高三数学下学期每周一练1文

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省中山市古镇高级中学2013届高三数学下学期 每周一练1

一、选择题共8小题,每小题5分,共40分.
1.已知集合},4|{},1|{2
<=>=x x B x x A 那么A∩B=( ) (A)(-2,2) (B)(-1,2) (C)(1,2) (D)(1,4) 2.执行如图所示的程序框图,若输入3=x ,则输出y 的值为( ) (A)5 (B)7 (C)15 (D)31 3.若3
1
log ,2log ,3log 4
32===c b a ,则下列结论正确的是( ) b c a A <<)( b a c B <<)( a c b C <<)( a b c D <<)(
4.如图,在复平面内,复数21,z z 对应的向量别离是,,OB OA 则复数21
z z
对应
的点位于( )
(A )第一象限 (B)第二象限 (C)第三象限 (D)第四象限
5.已知正六棱柱的底面边长和侧棱长均为2cm ,其三视图中的俯视图如图所
示,则其左视图的面积是( )
234)(cm A 232)(cm B 28)(cm C 24)(cm D
6.若实数y x ,知足条件⎪⎩

⎨⎧≤≤≥+-≥+,1001,0x y x y x ,则|3|y x -的最大值为( )
(A)6 (B)5 (C)4 (D)3
7.设等比数列}{n a 的前n 项和为n S ,则“01>a ”是“23S S >”的( )
(A)充分而没必要要条件 (B)必要而不充分条件
(C)充要条件 (D)既不充分又没必要要条件
8.已知集合}222|{3
32210⨯+⨯+⨯+==a a a a x x A ,其中)3,2,1,0}(1,0{=∈k a k ,且
03=/a ,则A 中所有元素之和是( )
(A)120 (B)112 (C)92 (D)84
二、解答题共6小题,共76分.解承诺写出文字说明,演算步骤或证明进程.
9.(本小题满分12分)在△ABC 中,已知)sin(cos sin 2C A A B +=.
(I)求角A ;
(Ⅱ)若BC=2,△ABC 的面积是3,求AB .
10.(本小题满分12分)已知函数)3
sin(sin )(π
-+=x x x f
(I)求)(x f 的单调递增区间;
(Ⅱ)在△ABC 中,角A ,B ,C 的对边别离为c b a ,,,已知b a A f 3,2
3
)(==
,试判断△ABC 的形状.
11.(本小题满分12分)某校高一年级开设研究性学习课程,(1)班和(2)班报名参加的人数别离是18和27.现用分层抽样的方式,从中抽取若干名学生组成研究性学习小组,已知从(2)班抽取了3名同窗. (I)求研究性学习小组的人数;
(Ⅱ)计划在研究性学习的中、后期各安排1次交流活动。

每次随机抽取小组中1名同窗发
言.求2次发言的学生恰好来自不同班级的概率.
12.(本小题满分12分)某学校随机抽取部份新生调查其上学所需时间(单位:分钟),并 将所得数据绘制成频率散布直方图(如图),其中,上学所需时间的范围是[0,100],样本 数据分组为[0,20),[20,40),[40,60),[60,80),[80,100]。

(I)求直方图中x 的值;
(Ⅱ)若是上学所需时间很多于1小时的学生可申请在学校住宿,
请估量学校600名新生中有多少名学生可以申请住宿.
13.(本小题满分14分) 如图,矩形ABCD 中,AB=3,BC=4.E ,F 别离在线 段BC 和AD 上,EF∥AB,将矩形ABEF 沿EF 折起,记折起后的矩形为MNEF ,且 平面MNEF⊥平面ECDF . (I)求证:NC∥平面MFD ; (Ⅱ)若EC=3,求证:ND⊥FC:
(Ⅲ)求四面体NFEC 体积的最大值.
14.(本小题满分14分)已知菱形,ABCD 中,AB=4,∠BAD=600(如图1所示),将菱形ABCD 沿对角线BD 翻折,使点C 翻折到点C1的位置(如图2所示),点E ,F ,M 别离是AB ,DC1,BC1的中点.
(I)证明:BD∥平面EMF ; (Ⅱ)证明:AC1⊥BD:
(Ⅲ)当EF⊥AB 时,求线段AC1的长.
15.已知函数)0(2
1
21ln )(2=/∈+-=a R a x x a x f 且 (Ⅰ)求)(x f 的单调区间;
(Ⅱ)是不是存在实数a ,使得对任意的),1[+∞∈x ,都有0)(≤x f ?若存在,求a 的取值范
围;若不存在,请说明理由.
参考答案。

相关文档
最新文档