frm知识点两基金分离定理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

FRM知识点:两基金分离定理
1前言
美国经济学家马科维茨1952年发表论文《资产组合的选择》,标志着现代投资组合理论的开端。

他利用均值--方差模型对投资组合进行分析,提出投资组合理论,并进行了系统、深入和卓有成效的研究,后得出这样的一条曲线(上双曲线)——有效前沿,在该前
沿上的投资组,均满足一定风险下的高收益,一定收益下的低风险,给投资者资产组合的
选择提供了理论基础。

然而,马科维茨组合理论虽然给出了组合选择的方法,在实务操作中却较难实施,因
为要获得优组合的各个投资标的的权重,需要每个投资标的的收益、方差(或标准差),
以及各个标的间的相关系数,计算要求极高,当时计算机硬件发展不匹配。

因此,资产组
合理论后续发展的“两基金分离定理”、“单一因素模型”等,都极大的推动了投资组合理论的实际应用。

2文章思路
两基金分离定理包括两层涵义,因此本文从以下两方面展开:其一,投资组合仅有风
险资产,不包括无风险资产,因其引申自马科维茨组合管理理论(本文不再赘述),所以
主要从定理、定理证明和现实意义进行阐述;其二,引入无风险资产的两基金分离定理,
也主要从以上三方面展开,然而会引出资本市场线、市场组合等重要概念。

3仅有风险资产
3.1定理
在只有风险资产的情况下,有效前沿是一条上双曲线,在这条线上,任意两个分离的
点都代表两个分离的有效投资组合,而有效组合边界上任意其他的点所代表的有效投资组
合,都可以由这两个分离的点所代表的有效投资组合的线性组合生成。

3.2证明
由马科维茨的投资组合理论可知,过任意两个分离的各自代表有风险资产的点可以生
成一条双曲线。

所以,有效组合边界上的两个分离的点可以看作两项有风险资产,它们也
就可以生成一条双曲线。

然而,有效组合边界本身是一条双曲线。

首先,任意两条不同的双曲线不可能在同一侧有两个分离的切点。

其次,如果这两条双曲线在这两个点是相交的话,则由两个点生成的双曲线一定会有
一部分落在有效组合边界所围区域的外面。

然而,由有效组合前沿的定义知这是不可能的,所以这两条双曲线一定重合。

综上,两基金分离定理成立。

3.3意义
以市场上的机构投资者——共同基金为例。

共同基金一方面发行小面额的收益凭证作
为自己的负债,另一方面则把筹集到的大笔资金进行分散化投资,形成自己的投资组合。

如果有两家不同的共同基金,它们都投资于有风险资产,而且都经营良好,经营良好意味
着它们的收益/风险关系都能落到有效组合前沿。

那么,根据两基金分离定理,任何别的投资于有风险资产的共同基金,如果经营良好
(即为有效组合前沿上的风险资产组合),其有效投资组合一定与原来那两个共同基金的
某一线性组合等同。

因此,只要找到这样两家不同的经营良好的共同基金,把自己的资金按一定的比例投
资于这两家基金,就可以与投资于其他经营水平良好的共同基金(即其他不同收益/风险配
比的有效组合)获得完全一样的效果。

这一结论对投资策略的制定无疑有重要的意义。

4含无风险资产
4.1定理
在引入无风险资产的情况下,有效前沿就变成是一条射线,在这条线上,任何一个的
有效资产组合都可以由无风险资产和一个市场组合的线性组合生成,但是其中一个关键的
地方是,该市场组合是作为所有风险资产的代表,投资者投资在该风险组合的每个风险资
产的投资比例不随投资者的偏好而改变。

4.2证明
该定理的证明首先需要引出资本市场线,然后进行论证。

4.2.1资本市场线
在所有可能有风险资产组合所构成的双曲线所围成区域的有效组合边界左下端,就是
小方差组合。

因为有系统风险存在,小方差组合不是无风险的,其预期收益率也一定高于
无风险利率R f点。

于是,在标准差——预期收益率图中:有效组合边界和表示预期收益率
大小的纵坐标轴是不相接触的,而代表无风险证券的收益/风险的坐标点落在纵轴上。

因而,在加入无风险证券后,代表新的组合的点一定落在连接R f点和包含所有可能的有风险资产组合的双曲线所围区域及其边界的某一点的射线上。

如此的射线有无数多条。

但是,当射线围绕R f点逆时针旋转时,不管投资者的收益/风险偏好如何(即不管效用函数的曲线形状如何),越在上面的射线上的点,其效用值越
大。

于是,效用值大的射线一定是与有效组合边界相切的那一条,即连接R f点和M点的射线。

这条射线实际构成了无风险证券和有风险资产组合的有效组合边界资本市场线。

4.2.2论证
资本市场线上点(0,Rf )代表无风险资产,点
M (σM ,E(R M ))有风险的市场组合,而该资产市场线上的任意投资组合为(σ
P ,E(R P )),设ω为该组合配置风险市场组合的
比例,则:E (R P )=(1-ω)?R f +ω?E (R M )
σP =ωσM

ω=σP σM
该投资组合配置σP σM 比例的有风险市场组合,(1-σP σM
)比例的无风险资产。

该投资组合收益E(R P )为:
E (R P )=R f +σP E(R M )-R f σM
该方程也就是资本市场线的表达式。

此时,其中一项基金是无风险证券,而另一项则是切点M 所代表的有风险资产的组合。

资本市场线上任意一点所代表的投资组合,都可以由一定比例的无风险证券和由M 点所代表有风险资产组合生成。

在这个包括无风险证券和有风险资产组合的有效组合边界(即资本市场线)上,两基金分离定理实际上依然成立。

代表小方差组合的点位于R f 点的右上方,从而保证了切点(M 点)的存在性(如果小
组合的预期收益率与无风险收益率相等的话,双曲线上的切点会不存在,资本市场线会变
成双曲线的渐近线)。

资本市场线在M点右上方的部分所包含的投资组合,即ω>1,是卖空了无风险证券(即以无风险利率贷款)后,将所得的资金投资于M点所代表的有风险资产组合。

4.3意义
4.3.1现实意义
两基金分离定理为从事投资服务的金融机构提供了理论指导,不管投资者的收益/风险偏好如何,只需要找到切点M所代表的有风险投资组合,再加上无风险证券,就能为投资
者提供佳的投资方案,而投资者的收益/风险偏好,就只需反映在组合中无风险证券所占的比重。

这一佳投资方案的设计与投资者的收益/风险偏好无关的结果,更能说明两基金分离定理中“分离”一词的涵义。

M点所代表的有风险资产组合是什么样的组合,投资者如何才能构建这样的组合?
4.3.2市场组合
资本市场线与有风险资产的有效组合边界的切点M所代表的资产组合就是有风险资产的市场组合。

市场组合包含所有市场上存在的资产种类,以及各种资产所占的比例和每种
资产的总市值占市场所有资产总市值的比例相同。

有风险资产的市场组合就是指从市场组
合中剔除无风险证券后的组合。

首先,任何市场上存在的资产须被包括在M所代表的资产组合里。

因为,理性的投资者都会选择资本市场线上的点作为自己的投资组合,不被M所包含的资产就会变得无人问津,其价格自然会下跌,从而收益率会上升,直到进入M所代表的资产组合。

其次,当市场均衡时,对任何一种资产都不会有过度的需求和过度的供给。

因为,所
有的理性的投资者所选择的有风险资产的比例都应同M所代表的资产组合里的投资比重相同。

由此,说明M所代表的资产组合就是有风险资产的市场组合。

得知M点是有风险的市场组合,那么实践中如何根据两基金分离定理制定和实施相应
的投资策略呢?
4.3.3指数化投资策略
指数化的投资策略是被动的但很有效的投资策略。

该策略分两步做:一步是按照市场
的组合比例来构筑有风险资产的组合,这样也一定实现了风险的分散化;二步是将资金按
照投资者的收益/风险偏好分投到无风险证券和所构筑的有风险市场组合中去。

这种策略调节起来也非常方便。

如果觉得风险偏大,则可适当增大投资于无风险证券的比例,否则反
之。

在各个金融市场中,已经有好些反映市场总体价格水平变化的指数,如着名的标准普
尔500指数、日经255指数,《金融时报》100指数、恒生指数,以及中国内地的上证指数、深证指数等,以此类指数为基础而开发的指数产品,往往可以用来作为有风险市场组
合的替代品。

所以这种投资策略被称为指数化的投资策略。

这种被动式的指数化的投资策略在西方被养老基金、共同基金等金融机构广泛的采用,并被用作评估其他主动式的投资策略绩效的依据。

因此我们可以清楚地看到,这种优投资
策略的制定,确实是与个别投资者的效用函数无关的。

这种投资策略的产生,是市场整合
的结果。

虽然它经常有悖于人们的常识和感觉,却是金融学的本质特性。

5小结
本文从定理、证明和实践意义三方面对两基金分离定理在仅有风险资产和包括无风险
资产两种情况进行了分析,该理论建立在马科维茨的资产组合选择理论基础上,马科维茨
的资产组合选择理论开启了现代组合理论研究的开端,然而,两基金分离定理极大的推动
了现代组合理论的现实应用,为投资者投资策略的制定和实施提供理论基础和现实指导。

实践中,人们都会配置部分无风险资产甚至借入资金,根据两基金分离定理,投资者
可以通过在代表整个市场风险资产的指数和无风险资产之间进行配比,来达到资本市场线
上的优组合。

其中,选择指数作为风险资产标的,每位投资者都相同,不受个人风险偏好
的影响;无风险资产的比例则体现不同投资者的不同风险偏好程度。

金程FRM有过30余人的全职金融研发团队,精英从业人员,拥有丰富的实际操作经验和丰富教学经验,金程开创性地推出各类学习平台,配合独特的“3+2”教学模式,推出了面授、在线两种个性化的班型,帮助考生循序渐进地提升专业知识,让学员不受时间和地域限制
跟随名师学习。

相关文档
最新文档