仓储管理计算题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Warehouse Ground Area Utilization Rate
某自动化立体仓库占地面积4500m2,库房的总容量为5000吨,报告期365天(含节假日60天),该仓库每天工作时间8小时.期初固定资产平均占用780万元,流动资产平均占用200万元,平均货物储存量1000吨,期末固定资产平均占用775万元,流动资产平均占用180万元,平均货物储存量1200吨。
年仓储业务收入500万元,全年消耗货物总量12000吨,全年货物平均存储量1000吨,仓库有效堆放面积900m2,巷道堆垛机额定载荷量1000kg,实际工作载荷700kg,报告期设备实际工作时数800小时。
请计算:仓库面积利用率、仓库容积利用率、设备能力利用率、设备时间利用率.
2.某仓库在2006年年营业额为810.5万,该库在这期间共接受订单560份,但由于运输车辆等问题,实际装运了485份。
该库管理人员有36人、技术和作业人员共260人,其中直接作业人数为140人。
请计算该库2006年的仓库生产率、人员作业能力和直间工比率各为多少?
某时间装运的订单数
仓库生产率= ×100%= 86。
6%
每时间接受的订单数
仓库营业额
人员作业能力= = 2。
74 (万元/人)
仓库总人数
直接作业人数
直间工比率= ×100%= 89。
7%
总人数-直接人数
3。
某一连锁超市企业的年初库存值为124万元,年末库存值为93万元,全年销售额为2450万元。
问该企业的库存周转次数为多少?周转天数是多少?
解:周转次数(率)=年销售额/年平均库存;
年平均库存=(年初库存+年末库存)/2
周转天数=365/周转次数
年平均库存=(124+93)/2=108。
5
周转次数=2450/108。
5=22。
58(次)
周转天数=365/22.58=16.16(天)
《仓储管理》练习题(计算题部分)
1. 某储运公司有一座通用仓库,仓库基本情况如下:
(1) 库区有效面积,其货架区(包括运输道路、检验、包装、加工作业区),行政生活区,货物有效储存区(即不包括运输道路、检验、包装、加工作业)实际有效面积为;
(2)仓库全年总容量为9000万元,货物出库总量为7500万元,入库总量为8500万元;
(3)仓库年初库存215万元,年末库存410万元,月均库存量以件数折合为650000件;
(4)仓库全年仓储费用273万元;库区全员工作日为250工日;
要求根据以上资料,试计算:(1)库房容积利用率;(2)仓库面积利用率:(3)货物年周转次数:
(4)平均储存费用:(5)全员劳动生产率
解:(1)
(2)仓库面积利用率
(3)货物年周转次数
(4)平均储存费用
2 一家特种仓库年仓储作业及有关数据如下:
(1)年货物周转量(或消耗总量)价值总额为65000万元。
年平均储存量价值总额2500万元,折合货物件数为250万件;
(2)月平均储存量1000万元,货物件数100万件;
(3)仓库全年消耗的材料及燃料费为30万元,人工及福利费为365万元,仓库租赁费405万元,固定资产折旧及其他费用合计160万元。
计算这家仓库货物周转次数和平均存货费用。
解:货物周转次数次.
每月储存费用总额万元。
平均存货费用(元/件)
3 凯利达家用电器专卖店,某型号电冰箱全年销售总量为12150台,订货采购费用为5000元,每台电冰箱储存年费用为6元。
求电冰箱每次订购的经济批量、年进货次数、进货周期
和进货总费用.
解:=
进货次数
进货周期
进货总费用元
4.一家企业为了对现有库存商品进行有效的控制和管理,计划按年耗用金额将库存商品分为ABC三类。
并按商品数量占比20%、30%和50%分别确定ABC类物品建立ABC库存管理系统。
有关10种商品的库存资料如下表所示。
试用ABC分类法将这10种商品分为A、B、C三类。
(1)计算出各种库存品的年耗用金额,并按从大到小排序:
商品编号年耗用金额次序
A 20000 5
B 1520000 1
C 28000 9
D 400000 3
E 18000 10
F 1250000 2
G 90000 6
H 320000 4
I 50000 7
J 35000 8
(2)计算出各库存的累积耗用金额和累积百分比,(3分)
商品编号年耗用金额(元)累计耗用金额(元) 累计百分比(%)分类
B 1520000 1520000 38。
9 A
F 1250000 2770000 70.8 A
D 400000 3170000 81.1 B
H 320000 3490000 89.2 B
A 200000 3690000 94。
3 B
G 90000 3780000 96.6 C
I 50000 3830000 97。
9 C
J 35000 3865000 98。
8 C
C 28000 3893000 99。
5 C
E 18000 3911000 100。
0 C
(3)A.B.C分类
分类每类金额(元) 库存品数百分比(%)耗用金额百分比(%) 累计耗用金额百分比(%)
A类
B、F 2770000 20 70.8 70.8
B类
D、H、A 920000 30 23。
5 94。
3
C类
G、I、J、C、E 221000 50 5.7 100。
0
5. 一家流通仓储库存货物数量与价值统计情况如下: 试采用ABC分析法对该企业的货物进行分类。
解:
货物分类
1、某公司经过对某种产品库存的仔细研究,发现其存货持有成本为产品的单位成本的25%,并且由于出现缺货所导致的延期交货的成本为每年产品的单位成本的150%。
这种产品的单位成本为400元,每次再订货成本为100元.针对这种产品的每年的需求是恒定不变的,为300个产品单位,并且所有的缺货情况都可以通过延期交货的方式来进行弥补。
最佳的订购政策是什么?在一年中有多少比例的时间是通过延期交货来满足需求的?
2. 某种产品的需求是每年2000个产品单位,每一个订单的成本是10元,每年的存货持有成本是产品单位成本的40%,而单位成本根据订单批量变化的规律如下:
订单批量小于500个产品单位,单位成本为1元;
订单批量在500~999个产品单位之间,单位成本为0.80元;
订单批量大于等于1000个产品单位,单位成本为0。
60元;
在这种情况下,最佳的订单批量是多少?
3. C公司生产中使用的甲零件,全年共需耗用3600件。
该零件既可自行制造也可外购取得。
如果自制,单位制造成本为l0元,每次生产准备成本34.375元,每日生产量32件。
如果外购,购入单价为9.8元,从发出定单到货物到达需要l0天时间,一次订货成本72元。
假设该零件的每年单位储存成本为4元,一年按360天计算。
要求通过计算确定C公司自制和外购方案哪个方案更好。
例题1
例题2。
某公司每年以每个单位30美元的价格采购6 000个单位的某种产品.在整个过程中,处理订单和组织送货要产生125美元的费用,每个单位的产品所产生的利息费用和存储成本加起来需要6美元.请问针对这种产品的最佳订货政策是什么?
解:
已知:需求D=每年6000个单位的产品
单位购买价格:P= 每个单位的产品30美元
订货费用:S=每个订单125美元
库存保管费:H=每年每个单位的产品6美元
=〔(2×125×6 000)/6〕1/2=500(个产品单位)
最佳的订单间隔时间:N=D/Q=6000/500=12
订货周期:T = Q /D = 1个月
最佳订货政策是:批量为500单位,每年订货12次,每月订货一次.
例题3。
某种产品的需求为每个月100个产品单位。
该产品的单位成本为
50元,订货成本为50元,库存持有成本(保管费用)为每年单位成本的25%,延期交货的缺货成本为每年单位成本的40%。
请你为该产品确定一个最佳存货政策。
解:
已知:D=100×12=1200(个产品单位/年)
P=50元,S=50元,H=50×0.25=12.5(元/产品单位×年)
B=50×0.40=20(元)
=(2×1200×50/12。
5)1/2×(1+12.5/20)1/2
=125(个产品单位)
=(2×1200×50/12。
5)1/2×[20/(12。
5+20)]1/2
=77(个产品单位)
t1=V*/D=77/1200=0.064(年)=3.3(周)
t2=(Q-V*)/D=(125-77)/1200=0.04(年)=2。
1(周)
t =t1+t2=3.3+2。
1=5.4(周)
每次订货125个产品单位,订货间隔周期为5.4周,最大库存为77个单位.
规模确定方法
一家公司要建设配送中心,向中心为25家店铺配送商品,每家店铺平均面积400 m2,每月销售量平均800箱商品。
每箱长宽高尺寸为0。
4 m、0。
5 m、0。
4 m.假定未来销售增长修正系数0.2,配送中心商品平均周转次数为3次/月,最大堆垛高度为2m,存储面积修正系数为0.3。
计算该配送中心最多需要多少存储面积。
解:ps总销售量=25*800=20000 Q=(1+0.2)*20000 =24000
q=0。
4*0。
5*0。
4=0。
08m³H=2m
Q =Q/T=24000/3=8000 P存储空间需要量=8000*0.4*0。
5*0.4=640m³³
St=P/H=640/2=320 S配送中心总规模=(1+0。
3)*320=416㎡
答:该配送中心最多需要416㎡存储面积。
一家公司仓库购入1200箱瓷砖,包装体积长0.5m,宽0。
5m,高0.4m,毛重22kg,净重20kg.用托盘多层堆码,托盘规格为1。
04m×1.04m,托盘重量5kg。
托盘的承压能力为400kg,限装2层.库房地坪单位面积载荷为1t。
问:该批货物的储存最少需要多少托盘,最少多少堆垛?实际占用多少面积?如果面积利用系数为0。
7,则需仓库面积应该为多大?解:
按长宽计算每层托盘可放:(1。
04/0.5)*(1.04/0.5)≈2*2=4箱
每个托盘可放:4*2层=8箱
每个托盘总量=8*22+5=176+5=181 kg<库房地坪单位面积载荷1t
需要托盘数量:1200/8=150个
按托盘承受压力可堆码:400/181=2.2≈2层托盘
存放面积=1。
04*1.04*(150/2)=81.12㎡
所需仓库面积=81。
12/0。
7=115。
885≈116㎡
答:最少需要150个托盘,150/2=75堆垛,仓库面积116㎡
某企业准备建一综合型仓库,其中就地堆码货物的最高储存量为600吨,仓容物资储存定额为3吨/平方米,采用货架存放的货物最高储存量为90吨,货架长10米、宽2米、高3米,货架的容积充满系数为0.6,货架的储存定额为200公斤/立方米,若该面积利用率达到75%,则该仓库需要多少货架?使用面积应为多少平方米?
解:堆码的面积=600/3=200㎡
每个货架可能存放的重量=10*2*3*0。
6*0。
2=7.2t
所需货架数量=90/7。
2=12.5≈13个
货架所占S=10*2*13=260㎡
有效S=200+260=460㎡
使用面积=460/0.75=613.333约等于614㎡
答:该仓库需要13个货架,使用面积为614㎡
(1)测定配送及储存商品总量
Q为总的配送/储存商品数量(各店铺总销售量)
P为单位面积销售量
S为各店铺总的营业面积。
d为销售量增长变化的修正参数(一般大于0);
例:假定20家店铺,s=10万m2,p=2件/m2 , =0。
2
总销售量=10万×2=20万件
总配送量=总销售量=(1+0.2)×20万=24(万件)
(2)确定配送中心总规模。
平均商品配送/储存量Q为商品配送量(总周转量)T为平均周转次数
例:
假定20家店铺,s=10万m2,p=2件/m2 ,=0.2
各店铺总销售量=10万×2=20(万件)
配送/ 储运商品量=(1+0。
2) ×20万=24(万件)
假定T=6次/月,则=24/6=4(万件)
P 为储存空间需要量q 为平均商品占有空间(单位商品空间占有)
St 为仓库实际储存面积H 商品平均堆码高度ε面积修正系数(考虑各功能区的比例) 例:假定T=6次/月,=24/6=4(万件)
假定q =0.4×0.4×0。
5=0.08m3 ,H=2m
则P=4万×0。
08=3200(m3) St =3200/2=1600 (m2 )
假定ε=0。
2,则S=(1+ε)St =(1+0.2)1600=1920(m2 )
题中配送中心的面积为1920 m2
仓库面积计算例题:
某平房仓库进8000箱力波啤酒,包装体积长0。
3m,宽0.3m,高0.4m,毛重12kg,净重10kg,
用托盘单层堆码,托盘规格为1.04m×1.04m(托盘重量不计),库房地坪单位面积载荷为1t,包装的承压能力为50kg,可用高度为3m。
问:该批货物的储存需要多少托盘,至少需要多少面积?如果面积利用系数为0.7,则需仓库面积应该为多大?
解:按可用高度计算可堆码:3÷0。
4=7。
5箱.
按包装承受压力计算可堆码4箱,因此以4箱计算。
按宽计算每个托盘每层可放:(1。
04÷0.3)×(1.04÷0.3)≈3.5×3.5≈3×3=9箱。
每个托盘可放箱:4×9=36箱.
每个托盘总重量=36×12=432kg,小于库房地坪单位面积载荷1t,因此本方案可行。
需要的托盘数量:8000÷36=222.2≈223个
存放面积=1。
04×1.04×223=241。
20m2
所需仓库面积=241.20÷0。
7=344。
57m2
答:略
如考虑托盘堆垛,也可以计算仓库面积
例2:
某配送中心建一综合型仓库,计划用两种储存方法:一是就地堆码,其货物的最高储存量为1200吨,这种货物的仓容物资储存定额是5吨/平方米;另一种是货架储放,其货物最高储存量为630吨,货架长8米、宽1.5米、高4米,货架容积充满系数为0.7,货架储存定额是150公斤/立方米,若该库的面积利用系数是0.5,则需要货架多少?设计此仓库的有效面积是多少?使用面积是多少?
解:
堆码的面积=总量/储存定额=1200/5=240平方米
每个货架可能存放的重量=货架体积*容积系数*储存定额=(8*1.5*4)*0。
7*0.15=5.04吨
所需货架数量=货架储存总量/每个货架可存重量=630/5.04=125个
货架所占面积=每个货架地面积*货架数量=8*1.5*125=1500平方米
有效面积=堆码的面积+货架所占面积=240+1500=1740平方米
使用面积=有效面积/面积利用系数=1740/0.5=3480平方米
配送路线优化方法
在物流系统优化技术中,还有一类重要的优化技术就是对配送中心配送路线优化技术。
随着配送中心的广泛使用,作为直接影响配送中心的运营成本与效率的配送路线规划问题日益引起人们的重视。
在很多批发零售型配送中心的日常配送活动中,配送中心的车辆一次要顺序给多个用户配送货物,配送完所有货物后再返回到配送中心。
另外一些中心配送中心向所属配送网络中多个子配送中心配送货物也属于此类型.这些问题大致可以归结为基本问题中的旅行商问题和中国邮递员问题.
一、旅行商问题
旅行商问题可以总结为一个推销员从城市1出发到其他城市中去,每个城市他去一次,并且只去一次,然后回到城市1,问他如何选择行程路线,从而使总路程最短?
解决旅行商问题的算法目前已经有多种。
下面主要介绍两种:最邻近法和节约算法.
二、中国邮递员问题
中国邮递员问题可以总结为“一个邮递员每次送信,从邮局出发,必须至少依次经过它负责投递范围的每一条街道,待完成任务后仍然回到邮局,问他如何选择投递路线,从而使自己所走的路程最短?”为了说明这类问题的具体解法,首先需要了解一下一笔画问题和欧拉图。
(1) 给定一连通多重图G ,若存在一条链,过每边一次,且仅过一次,则这条链称为欧拉链.若存在一个简单圈,过每边一次,称这个圈为欧拉圈,一个图若有欧拉圈,则称为欧拉图.显然,如果一个图若能一笔画出,则这个图必定是欧拉圈或含有欧拉链。
(2) 给定下列定理及推论.
定理:连通多重图是欧拉图,当且仅当G 中无奇点。
以点V 为端点的边的个数称为V 的次,次为奇数的点称为奇点。
在任一个图中,奇点的个数为偶数.
推论:连通多重图G 有欧拉链,当且仅当G 中恰有两个奇点。
如果某邮递员所负责范围内,街道中没有奇点,那么他可以从邮局出发,走过每条街道一次,且仅一次,最后回到邮局,这样他所走的路线就是最短路线。
对于有奇点的街道,它就必须在某条街道上重复走多次。
在下面的图7-24中,邮递员可以按V1 -V2—V4 —V3-V2—V4 —V6-V5-V4-V6 —V5—V3-V1,结果[V2,V4 ],[ V4 ,V6],[V6 ,V 5]三条边各重复走一次。
如果按照另外一条路线V 1 —V 2 - V 3 — V 2- V 4—V 5-V 6—V 4-V 3—V 6—V 5-V 3—V 1,则[V 3,V 2 ],[ V 3,V 5] 各重复走一次。
显然两种走法的总路程差就等于重复边的总权数之差。
因而如果我们把这些重复边加在原来的图上,构成新图7—25和7-26,原来的问题就转化为在含有奇点的图中增加一些重复边,并且使重复边的总权数最小。
这是中国邮递员问题的基本解决思路。
图7-24 邮递员行走路线图1
图7—25 邮递员行走路线图2
V 4
V 6
V 5
V 3
V 2
V 1
1
1
1
1
1
1
1
1
V 4
V 6
V 5
V 3
V 2
1
1
1
1
1
1
1
1
图7-26 邮递员行走路线图3
下面用一个例子来说明中国邮递员问题的具体解决步骤.一般把使新图不含有奇点而增加的重复边称为可行方案,使总权数最小的可行方案称为最优方案。
(1) 第一个可行方案的确定方法。
因为在任何一个图中,奇点的个数都是偶数,所以如果图中有奇点,就可以将它们配成对。
另外,又因为图是连通的,所以每一对奇点之间必有一条链,我们把这条链的所有边作为重复边加到图中去,则新图中必无奇点,这样就得到第一个可行方案。
图7-27是一个街区的路线图,图中有4个奇点,V 2,V 4 ,V 6 和V 8。
先将它们分为2对,假设V 2 和V 4为一对,V 6 和V 8为一对。
图7-27 街区路线图
然后在连接V 2 和V 4的几条链中任选一条,例如取(V 2,V 1,V 8,V 7,V 6,V 5,V 4),分别把边[V 2,V 1], [V 1,V 8],[ V 8,V 7 ],[ V 7,V 6],[V 6,V 5 ],[V 5,V 4]作为重复边加到图中去,得到图7—28。
2
4
3
4 4
9 5
4
6 2 2
5
V 1
V 2
V 3
V 8
V 7 V 6 V 5
V 4
V 9 V 4
V 6
V 5
V 3
V 2
V 1
1
1
1
1
1
1
1
1
图7-28 初始可行方案
由于图7-28没有奇点,因此它是一个欧拉图。
重复边的总权数2w 12+w 23+2w 45+2w 56+w 67+w 78+2w 18=51。
(2) 调整可行方案,使重复边总长度下降。
首先可以看出,如果去掉图7—28中(V 2,V 1)上的两条重复边,该图中仍然没有奇点,方案仍为可行方案,因此去掉这两条重复边。
同理,[V 1,V 8],[V 6,V 5 ],[V 5,V 4]上的重复边也可以去掉。
一般情况下,如果边(V i ,V j )上有两条或两条以上的重复边时,我们可以通过去掉其中的偶数条,优化可行方案.另外,在最优方案中,图的每一边上最多有一条重复边,并且图中每个圈上的重复边的总权数不大于该圈总权数的一半。
这样,图7—28可以调整为下面图7—29,重复边总权数下降到21。
图7-29 可行方案调整图1
前边我们是去掉了一些重复边,下面我们再给原来没有重复边的边上加上一些重复边,图中仍然没有奇点,方案仍为可行方案,如果根据图中每个圈上重复边的总权数不大于该圈总权数的一半的原则再对这些重复边进行调整,将会得到一个总权数下降的可行方案。
上面图7-29中圈(V 2,V 3,V 4,V 9,V 2)的总长度为24,但重复边的总权数为14,大于圈的总权数的一半,因此可以进行再调整。
以[V 2,V 9],[V 9,V 4 ]上的重复边代替[V 2,V 3],[V 3,V 4 ]上的重复边,重复边长度可继续下降到17,见图7—30。
V 1
V 2
V 3
V 8
V 7
V 6
V 5
V 4
V 9
V 1
V 2
V 3
V 8
V 7
V 6
V 5
V 4
V 9
图7-30 可行方案调整2
(3) 判断最优方案的标准。
因为我们已经知道,在最优方案中,图的每一边上最多有一条重复边,并且图中每个圈上的重复边的总权数不大于该圈总权数的一半。
所以如果一个可行方案满足上述两个条件,我们可以断定这个可行方案是最优方案.
检查上面图7-30中圈(V 1,V 2,V 9,V 6,V 7,V 8,V 1),圈的总权数为24,但重复边的总权数为13,大于圈的总权数的一半,因此还不是最优方案,可以继续进行调整。
经调整,得到图7-30,重复边的总权数下降为15.
经检查,图7-31满足上述两个条件,因此已经是最优方案,图中的任意一个欧拉圈就是最优路线。
上述方法也通常被称作奇偶点图上作业法。
图7—31 最优方案
物流师考试典型计算题
1、经济订货批量
V 1
V 2
V 3
V 8
V 7
V 6
V 5
V 4
V 9
V 1
V 2
V 3
V 8
V 7
V 6
V 5
V 4
V 9
某装修公司对某种油漆的年需求量为600桶,每次订货成本为150元,存货费用为80元/桶,产品价值百分率为10%,求该公司对此种油漆的经济订货批量。
2、安全库存量
(1)需求量变化,提前期固定
习题:某公司对办公用笔的平均日需求量为100支,并且其需求情况服从标准差为10支/天的正态分布,如果提前期固定常数6天,客户服务水平不低于90%,则安全库存量为多少?(服务水平0。
90,安全系数为1。
60)
(2)需求量固定,提前期变化
例题:某公司对办公用笔的日需求量为100支,提前期服从均值为6天,标准差为2天的正态分布,如果客户服务水平不低于90%,则安全库存量为多少?(服务水平0。
90,安全系数为1。
60)
(3)需求量、提前期都变化
习题:某公司对办公用笔的平均日需求量为100支,标准差为10支/天,平均提前期为6天,标准差为2天,如果客户服务水平不
低于90%,则安全库存量为多少?(服务水平0。
90,安全系数为1.60;需求量、提前期均服从正态分布)
3、定量订购法
例题:(定量订购法)
某公司销售某种化工原料,过去1周,每天销售的原料分别是16、17、17、18、18、17和16桶。
如果它们服从正态分布,订货进货提前期为2天,一次订货费用为100元,1桶原料保管一天需要保管费用10元,要求库存满足率达到90%。
若实行定量订货法控制,应该怎样进行操作?
操作方法:每当库存小于36桶时,按经济批量购进18桶。
4、定期订购法
某公司为实施定期订货法策略,对某个商品的销售量进行分析,发现用户需求服从正态分布。
过去五个月的销售量分别是:14,16,18,17,19(吨/月),如果组织资源进货,则订货提前期为1个月,一次订货费用为10元,1吨物资一个月的保管费用为1元。
如果要求库存满足率达到90%,根据这些情况应当如何制定定期订货法策略.又在实施定期订货法策略后,第一次订货检查时,发现现有库存量为1
吨,已订未到物资5吨,已经售出但尚未提货的物资3吨,问第一次订货时应该订多少?
(1)求订货周期
(2)求最高库存量
(3)求第一次订货量
5、配送线路选择(节约法)
S12=9+6—7=8 S13=9+10—14=5 S14=9+12—17=4 S15=9+13—7=15 S23=6+10—7=9 S24=6+12-8=10 S25=6+13-10=9 S34=10+12—3=19 S35=10+13—17=6
中用用用用用
中9 用6 10 12 13
7 14 17 7
10
8 7 17
3 用用用用
16
用8 5
4 1
5 9
10 9 6
19 用用
用用
9
S45=12+13-16=9
(1)3-4
(2)1-5
(3)2-4(3-4-2)
(4)2—3、4—5、2—5
(5)0—3-4—2—5-1-0
6、最短路问题
最短路问题语言描述
从甲地经过N个距离不同的运输节点到达运输终点乙地,求从甲地到达终点以及各个运输节点的最短路径。
(210,3)
始发地到各点
的最短路:
1-2
1-2—3
1-2-4
1—2-3-5
1-2—3-6
1—2—4-7
某航线一端点港年货物发运量达18万吨,另一端点港年货物发运量为16万吨,船舶的载重量为2万吨,船舶载重利用率平均为0.90,船舶往返航次时间为88天,则该航线需配置同类型的船舶数为多少?
某航线一端点港年货物发运量达18万吨,另一端点港年货物发运量为16万吨,船舶的载重量为2万吨,船舶载重利用率平均为0.90,船舶往返航次时间为88天,则该航线发船间隔应为多少?
订单延迟率。
延迟交货订单数
订单延迟率= x100%
订单总量
(2)订单货件延迟率。
延迟交货量
订单货件延迟率= ×100%
出货量
(3)紧急订单响应率
未超过12小时出货订单
紧急订单响应率= ×100%
紧急订单总量
降低订单延迟率的措施主要是:
①找出作业瓶颈,加以解决;
②研究物流系统前后作业能否同时进行
③掌握库存情况,防止缺货;
④合理安排配送时间。
降低订单货件延迟率的措施主要是:
谋求作业的均衡性,应考虑实施顾客ABC分析,以确定客户重要性程度,而采取重点管理.
提高紧急订单响应率的措施主要是:
①制定快速作业处理流程及操作规程;
②制定快速送货计费标准.
1.某物流中心在2006年的12月份中收到订单800份,总出货量为1。
8万吨,其中按订单要求的发货时间交货有624份.由于种种原因延迟发货量950吨。
客户为解决货物的短缺,又要求该中心补充紧急订单50份,中心组织人力,在12小时内发出了36份。
现对该中心的订单处理进行评价,请计算订单延迟率、订单货物延迟率和紧急订单响应率;并提出提高紧急订单响应率的主要措施。
解:
①延迟交货订单数
订单延迟率= x100%= 22%
订单总量
②订单货件延迟率
延迟交货量
订单货件延迟率= ×100% =950/18000=5.3%
出货量
③紧急订单响应率
未超过12小时出货订单
紧急订单响应率= ×100%=36/50= 72%
紧急订单总量
①制定快速作业处理流程及操作规程;
②制定快速送货计费标准。