标是关键.
22.【答案】
【解析】解:(1)∵54sin B =sin A +sin C ,由正弦定理得5
4
b =a +
c ,
又a =4c ,∴5
4b =5c ,即b =4c ,
由余弦定理得cos B =a 2+c 2-b 22ac =(4c )2+c 2-(4c )22×4c ·c =1
8.
(2)∵S △ABC =3,B =60°.
∴1
2
ac sin B = 3.即ac =4. 又a =4c ,∴a =4,c =1.
由余弦定理得b 2=a 2+c 2-2ac cos B =42+12-2×4×1×1
2=13.
∴b =13,
∵k sin B =sin A +sin C ,
由正弦定理得k =a +c b =513
=513
13,
即k 的值为513
13.
23.【答案】
【解析】(1)由0x =,1y =,2z =知,甲、乙、丙3个盒中的球数分别为0,1,2,
此时的概率
2
1
3
111
324
P C
⎛⎫
=⨯⨯=

⎝⎭
. (4分)
24.【答案】
【解析】解:(1)f(x)是R上的奇函数
证明:∵f(﹣x)=﹣x3﹣x=﹣(x3+x)=﹣f(x),
∴f(x)是R上的奇函数
(2)设R上任意实数x1、x2满足x1<x2,∴x1﹣x2<0,
f(x1)﹣f(x2)=(x1﹣x2)+[(x1)3﹣(x2)3]=(x1﹣x2)[(x1)2+(x2)2+x1x2+1]=(x1﹣x2)[(x1+x2)
2+x
2
2+1]<0恒成立,
因此得到函数f(x)是R上的增函数.
(3)f(m+1)+f(2m﹣3)<0,可化为f(m+1)<﹣f(2m﹣3),
∵f(x)是R上的奇函数,∴﹣f(2m﹣3)=f(3﹣2m),∴不等式进一步可化为f(m+1)<f(3﹣2m),
∵函数f(x)是R上的增函数,
∴m+1<3﹣2m,
∴。

相关文档
最新文档