云南师大附中2010届高三数学第一次月考(理)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

云南师大附中2010届高考适应性月考卷(一)
理科数学
本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试用时120分钟。

第I 卷1至2页,第II 卷3至4页,考试结束后,将本试卷和答题卡一并交回。

参考公式:
如果事件A ,B 互斥,那么()()()P A B P A P B +=+;
如果事件A ,B 相互独立,那么()()()P A B P A P B ⋅=⋅;
如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率
()(1)(0,1,2,,)k k n k n n P k C P P k n -=-=
球的表面积公式2
4S R π=,其中R 表示球的半径; 球的体积公式3
43V R π=,其中R 表示球的半径。

第I 卷(选择题,共60分)
注意事项:
1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚,并认真核准条形码上的准考证号、姓名及科目,在规定的位置贴好条形码。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试卷上的答案无效。

一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项是符合题目要求的)
1.i 是虚数单位,则131415104i i i i ++++=
A .1
B .i -
C .0
D .i
2.2112lim(
)11x x x →-=--
A .1-
B .12
C .0
D .12-
3.如图1,P 是正方形ABCD 所在平面外一点,PD ⊥平面ABCD ,PD AD =,则PA 与BD 所成的角的度数为
A .30︒
B .45︒
C .60︒
D .90︒
4.已知曲线23ln 4x y x =-的一条切线的斜率为12,则切点的横坐标为
A .3
B .2
C .1
D .1
2
5.将3
2,23log 3,log 5从小到大排列是
A .233log 3log 52<<
B .323log 5log 32<<
C .323log 5log 32<<
D .
233log 3log 52<< 6.如图2,设在椭圆22
+154x y =中,1B 和B 是短轴端点,P 是椭圆上
不同于1,B B 的任一点,直线1,PB PB 分别交x 轴于M ,N ,则
||||OM ON ⋅=
A .4
B .4.5
C .5
D .5.5
7.某省2009年数学高考数学成绩(75,900)N ξ,现随机抽查100人,则成绩超过120分的人数的期望值是(已知Φ(0.002)=0.5080,Φ(1.17)=0.8790,Φ(1.50)=0.9332)
A .1或2
B .3或4
C .6或7
D .9或10
8.设点O 在ABC ∆内部,且40OA OB OC ++=,则ABC ∆的面积与OBC ∆的面积之比是
A .2:1
B .3:1
C .4:3
D .3:2
9.在正方体上任取三个顶带你连成三角形,则所得的三角形是等腰三角形的概率是
A .47
B .314
C .17
D .1
14
10.已知函数
()sin 43x f x π⎛⎫=- ⎪⎝⎭,如果存在实数12,x x 使得对任意实数x ,都有1()()f x f x ≤2()f x ≤,则12||x x -的最小值是
A .8π
B .4π
C .2π
D .π
11.ABC ∆中,如果边,,a b c 满足1()2a b c ≤+,则A ∠
A .一定是锐角
B .一定是钝角
C .一定是直角
D .以上情况都有可能
12.将7个同样的白球全部放入4个不同的盒子中,则不同的放法有
A .480种
B .35种
C .70种
D .120种
第II 卷(非选择题,共90分)
注意事项:
第II 卷共10小题,用黑色碳素笔在答题卡上各题的答题区域内作答,在试题卷上作答无效。

二、填空题(本大题共4小题,每小题5分,共20分)
13.已知数列的通项52n a n =-+,其前n 项和为n S ,则2lim
n n S n →∞=_________。

14.已知函数23()13(1)3(1)(1),f x x x x =--+---则
1(8)f -=__________。

15.假设197x =-,对于1()n n N *>∈有1n n n
x x -=,计算乘积:12345678x x x x x x x x =______。

16.设,,,P A B C 是半径为2的球面上四个不同的点,且满足,,PA PB PC 两两互相垂直,则PAB PAC PBC S S S ∆∆∆++的最大值是__________。

三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)
17.(本小题满分10分)
ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且cos 3cos cos b C a B c B =- (I )求cos B 的值;
(II
)若2,BA BC b ⋅==a 和c
18.(本小题满分12分)
有三张形状、大小、质量完全相同的卡片,在三张卡片上分别写上0,1,2,现从中任意抽取一张,将其上的数字记作x ,然后放回,再抽取一张,其上的数字记作,y 令xy ξ=,求:
(I )ξ的分布列;
(II )E ξ
19.(本小题满分12分)
如图3,在四棱锥P ABCD -中,顶点P 在底面ABCD 内的射影恰好
落在AB 的中点O 上,又90BAD ︒
∠=,//BC AD ,且::BC AB AD
=1:2:2
(I )求证:PD AC ⊥ (II )若平面APB 与平面PCD 所成的角为60︒,求PO
BC 的值。

20.(本小题满分12分)
已知数列{}n a 满足143n n n a a a +-=
-,且11,a n N *
=∈,求n a
21.(本小题满分12分)
如图4,已知双曲线22
1,42x y CD -=是垂直于实轴AB 的弦,
求直线AC 与BD 的交点P 的轨迹方程。

22.(本小题满分12分)
已知点(,)M x y 是函数3324()(0)4x a f x a x +=≠的图象上的动点,设M 关于点P 的对称点为
0,3y ⎛⎫- ⎪⎝⎭,点P 的轨迹是图形2C (I )求图形2C 的函数解析式()y g x =
(II )判断并讨论函数()y g x =的单调性
(III )是否存在实数a ,使得当(0,1]x ∈时,()g x 有最大值1-?。

相关文档
最新文档