solar system design
西卡太阳能屋面系统在英国德蒙福特大学平屋面上的应用

DOI : 10.15901 /j .cnki . 1007-497x .2021.04.007西卡太阳能屋面系统在英国德蒙福特大学平屋面h 的应用卢嫔婷(西卡渗耐防水系统(上海)有限公司,上海201108)摘要:西卡专门开发的与高分子材料同材质的光伏发电系统专用连接配件—Sika Solar M m im -l,在底部与卷材直接热焊,顶部卡住光伏组件支架,使光伏发电系统与单层屋面防水系统形成统一整体,从而实现保温、防水与光伏发电的完美 结合:本文以英国德蒙福特大学平屋顶上安装太阳能屋面系统为案例,介绍了西卡大阳能屋面系统的设计与安装 关键词:光伏发电系统;柔性单层屋面;P V C 防水卷材;专用连接配件文章编号:l 〇〇7_497X (2021 )-04-0032-04中图分类号:TU231 ;T U 76I.1*1文献标志码:B2021年第4期中国建筑防水 2021 No .44 月China Building WaterproofingAprilApplication of Sika Solar Roof System on Flat Roof of De Montfort University in the UKLu Pinting(Sika Waterproof System (Shanghai) Co., Ltd., Shanghai 201108. China)A b stract : Sika Solar Mount-1. a special connection fitting of photovoltaic power generation system developed bv Sika. is made of the same* material as polymer material. It is directly welded with membrane at the bottom, and its top part will hold the support of photovoltaic modules. It makes the photovoltaic* power generation system unite with the single layer roof waterf)roofing system to fomi a whole, and achieve a perfect combination of insulation, waterproofing; and photovoltaic power generation. Phis paper introduces the design and installation of Sika solar roof system based on the example of installing solar roof system on flat roof of De Montfort University.K ey w ord s : |)hotovoltair power generation system: flexible single-layer roof; PVC water|)roofing membrane; spt*cial connection fitting随着石化燃料成为人类主要能源,其所造成的环 境污染也让人类得以生存的地球生态正朝着不可逆 转的方向恶化。
太阳能电池的专用名词

机械激活电池 mechanically activated battery物理电源 physical power source光电转换效率 photoelectric conversion efficiency填充因数 fill factor太阳[能]电池 solar cell标准太阳电池 standard solar cell背反射太阳电池 back surface reflection solar cell, BSR solar cell背场背反射太阳电池 back surface reflection and back surface field solar cell 背场太阳电池 back surface field solar cell, BSF solar cell薄膜太阳电池 thin film solar cell垂直结太阳电池 vertical junction solar cell多结太阳电池 multijunction solar cell多晶硅太阳电池 polycrystalline silicon solar cell非晶硅太阳电池 amorphous silicon solar cell硅太阳电池 silicon solar cell聚光太阳电池 concentrator solar cell硫化镉太阳电池 cadmium sulfide solar cell砷化镓太阳电池 gallium arsenide solar cell肖特基太阳电池 Schottky solar cell同质结太阳电池 homojunction solar cell紫光太阳电池 violet solar cell异质结太阳电池 heterojunction solar cell集成二极管太阳电池 integrated diode solar cell卷包式太阳电池 wrap-around type solar cell点接触太阳电池 point contact solar cell化合物半导体太阳电池 compound semiconductor solar cell太阳级硅太阳电池 solar grade silicon solar cell金属-绝缘体-半导体太阳电池 metal-isolator-semiconductor solar cell, MIS solar cell 带状硅太阳电池 ribbon silicon solar cell定向太阳电池阵 oriented solar cell array壳体太阳电池阵 body mounted type solar cell array折叠式太阳电池阵 fold-out type solar cell array刚性太阳电池阵 rigid solar cell array柔性太阳电池阵 flexible solar cell array太阳电池组合板 solar cell panel太阳电池组合件 solar cell module光电化学电池 photoelectrochemical cell绒面电池 textured cell光伏型太阳能源系统 solar photovoltaic energy system光伏器件 photovoltaic device热光伏器件 thermo-photovoltaic device半导体温差制冷电堆 semiconductor thermoelectric cooling module调节控制器 conditioning controller温差发电器 thermoelectric generator核电池 nuclear battery热离子发电器 thermionic energy generator电子发射 electron emission场致发射 field emission光电发射 photoelectric emission次级电子发射 secondary electron emission寄生发射 parasitic emission欠热发射 underheated emission原电子 primary electron次级电子 secondary electron次级电子导电 secondary electron conduction, SEC空间电荷 space charge小岛效应 island effect逸出功 work function又称“功函数”。
太阳能发电介绍Solar_Fundamentals

Source: Figure 1, International Energy Agency, Technology Map – Solar Thermal, 2014 Edition
CST
PV + CST = ELECTRICITY forever
Source: Figure 6, International Energy Agency, Technology Map – Solar Thermal, 2014 Edition
Future CST Growth
2013 Total Electricity Production in China (ex. Hong Kong) = 5400 TWh
FUNDAMENTALS OF SOLAR ENERGY
Professor The University of Queensland
CRICOS Provider No 00025B
The Solar Abundance
From Dr Manuel Blanco, Director, Australian Solar Thermal Research Initiative
panel tilt angle)
• Concentrating Solar Thermal systems are designed using DNI
CRICOS Provider No 00025B
What Is Concentrating Solar Thermal?
太阳系报告模板英语

IntroductionThe solar system is a collection of planets, moons, asteroids, comets, and other celestial objects that are held in orbit around the central star, the sun. It is located in the Milky Way galaxy and is believed to have formed around 4.6 billion years ago.The SunThe sun is the center of the solar system and makes up more than 99% of its total mass. It is classified as a G-type main-sequence star and has a diameter of about 1.4 million kilometers. It is composed mostly of hydrogen and helium and produces energy through nuclear fusion reactions.Inner PlanetsThe inner planets of the solar system are Mercury, Venus, Earth, and Mars. They are rocky planets with solid surfaces and are located closer to the sun than the outer planets.MercuryMercury is the smallest planet in the solar system and is named after the Roman messenger of the gods. It has almost no atmosphere and is heavily cratered due to its proximity to the sun. It has a diameter of only 4,880 kilometers, making it smaller than some of the moons in the solar system.VenusVenus is the second planet from the sun and is named after the Roman goddess of love. It is similar in size and composition to Earth but has a thick atmosphere that traps heat and makes it the hottest planet in the solar system. Its surface is covered in volcanoes, mountains, and vast plains.EarthEarth is the third planet from the sun and the only known planet with life. It is named after the English word for soil and is home to an estimated 8.7 million species. Its atmosphere is made up of nitrogen, oxygen, and other gases that support life and protect the planet from harmful radiation.MarsMars is the fourth planet from the sun and is named after the Roman god of war. It is a cold and dry planet with a thin atmosphere that is mostly composed of carbon dioxide. Its surface is covered in canyons, mountains, and deserts and it is home to the largest volcano in the solar system, Olympus Mons.Outer PlanetsThe outer planets of the solar system are Jupiter, Saturn, Uranus, and Neptune. They are gas giants and are located further from the sun than the inner planets.JupiterJupiter is the largest planet in the solar system and is named after the king of the Roman gods. It is a gas giant with no solid surface and has a diameter of 139,822 kilometers. It is known for its colorful bands of clouds and the Great Red Spot, a massive storm larger than the size of Earth.SaturnSaturn is the second largest planet in the solar system and is named after the Roman god of agriculture and wealth. It is also a gas giant with a diameter of 116,460 kilometers and is known for its beautiful rings. Its atmosphere is similar in composition to Jupiter’s and is home to many moons.UranusUranus is the seventh planet from the sun and is named after the Greek god of the sky. It is an ice giant with a diameter of 50,724 kilometers and is known for its unique tilted axis of rotation. It has a faint system of rings and is home to at least 27 moons.NeptuneNeptune is the eighth planet from the sun and is named after the Roman god of the sea. It is also an ice giant with a diameter of 49,244 kilometers and has the strongest winds in the solar system, reaching speeds of up to 1,600 kilometers per hour. It is home to at least 14 moons and a faint system of rings.ConclusionThe solar system is a fascinating and complex system of planets and other celestial objects that continue to amaze scientists and space enthusiasts alike. Fromthe center, the sun, to the outer planets, Jupiter, Saturn, Uranus, and Neptune, the solar system is full of wonder and beauty.。
IRENA--Design of Grid Connect PV Systems

Design of Grid Connect PV systemsPalau Workshop th-12th April 8INTRODUCTIONGRID-CONNECTED POWER SYSTEMS SYSTEM DESIGN GUIDELINES• The document provides the minimum knowledge required when designing a PV Grid connect system. • The actual design criteria could include: specifying a specific size (in kWp) for an array; available budget; available roof space; wanting to zero their annual electrical usage or a number of other specific customer related criteria.DESIGNING A SYSTEM SUMMARYGRID-CONNECTED POWER SYSTEMS SYSTEM DESIGN GUIDELINESWhatever the final design criteria a designer shall be capable of: • Determining the energy yield, specific yield and performance ratio of the grid connect PV system. • Determining the inverter size based on the size of the array. • Matching the array configuration to the selected inverter maximum voltage and voltage operating windows.SITE VISITGRID-CONNECTED POWER SYSTEMS SYSTEM DESIGN GUIDELINESPrior to designing any Grid Connected PV system a designer shall either visit the site or arrange for a work colleague to visit the site and undertake/determine/obtain the following: • Discuss energy efficient initiatives that could be implemented by the site owner. These could include: • replacing inefficient electrical appliances with new energy efficient electrical appliances • replacing tank type electric hot water heaters with a solar water heater either gas or electric boosted.(If applicable) • replacing incandescent light bulbs with compact fluorescents and/or efficient LED lights • Assess the occupational safety and health risks when working on that particular site.SITE VISIT 2GRID-CONNECTED POWER SYSTEMS SYSTEM DESIGN GUIDELINES• Determine the solar access for the site. • Determine whether any shading will occur and estimate its effect on the system. • Determine the orientation and tilt angle of the roof if the solar array is to be roof mounted. • Determine the available area for the solar array. • Determine whether the roof is suitable for mounting the array. • Determine how the modules will be mounted on the roof. • Determine where the inverter will be located. • Determine the cabling route and therefore estimate the lengths of the cable runs. • Determine whether monitoring panels or screens are required and determine a suitable location with the ownerGRID-CONNECTED POWER SYSTEMS SYSTEM DESIGN GUIDELINESQUOTATION DOCUMENTATIONWhen providing a quotation to a potential customer, the certified designer should provide (as a minimum) the following information: • Full Specifications of the system including quantity, make (manufacturer) and model number of the solar modules and inverter. • An estimate of the yearly energy output of the system. This should be based on the available solar irradiation for the tilt angle and orientation of the array. If the array will be shaded at any time the effect of the shadows must be taken into account when determining the yearly energy output. • The dollar savings this represents based on existing electrical energy pricing • A firm quotation which includes all equipment and installation charges • Warranty information relating to each of the items of equipment If possible the savings in CO2 (either tonnes or kg) could also be provided.GRID-CONNECTED POWER SYSTEMS SYSTEM DESIGN GUIDELINESSTANDARDS for DESIGNIn Australia and New Zealand the following standards are applicable: … In Australia and New Zealand the relevant standards include: AS/NZ 3000 Wiring Rules AS 3008 Selection of Cables AS /NZS4777 Grid Connection of energy systems by inverters AS/NZS 5033 Installation of PV Arrays AS 4509 Stand-alone power systems (note some aspects of these standards are relevant to grid connect systems) AS 3595 Energy management programs AS 1768 Lightning ProtectionGRID-CONNECTED POWER SYSTEMS SYSTEM DESIGN GUIDELINESSTANDARDS for DESIGN 2In USA the relevant codes and standards include: • Electrical Codes-National Electrical Code Article 690: Solar Photovoltaic Systems and NFPA 70 • Uniform Solar Energy Code • Building Codes- ICC, ASCE 7 • UL Standard 1701; Flat Plat Photovoltaic Modules and Panels • IEEE 1547, Standards for Interconnecting distributed Resources with Electric Power Systems • UL Standard 1741, Standard for Inverter, converters, Controllers and Interconnection System Equipment for use with Distributed Energy Resources •AC ENERGY OUTPUT OF PV ARRAYGRID-CONNECTED POWER SYSTEMS SYSTEM DESIGN GUIDELINESThe AC energy output of a solar array is the electrical AC energy delivered to the grid at the point of connection of the grid connect inverter to the grid. The output of the solar array is affected by: • Average solar radiation data for selected tilt angle and orientation; • Manufacturing tolerance of modules; • Temperature effects on the modules; • Effects of dirt on the modules; • System losses (eg power loss in cable); and • Inverter efficiencyENERGY YIELDGRID-CONNECTED POWER SYSTEMS SYSTEM DESIGN GUIDELINESFor a specified peak power rating (kWp) for a solar array a designer can determine the systems energy output over the whole year. The system energy output over a whole year is known as the systems “Energy Yield” The average yearly energy yield can be determined as follows:Esys = P _ STC × ftemp× fmm × fdirt × Htilt ×ηpv_inv ×ηinvxηinv−sb arrayGRID-CONNECTED POWER SYSTEMS SYSTEM DESIGN GUIDELINESP array -stc =rated output power of the array under standard test conditions, in watts f temp =temperature de-rating factor, dimensionless (refer next section)f man =de-rating factor for manufacturing tolerance, dimensionless (refer next section)f dirt =de-rating factor for dirt, dimensionless (refer next section)H tilt =yearly irradiation value (kWh/m 2) for the selected site (allowing for tilt, orientation and shading)Array Losses/OutputGRID-CONNECTED POWER SYSTEMS SYSTEM DESIGN GUIDELINESH tilt =yearly irradiation value (kWh/m 2) for the selected site (allowing for tilt, orientation and shading)n inv =efficiency of the inverter dimensionless n pv_inv =efficiency of the subsystem (cables) between the PV array and the inverter n inv-sb =efficiency of the subsystem (cables) between the inverter and the switchboardSYSTEM LOSSESGRID-CONNECTED POWER SYSTEMS SYSTEM DESIGN GUIDELINESSolar irradiation is typically provided as kWh/m 2 .However it can be stated as daily peak Sunhrs (PSH). This is the equivalent number of hours of solar irradiance of 1kW/m 2.SOLAR RADIATION•Suva, Fiji (Latitude 18°08′S Longitude 178°25′E)•Apia, Samoa (Latitude13o50' S' Longitude171o44' W)•Port Vila, Vanuatu (Latitude17°44' S Longitude168°19' E)•Tarawa, Kiribati (Latitude1°28'N, Longitude173°2'E)•Raratonga, Cook islands( Latitude21°30'S, Longitude 160°0'W)•Nuku’alofa, Tonga (Latitude21º14'S Longitude 175º22'W)•Honiara, Solomon Islands (Latitude 09°27'S, Longitude 159°57'E)•Koror, Palau ( Latitude 7°20’N Longitude 134°28'E)•Palikir, Pohnpei FSM (Latitude: 6°54'N, Longitude: 158°13'E)•Majuro, Marshall Islands (Latitude: 7º 12N, Longitude 171º 06E)•Alofi, Niue (Latitude19°04' S. Longitude169°55' W)•Nauru (Latitude0º55’S, Longitude166º 91’E)•Tuvalu (Latitude8°31′S, Longitude179°13′E)•Hagåtña, Guam (Latitude 13°28′N Longitude: 144°45′E)•Noumea, New Caledonia (Latitude 22°16′S Longitude: 166°27′E)•Pago Pago, American Samoa (Latitude 14°16′ S Longitude: 170°42′W)Location Peak Sunlight Hours (kWh/m²/day)Suva, Fiji Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual AverageLatitude: 18°08′ South 0°Tilt¹ 6.29 6.2 5.54 4.67 4.05 3.72 3.89 4.44 5.08 6.04 6.32 6.38 5.21 Longitude: 178°25′ Ea st18°Tilt² 6.27 5.88 5.55 4.99 4.61 4.38 4.51 4.88 5.22 5.83 6.1 6.41 5.38 33°Tilt² 5.95 5.4 5.33 5.03 4.85 4.7 4.85 5.1 5.43 5.71 6.12 5.29Apia, Samoa Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual AverageLatitude: 13°50′ South 0°Tilt¹ 5.39 5.47 5.16 5.09 4.63 4.46 4.71 5.25 5.77 5.91 5.76 5.51 5.25 Longitude: 171°46′ West13°Tilt² 5.31 5.24 5.12 5.32 5.075 5.24 5.61 5.85 5.72 5.67 5.45 5.38 28°Tilt² 5.13 4.86 4.93 5.38 5.36 5.42 5.64 5.81 5.75 5.36 5.45 5.3 5.37Port Vila, Vanuatu Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual AverageLatitude: 17°44′ South 0°Tilt¹ 6.68 6.2 5.76 4.98 4.2 3.79 4.04 4.75 5.65 6.47 6.67 6.93 5.5 Longitude: 168°19′ East17°Tilt² 6.69 5.9 5.78 5.33 4.76 4.42 4.66 5.22 5.82 6.26 6.467.01 5.69 32°Tilt² 6.38 5.43 5.56 5.39 5.02 4.75 4.98 5.39 5.72 5.83 6.07 6.73 5.61GRID-CONNECTED POWER SYSTEMS SYSTEM DESIGN GUIDELINESORIENTATION and TILTANNUAL DAILY IRRADIATION ON AN INCLINED PLANE EXPRESSED AS % OF MAXIMUM VALUE FORCAIRNS Latitude: 16 degrees 52 minutes South Longitude: 145 degrees 44 minutes EastPlane Azimuth (degrees)Plane Inclination (degrees)0102030405060708090095%99%100%99%96%90%82%73%62%52%1095%99%100%99%95%90%82%73%62%52%2095%98%100%98%95%90%82%73%63%53%3095%98%99%98%94%89%82%73%64%54%4095%98%99%97%94%88%81%73%64%55%5095%97%98%96%93%87%80%73%64%56%6095%97%97%95%91%86%79%72%64%56%7095%96%96%94%90%84%78%71%63%55%8095%96%95%92%88%82%76%69%62%54%9095%95%94%90%85%80%74%67%60%53%10095%95%92%89%83%78%71%64%58%51%11095%94%91%87%81%75%68%61%54%48%GRID-CONNECTED POWER SYSTEMS SYSTEM DESIGN GUIDELINES1. Derating due to Manufacturers OutputTolerance2. Derating due to dirt3. Derating due to TemperatureDERATING MODULES OUTPUT•The output of a PV module is specified in watts and with a manufacturing tolerance based on a cell temperature of 25 degrees C. •Historically ±5%•recent years typical figures have been ±3% •System design must incorporate this tolerance.As a worked example , assuming the tolerance is ±5% the “worst case” adjusted output of a 160W PV module is therefore around 152W (0.95 x 160W), or 5% loss from the rated 160W.Manufacturers•The output of a PV module can be reduced as a result of a build-up of dirt on the surface of the module.•If in doubt, an acceptable derating would be 5% from the already derated figure that includes manufacturers’ tolerances.Worked example continues : Assuming power loss due to dirt of 5% then the already derated 152 W module would now be derated further to 144.4W (0.95 x 152W).Dirt. A solar modules output power decreases with temperature above 25°C and increases with temperatures below 25°CMinimum Effective Cell Temp= Ambient Temperature + 25°CTemperatureMonocrystalline ModulesMonocrystalline Modules typically have a temperature coefficient of –0.45%/o C.That is for every degree above 25o C the output power is derated by 0.45%.Polycrystalline ModulesPolycrystalline Modules typically have a temperature coefficient of –0.5%/o C.Thin Film ModulesThin film Modules have a different temperature characteristic resulting in a lower co-efficient typically around 0%/°C to -0.25%/°C, but remember to check with the manufacturerTemperature ContFor the worked example , assume the ambient temperature is 30o C.Therefore the effective cell temperature is30o C +25o C = 55o CTherefore this is 30o C above the STC temperature of 25o C Assume the 160W p module used in the example is a polycrystalline module with a derating of -0.5%/o CTherefore the output power losses due to temperature would be:Temperature loss = 30o C x 0.5%/o C = 15% lossTemperature ExampleGRID-CONNECTED POWER SYSTEMSSYSTEM DESIGN GUIDELINESAssuming power loss due to temperature of 15% then the already derated 144.4 W module would now be derated further to 122.7W (0.85 x 144.4W).DERATING MODULES ExampleContGRID-CONNECTED POWER SYSTEMSSYSTEM DESIGN GUIDELINESA solar module has an derated outputpower = Module power @ STC x Derating due to manufacturers tolerances x derating due to dirt x derating due to temperature.For the worked example :Derated output power = 160 x 0.95 x 0.95 x 0.85 = 122.7WDERATING MODULES SUMMARYGRID-CONNECTED POWER SYSTEMS SYSTEM DESIGN GUIDELINES The actual DC energy from the solar array = the derated output power of the module x number of modules x irradiation for the tilt and azimuth angle of the array.For the worked example assume that the average daily PSH is 5 and that there are 16 modules in the array. Therefore the DC energy output of the array = 122.7 x 16 x 5 = 9816WhDC ENERGY OUTPUT FROMARRAYDC SYSTEM LOSSESThe DC energy output of the solar array will be further reduced by the power loss (voltage drop) in the DC cable connecting the solar array to the grid connect inverter. For the worked example assume that the cable losses for the DC cables is 3%. This is a DC subsystem efficiency of 97%. Therefore the DC energy from the array that will be delivered to the input of the inverter will be = 9816 x0.97 = 9521 WhThe DC energy delivered to the input of theinverter will be further reduced by thepower/energy loss in the inverter.For the worked example assume that the inverter efficiency is 96%. Therefore the AC energydelivered from the output of the inverter will be = 9521 x 0.96 = 9140 WhINVERTER EFFICIENCYThe AC energy output of the inverter will befurther reduced by the power loss in the AC cable connecting the inverter to the grid, sayswitchboard where it is connected.For the worked example assume that the cable losses for the AC cables is 1%.the AC energy from the inverter (and originally from the array) that will be delivered to the grid will be = 9140 x 0.99 = 9048 WhAC SYSTEM LOSSESThe worked example included an array of 16 modules each with a STC rating of 160Wp. Therefore the array is rated 2560W p .The average daily AC energy that was delivered by the array to the grid was 9048Wh or 9.05kWh.Therefore over a typical year of 365 days then Energy Yield of the solar array is = 365 days x 9.05kWh/day = 3303kWh/year Energy Yield of exampleGRID-CONNECTED POWER SYSTEMSSYSTEM DESIGN GUIDELINESWhereH tilt =yearly average daily irradiation, in kWh/m 2for the specified tilt angleP array..STC =rated output power of the arrayunder standard test conditions, in wattsIdeal EnergytiltSTC array ideal H P E ×=_=rated output power of the array under standard test conditions, in wattsPerformance Ratio ExampleThe average daily PSH was 5. Therefore the yearly irradiation (or PSH) would be 5 x 365= 1825 kWh/m2 (that is 1825 PSH).The rated power of the array at STC is 2560Wp(@kWh/m2)Therefore the ideal energy from the array per year would be: 2.56kW x 1825h = 4672kWhThe AC energy from the solar array was 3303 Kwh per year.Therefore the performance ratio is 3303/4672 = 0.71The selection of the inverter for the installation will depend on:•The energy output of the array•The matching of the allowable inverter stringconfigurations with the size of the array in kW and the size of the individual modules within that array•Whether the system will have one central inverter ormultiple (smaller) invertersINVERTER SELECTIONInverters currently available are typically rated for:•Maximum DC input power. i.e. the size of thearray in peak watts;•Maximum DC input current; and•Maximum specified output power. i.e. the ACpower they can provide to the grid;INVERTER SIZINGThe array comprises 16 of the 160W p crystalline modules.Therefore the array peak power = 16 x 160= 2.56kWShould the inverter be rated 2.56kW?Inverter Sizing ExampleBased on figures of :•0.95 for manufacturer,•0.95 for dirt and•0.85 for temperature (Based on ambienttemperature of 30o C)The derating of the array is: 0.95 x 0.95 x 0.85 = 0.77Inverter with Crystalline Module. MATCHING ARRAY VOLTAGE TO THE MAXIMUM ANDMINIMUM INVERTEROPERATING VOLTAGESGRID-CONNECTED POWER SYSTEMSSYSTEM DESIGN GUIDELINESThe output power of a solar module is affected by the temperature of the solar cells.This variation in power due to temperature is also reflected in a variation in the open circuit voltage and maximum power point voltage.TEMPERATURE EFFECT ONARRAY VOLTAGEGRID-CONNECTED POWER SYSTEMSSYSTEM DESIGN GUIDELINES•With the odd exception grid interactive inverters include Maximum Power Point (MPP) trackers.•Many of the inverters available will have a voltage operating window.•If the solar voltage is outside this window the inverter might not operate or the output of the solar array might be greatly reduced.•In the case where a maximum input voltage is specified and the array voltage is above the maximum specified then the inverter could be damaged.VOLTAGE WINDOWS OFINVERTERSGRID-CONNECTED POWER SYSTEMSSYSTEM DESIGN GUIDELINES•When the temperature is at a maximum then theMaximum Power Point (MPP) voltage (V mp ) of thearray should never fall below the minimum operating voltage of the inverter.•It is recommended that maximum effectivecell temperature of 70°C is used.Minimum Voltage of InverterThe module selected has a rated MPP voltage of 35.4V and a voltage (V mp )co-efficient of-0.177V /°C.An effective cell temperature of 70°C is 45°above the STC temperature of 25°C.Therefore the V mp voltage would be reduced by 45 x 0.177= 7.97VThe V mp @ 70°C would be 35.4-7.97 = 27.4VExampleIf we assume a maximum voltage drop in the cables of 3% then the voltage at the inverter for each module would be0.97 x 27.4 = 26.6 VThis is the effective minimum MPP voltage input at the inverter for each module in the array.Example ContAssume that the minimum voltage window for an inverter is 140V.Recommended that a safety margin of 10% is used.Minimum inverter voltage of 1.1 x 140V = 154V should be used.The minimum number of modules in a string is = 154 / 26.6 = 5.79 rounded up to 6 modulesExample Cont 2GRID-CONNECTED POWER SYSTEMSSYSTEM DESIGN GUIDELINESAt the coldest daytime temperature the open circuit voltage of the array shall never be greater than the maximum allowed input voltage for the inverter. .Therefore the lowest daytime temperature for the area where the system is installed shall be used to determine the maximum V oc .Maximum Voltage of Inverterassume the minimum effective cell temperature is 15°C,with the open circuit voltage ( Voc ) of 43.2 V and avoltage (Voc)co-efficient of-0.14V /°C.An effective cell temperature of 15°C is 10°below the STC temperature of 25°C.Therefore the Voc voltage would be increased by 10 x0.14= 1.4VThe Voc @ 15°C would be 43.2+1.4 = 44.6V. ExampleAssume the maximum voltage allowed by the inverter is 400V.The maximum number of modules in the string, is = 400 / 44.6 = 8.96rounded down to 8 modules.Example Contwe required 16 modules. Therefore we could have two parallel strings of 8 modules.Array Solution for ExampleIn towns and cities where grid connect systems will be predominant the roof of the house orbuilding will not always be free of shadows during parts of the day.Care should therefore be taken when selecting the number of modules in a string because theshadow could result in the maximum power point voltage at high temperatures being below the minimum operating voltage of the inverter.Effect of Shadows。
基于PLC的太阳自动跟踪系统的设计与实现

第32卷第3期2010-3【127】基于PLC 的太阳自动跟踪系统的设计与实现Design of solar tracking system based on PLC张文涛ZHANG Wen-tao(北京电子科技职业学院 自动化工程学院,北京 100176)摘 要:太阳跟踪系统在光伏发电系统中应用广泛,本文作者通过设计基于PLC控制技术的驱动系统,自动跟踪太阳光直射方向,提高光伏电池的运行效率。
本设计以北京地区为例,充分利用地理和气象原理,通过自动控制技术设计太阳跟踪系统。
该系统以PLC为控制器为核心控制器,通过利用PLC技术、变频调速技术、人机界面、工业网络等高新技术实施太阳跟踪,并具体论述了太阳跟踪系统的组成、原理、数学模型、应用经验等。
关键词:太阳追踪系统;PLC;太阳能发电;数学模型;应用经验中图分类号:TP273.5 文献标识码:A 文章编号:1009-0134(2010)03-0127-03收稿日期:2009-12-03作者简介:张文涛(1976-),男,北京人,主任,硕士,研究方向为机电一体化。
0 引言太阳追踪系统的主要功能是实现最大限度地获得输出功率,通过跟踪太阳光直射方向来提高光伏电池的效率,并采用一定算法来寻找光伏电池的最大功率点。
系统在不同时间、地点能够自动控制光伏电池方向,获得最大输出功率。
实践证明,通过实施自动跟踪太阳,可以提高光伏电池的发电效率达30%以上。
1 系统概述1.1 太阳追踪系统现状太阳追踪系统通常分为单轴太阳能追踪系统和双轴太阳能追踪系统两种。
单轴太阳能自动跟踪系统通过自动控制系统自动跟踪太阳方位角,高度角可手动进行调整,使太阳能电池保持较大的发电功率。
双轴太阳能追踪系统通过自动控制系统自动跟踪太阳方位角和高度角,方位角和高度角均依靠不同原理自动实施调整。
目前太阳追踪系统依据控制原理划分,分为带传感器闭环控制系统和不带传感器开环控制系统。
两种系统各有优缺点,闭环系统理论上精度更高,获得效率最大,但受到天气、温度、环境因素影响大,特殊环境会导致系统运行不正常。
光伏的基本原理(英文-有原理图)

2
Marshall Islands March 31-April 11, 2008
e8 / PPA Solar PV Design Implementation O&M
1-1-1. Mechanism of generation
• Mechanism of generation
The solar cell is composed of a P-type semiconductor and an N-type semiconductor. Solar light hitting the cell produces two types of electrons, negatively and positively charged electrons in the semiconductors. Negatively charged (-) electrons gather around the N-type semiconductor while positively charged (+) electrons gather around the P-type semiconductor. When you connect loads such as a light bulb, electric current flows between the two electrodes.
1-1-2. Various type of PV cell
• Crystal cell (Single crystal and Poly crystalline Silicon) Single crystal Poly crystalline
e8 / PPA Solar PV Design Implementation O&M
太阳系介绍英语

太阳系介绍英语Title: The Solar SystemThe Solar System is a complex and fascinating celestial arrangement that comprises the Sun, eight planets, their moons, and various other objects such as dwarf planets, asteroids, and comets. This essay aims to provide an overview of the Solar System, discussing its main components, structure, and some key facts about each part.The Sun, the central and most important body in the Solar System, constitutes approximately 99.86% of its total mass. It is a nearly perfect sphere of hot plasma with an internal convective motion that generates a magnetic field responsible for solar activity, including sunspots, solar flares, and solar winds. The Sun provides the necessary heat and light for life on Earth through the process of nuclear fusion occurring in its core.Orbiting the Sun are eight major planets, divided into two categories: terrestrial planets and gas giants. The terrestrial planets—Mercury, Venus, Earth, and Mars—are composed primarily of rock and metal. They have solid surfaces and are relatively small in size. Mercury, the closest planet to the Sun, has a surface marked by craters resembling the Moon's. Venus,with its thick atmosphere rich in carbon dioxide, experiences runaway greenhouse effects, making it the hottest planet in the Solar System. Earth, our home, is unique in supporting diverse life forms. Mars, often called the Red Planet due to its iron oxide-rich soil, has been the subject of intense study regarding its potential to host life in the past.The gas giants—Jupiter, Saturn, Uranus, and Neptune—are much larger than the terrestrial planets and are primarily composed of hydrogen and helium. Jupiter, the largest planet, is known for its Great Red Spot, a massive storm persisting for centuries. Saturn is famous for its stunning ring system, composed of ice and rock particles. Uranus and Neptune, the ice giants, have striking blue hues due to methane in their atmospheres. Uranus rotates on its side, making its seasonal variations extreme. Neptune is noted for its strong winds, the fastest recorded in the Solar System.In addition to planets, the Solar System hosts numerous moons, with over 200 identified so far. These natural satellites vary widely in size and characteristics. For instance, Ganymede, a moon of Jupiter, is even larger than the planet Mercury. Titan, one of Saturn's moons, boasts a dense atmosphere and stable bodies of liquid on its surface, making it a focus of interest inthe search for extraterrestrial life.The asteroid belt, located between Mars and Jupiter, consists of rocky remnants from the early Solar System. It contains thousands of asteroids, varying in size from dust particles to objects hundreds of kilometers in diameter. Beyond Neptune lies the Kuiper Belt, a region filled with icy bodies and dwarf planets such as Pluto. Further still is the Oort Cloud, a hypothetical distant cloud of icy objects thought to be the source of long-period comets that occasionally venture into inner Solar System regions.Comets are intriguing objects composed mainly of ice and dust. They have elliptical orbits that take them close to the Sun and back into the distant reaches of the Solar System. As they approach the Sun, the heat causes their ice to vaporize, forming a glowing coma and sometimes a tail that always points away from the Sun.The Solar System also contains interplanetary dust and gas, which can affect the propagation of light and radio waves. Interstellar dust and gas between the stars play a crucial role in the formation and evolution of planetary systems.In conclusion, the Solar System is a dynamic and intricate collection of celestial bodies, each with unique characteristicsand contributing to the understanding of how such systems form and evolve. Ongoing exploration and research continue to unveil new information about these cosmic neighbors, enriching our knowledge of the universe we inhabit.。
太阳能专业英语

1.A review on the closed brayton cycle solar dynamic space power system闭式Brayton循环的太阳能热动力空间发电技术收藏指正2.The Comparison and Analysis of Solar Dynamic Power Module with Brayton Cycle and Stirling Cycle太阳能热动力系统Brayton装置与Stirling装置分析与比较收藏指正3.Field Layout and CPC Researches in Tower Solar Power Plants and Roof CPV Design 塔式太阳能热发电站镜场和CPC及屋顶CPV设计研究收藏指正4.It can be seen that solar dynamic power system is an advanced project of power supply in space station, among which closed Brayton cycle is likely to be technically realized in the near future.太阳能热动力系统具有高效率 ,紧凑和可靠性好等优点 ,长期运行的费用低 ,是一种先进的太阳能电源方案 ,其中闭式Brayton循环是技术上最有可能近期实现的电源收藏指正5.solar energy太阳能收藏指正6.STUDY OF ICC SOLAR COLLECTORICC太阳能集热器的研究收藏指正7.ANALYSIS OF ENERGY PERFORMANCE ON HEAT TRANSFER UNIT INSIDE SOLAR COLLECTOR太阳能集热器内侧换热系统的能量特性分析收藏指正8.EMULATION RESEARCH IN DIVIDED SEASONS WITH EMULATION MOLD OF SOLAR ENERGY COLLECTOR SYSTEM FOR DARWIN DISTRICT利用太阳能集热器系统仿真模型进行季节划分研究收藏指正9.we will actively introduce, develop and promote the application of such technologies as pollution-free burning, geothermal-operated pumps, solar energy power generating, solar energy heating, fuel cells, and nanometer materials, etc. 积极引进、开发和推广清洁燃烧、热泵、太阳能光伏发电、太阳能集热、燃料电池、纳米材料等技术;收藏指正10.The practicability of selective black Ni-Sn alloy surface by means of electrop- lating is investigated according to the requirements that solar collector surface sho- uld have high absorptance(α_)in visible spectrum and low emittance(ε).按照太阳能集热器的吸收面应具有高的太阳光谱吸收率α_(?) 和低的热发射率ε的要求,研究了用电镀的方法制备太阳能选择性吸收层的实用性。
太阳能光伏发电系统(PVsyst运用)

扬州大学能源与动力工程学院本科生课程设计题目:北京市发电系统设计课程:太阳能光伏发电系统设计专业:电气工程及其自动化班级:电气0703姓名:严小波指导教师:夏扬完成日期:2011年3月11日目录1光伏软件Meteonorm和PVsyst的介绍---------------------------------------------3 1.1 Meteonorm--------------------------------------------------------------------------3 1.2 PVsyst-------------------------------------------------------------------------------42中国北京市光照辐射气象资料-------------------------------------------------------11 3独立光伏系统设计----------------------------------------------------------------------13 3.1负载计算(功率1kw,2kw,3kw,4kw,5kw)-----------------------------13 3.2蓄电池容量设计(电压:24V,48V)----------------------------------------13 3.3太阳能电池板容量设计,倾角设计--------------------------------------------13 3.4太阳能电池板安装间隔计算及作图。
-----------------------------------------16 3.5逆变器选型--------------------------------------------------------------------------17 3.6控制器选型--------------------------------------------------------------------------17 3.7系统发电量预估--------------------------------------------------------------------18第一章光伏软件介绍一、MeteonormMeteonorm软件是一款分析各地的气象资料软件,包括当地的经度,维度,海拔高度,以及太阳辐射度等重要资料,要想设计当地的光伏发电系统,当地的气象资料必须准确,且完整,Meteonorm软件比较好的提供了各地的气象资料。
关于建筑术语翻译英文1

常见的建筑术语的英文翻译集之一以下是一些常见的建筑术语的英文翻译集合之一:1. 建筑设计- Architectural Design2. 建筑结构- Building Structure3. 建筑材料- Building Materials4. 建筑施工- Building Construction5. 建筑成本- Construction Cost6. 建筑风格- Architectural Style7. 建筑师- Architect8. 建筑规划- Building Planning9. 建筑模型- Architectural Model10. 建筑面积- Building Area11. 建筑高度- Building Height12. 建筑容积率- Plot Ratio13. 建筑法规- Building Codes and Regulations14. 建筑节能- Energy Efficiency in Buildings15. 建筑智能化- Intelligent Buildings16. 绿色建筑- Green Buildings17. 可持续建筑- Sustainable Buildings18. 建筑声学- Architectural Acoustics19. 建筑光学- Architectural Optics20. 室内设计- Interior Design21. 景观设计- Landscape Design22. 结构设计- Structural Design23. 给排水设计- Water Supply and Drainage Design24. 暖通空调设计- HVAC Design25. 电气设计- Electrical Design26. 消防设计- Fire Protection Design27. 智能化系统设计- Intelligent System Design28. 施工组织设计- Construction Organization Design29. 施工图设计- Construction Drawing Design30. 装饰装修设计- Decoration and Finishing Design31. 建筑声学设计- Architectural Acoustics Design32. 建筑光学设计- Architectural Optics Design33. 建筑热工设计- Architectural Thermal Design34. 建筑美学设计- Architectural Aesthetic Design35. 建筑环境设计- Architectural Environment Design36. 建筑风水学- Feng Shui37. 建筑日照分析- Solar Analysis for Buildings38. 建筑通风分析- Ventilation Analysis for Buildings39. 建筑声环境分析- Acoustic Environment Analysis for Buildings40. 建筑光环境分析- Daylighting Environment Analysis for Buildings41. 建筑热环境分析- Thermal Environment Analysis for Buildings42. 建筑面积计算- Building Area Calculation43. 建筑楼层高度- Storey Height44. 建筑消防设计- Fire Protection Design for Buildings45. 建筑结构安全评估- Structural Safety Evaluation for Buildings46. 建筑抗震设计- Seismic Design for Buildings47. 建筑防洪设计- Flood-resistant Design for Buildings48. 建筑工程招标- Building Engineering Tendering49. 建筑工程施工许可- Construction Permission for Building Projects50. 建筑工程造价咨询- Engineering Cost Consulting for Building Projects51. 建筑工程监理- Project Supervision for Building Projects52. 建筑工程验收- Acceptance of Building Projects53. 建筑工程质量检测- Quality Detection of Building Projects54. 建筑工程质量评估- Quality Evaluation of Building Projects55. 建筑工程质量保修- Quality Guarantee of Building Projects56. 建筑工程档案- Construction Project Archives57. 建筑工程安全- Construction Safety58. 建筑工程管理- Construction Project Management59. 建筑工程合同- Construction Contract60. 建筑工程保险- Construction Insurance61. 建筑工程材料- Construction Materials62. 建筑工程机械- Construction Machinery63. 建筑工程劳务- Construction Labor64. 建筑工程施工组织设计- Construction Organization Design for Building Projects65. 建筑工程施工图设计- Construction Drawing Design for Building Projects66. 建筑工程施工进度计划- Construction Progress Plan for Building Projects67. 建筑工程施工质量控制- Construction Quality Control for Building Projects68. 建筑工程施工安全管理- Construction Safety Management for Building Projects69. 建筑工程施工现场管理- Construction Site Management for Building Projects70. 建筑工程施工成本管理- Construction Cost Management for Building Projects71. 建筑工程施工环境保护- Environmental Protection in Building Construction72. 建筑工程施工节能管理- Energy-saving Management in Building Construction73. 建筑工程施工水土保持- Soil and Water Conservation in Building Construction74. 建筑工程施工质量控制要点- Key Points of Construction Quality Control for Building Projects75. 建筑工程施工安全控制要点- Key Points of Construction Safety Control for Building Projects76. 建筑工程施工质量验收规范- Acceptance Specification for Construction Quality ofBuilding Projects77. 建筑立面设计- Façade Design78. 建筑剖面设计- Section Design79. 建筑立面分析图- Façade Analysis Diagram80. 建筑剖面分析图- Section Analysis Diagram81. 建筑结构分析图- Structural Analysis Diagram82. 建筑平面图- Floor Plan83. 建筑立面图- Façade Drawing84. 建筑剖面图- Section Drawing85. 建筑轴测图- Axonometric Drawing86. 建筑渲染图- Architectural Rendering87. 建筑模型制作- Model Making88. 建筑绘画- Architectural Drawing89. 建筑表现图- Architectural Representation90. 建筑动画- Architectural Animation91. 建筑摄影- Architectural Photography92. 建筑信息模型- Building Information Modeling (BIM)93. 建筑环境评估- Building Environmental Assessment94. 建筑节能评估- Building Energy Efficiency Assessment95. 建筑可持续性评估- Building Sustainability Assessment96. 建筑健康评估- Building Health Assessment97. 建筑设备系统设计- Building Equipment System Design98. 建筑电气系统设计- Electrical System Design for Buildings99. 建筑给排水系统设计- Water Supply and Drainage System Design for Buildings 100. 建筑暖通空调系统设计- HVAC System Design for Buildings一般建筑术语英文翻译之二101. 建筑燃气系统设计- Gas System Design for Buildings102. 建筑消防报警系统设计- Fire Alarm System Design for Buildings103. 建筑智能化系统集成设计- Intelligent System Integration Design for Buildings 104. 建筑幕墙设计- Curtain Wall Design105. 建筑石材幕墙设计- Stone Curtain Wall Design106. 建筑玻璃幕墙设计- Glass Curtain Wall Design107. 建筑绿化设计- Greening Design for Buildings108. 建筑景观设计- Landscape Design for Buildings109. 建筑室内环境设计- Indoor Environmental Design for Buildings110. 建筑声学装修设计- Acoustic Decoration Design for Buildings111. 建筑光学装修设计- Optical Decoration Design for Buildings112. 建筑材料装修设计- Decorative Materials Design for Buildings113. 建筑历史与理论- Architectural History and Theory114. 建筑美学史- History of Architectural Aesthetics115. 现代建筑设计- Modern Architectural Design116. 后现代建筑设计- Postmodern Architectural Design117. 当代建筑设计- Contemporary Architectural Design118. 解构主义建筑设计- Deconstructivist Architectural Design119. 装饰艺术建筑设计- Art Deco Architectural Design120. 功能主义建筑设计- Functionalist Architectural Design121. 结构主义建筑设计- Structuralist Architectural Design122. 新古典主义建筑设计- Neoclassical Architectural Design123. 折衷主义建筑设计- Eclectic Architectural Design124. 绿色建筑设计- Green Architectural Design125. 人文主义建筑设计- Humanist Architectural Design126. 新地域主义建筑设计- New Regionalist Architectural Design127. 参数化建筑设计- Parametric Architectural Design128. 数字建筑设计- Digital Architectural Design129. 未来主义建筑设计- Futurist Architectural Design130. 智能化建筑设计- Intelligent Building Design131. 生态建筑设计- Ecological Architectural Design132. 城市设计- Urban Design133. 景观设计- Landscape Design134. 城市规划- Urban Planning135. 城市更新- Urban Renewal136. 城市改造- Urban Transformation137. 城市意象- Urban Image138. 城市设计理论- Urban Design Theory139. 城市生态设计- Urban Ecological Design140. 城市交通设计- Urban Transportation Design141. 城市基础设施设计- Urban Infrastructure Design142. 城市天际线设计- Urban Skyline Design143. 城市夜景设计- Urban Nightscape Design144. 城市滨水区设计- Urban Waterfront Design145. 城市开放空间设计- Urban Open Space Design146. 城市街道景观设计- Urban Streetscape Design147. 城市公园设计- Urban Park Design148. 城市居住区设计- Urban Residential District Design149. 城市商业区设计- Urban Commercial District Design150. 城市文化区设计- Urban Cultural District Design151. 城市行政中心设计- Urban Governmental District Design152. 城市会展中心设计- Urban Exhibition and Convention Center Design 153. 城市体育馆设计- Urban Stadium Design154. 城市图书馆设计- Urban Library Design155. 城市博物馆设计- Urban Museum Design156. 城市大剧院设计- Urban Theater Design157. 城市机场设计- Urban Airport Design158. 城市火车站设计- Urban Train Station Design159. 城市地铁站设计- Urban Subway Station Design160. 城市公交车站设计- Urban Bus Stop Design161. 城市景观照明设计- Urban Landscape Lighting Design162. 城市标识系统设计- Urban Signage System Design163. 城市公共艺术装置设计- Public Art Installation Design164. 城市家具设计- Urban Furniture Design165. 城市花坛设计- Urban Flower Bed Design166. 城市儿童游乐设施设计- Urban Playground Design167. 城市植栽设计- Urban Planting Design168. 城市排水系统设计- Urban Drainage System Design169. 城市防洪系统设计- Urban Flood Control System Design170. 城市消防系统设计- Urban Fire Protection System Design171. 城市应急救援系统设计- Urban Emergency Rescue System Design172. 城市废弃物处理系统设计- Urban Waste Management System Design 173. 城市给水系统设计- Urban Water Supply System Design174. 城市污水处理系统设计- Urban Wastewater Treatment System Design 175. 城市雨水排放系统设计- Urban Stormwater Management System Design 176. 城市空调系统设计- Urban Air Conditioning System Design177. 城市供暖系统设计- Urban Heating System Design178. 城市燃气供应系统设计- Urban Gas Supply System Design179. 城市电力供应系统设计- Urban Electrical Power Supply System Design180. 城市智能化管理系统设计- Urban Intelligent Management System Design 181. 城市绿色建筑认证体系- Green Building Certification Systems182. 城市绿色建筑评价体系- Green Building Evaluation Systems183. 可持续城市发展理论- Sustainable Urban Development Theory 184. 生态城市理论- Eco-city Theory185. 低碳城市理论- Low-carbon City Theory186. 紧凑城市理论- Compact City Theory187. 智慧城市理论- Smart City Theory188. 韧性城市理论- Resilient City Theory189. 多规合一城市规划体系- Integrated Urban Planning System 190. 城市设计哲学- Urban Design Philosophy191. 城市设计心理学- Urban Design Psychology192. 城市设计社会学- Urban Design Sociology193. 城市设计地理学- Urban Design Geography194. 城市设计经济学- Urban Design Economics195. 城市设计生态学- Urban Design Ecology196. 城市设计符号学- Urban Design Semiotics197. 城市设计现象学- Urban Design Phenomenology198. 城市设计未来学- Urban Design Futures Studies199. 城市设计艺术史- Urban Design Art History200. 城市设计与公共政策- Urban Design and Public Policy。
透射式太阳能斯特林发电机测试系统的设计

2021.12科学技术创新透射式太阳能斯特林发电机测试系统的设计翁奕涛梁振康于洋吴肖邦黎芷均(肇庆学院,广东肇庆526061)能源危机已成为当前人们日益关注的话题,促进清洁能源利用,大力发展综合能源服务将是推进中国能源低碳发展、实现2030年前碳达峰目标和2060年前碳中和愿景的关键着力点[1]。
调整能源结构,开发新能源技术,如太阳能、风能、水能等可再生能源,是能源发展的新趋势。
太阳能热发电技术是当今世界太阳能热利用研究领域的前沿课题。
太阳能热发电系统可分为槽式、塔式和碟式等三种类别。
其中,采用斯特林发动机的碟式太阳能热发电系统因其惊人的发展速度令世界瞩目[2]。
然而,在大学车辆工程等相关专业的本科教学中,因教学要求和教学资源的差异,导致学生对内燃机的工作原理、构造等比较熟悉,而对外燃式发动机代表———斯特林发动机却了解甚少,甚至常常被忽视。
这种现象引起我们的思考和重视,这种基础自然学科的应用创新应该不断探讨。
虽然传统碟式太阳能斯特林热发电系统相对成熟,但却存在着结构复杂、体积大、建造费用昂贵等缺点,并且测试尤为不便,难以适应本科教学中的实验设计要求。
目前已知的斯特林发动机实验教学平台是单纯的斯特林模型机,且没有性能数据测试系统。
鉴于此,为填补动力机械本科实验教学的不足,完善发动机实验体系,本文提出了一种低成本、小型化、易操作的斯特林发动机实验教学平台,直观了解菲涅尔透镜聚光下的斯特林发动机运行原理及特性,培养学生动手能力和创新能力。
1测试平台的原理及设计1.1测试平台工作原理系统采用的斯特林发动机是一种由外部供热使气体按闭式回热循环方式压缩膨胀的活塞式发动机,由英国牧师罗伯特·斯特林于1816年发明[3]。
其效率理论上等于卡诺循环效率,工质受热膨胀、遇冷压缩产生动力推动活塞做功,带动飞轮使得发电机对外输出功率。
采用双轴式云台和太阳位置跟踪器可以精确地对太阳的方位角和高度角进行实时跟踪,具有较高的稳定性[4,5]。
英语写作必背英文词汇:对抗雾霾

英语写作必背英文词汇:对抗雾霾英语写作必背英文词汇:对抗雾霾自产绿色食品 100-foot diet自产绿色食品(100-foot diet),指餐桌上的食物大部分或者全部来自于自家花园产出的作物。
它强调通过在家门口种植食材来减少碳足迹(reduce one's carbon footprint),从种植食材的花园(garden)到餐桌(dinner table)的距离(distance)一般不超过100英尺(within 100 feet)。
垃圾按量收费 pay as you throwPay as you throw(垃圾按量收费,缩写为PAYT)制度指每个家庭(household)都要为不可回收垃圾(non-recyclable rubbish)的处理支付费用,而费用的多少则根据垃圾的数量(quantity)和重量(weight)来计算。
在该制度内,可回收垃圾(recycled waste)的处理是免费的,也就是说该制度遵循的是“多循环,少交费(the more you recycle, the less you pay)”原则。
生态补偿机制 ecological compensation mechanisms生态补偿机制(ecological compensation mechanisms),是以保护生态环境(ecology environment)、促进人与自然和谐为目的,根据生态系统服务价值(values of ecological system service)、生态保护成本(the cost of ecology protection)、发展机会成本(the cost of development chance),综合运用行政和市场手段(administrative means and marketing means),调整生态环境保护(ecology environment protection)和建设(construction)相关各方之间利益关系的环境经济政策(environmental economy policy)。
基于PVsyst的山地光伏系统设计与优化

2021年第4期2021年4月光伏产业是一个潜力无限的新兴产业,在追求低碳社会的今天,社会越来越重视清洁的可再生能源———太阳能的开发和利用。
光伏发电是太阳能最重要的利用方式[1-2]。
山地光伏电站是建造在表面不整齐的山地地区等复杂地形条件下的,具有地面不平整、坡度朝向不同、局部地区有构陷、地形设计难度大、可使用的地表面积不平整、建造成本较高、发电效率比平原电站小等一系列缺点[3-4],但也有相对优势,比如后期管理方便、建造土地成本较低、土地利用率高等。
本文借助PV syst 软件对山地光伏发电系统进行仿真分析,利用软件对系统的设备选型进行分析和模拟。
PV syst 软件中的项目地理位置、太阳辐射照度、温度、建筑物环境等系统参数是根据项目预设地点的真实数据设置[5],可以模拟光伏系统发电的最终结果以及光伏系统的可靠性,同时降低了设计成本,加快了设计进程。
1项目系统概况及整体设计本文选择设计电站拟建址在江苏省徐州市鼓楼区九里山南山坡、荆马路沿线部分。
该系统位于九里山山坡以南,整体阵列面向正南放置。
电站布局在山脚坡度较平缓处,预计占地面积约24000m 2。
此次电站设计为并网光伏电站,整个并网系统主要包括光伏阵列、一级防雷汇流箱、二级防雷汇流箱、逆变器和交流配电柜等。
电站沿山脚布置,建设完成后,一方面可以缓解北区用电紧张的情况,另一方面可以结合山脚绿化带等设施,作为城市一道靓丽的风景线。
江苏省徐州市位于华北平原东南部,东经117.18°,北纬34.27°,日平均峰值日照时数为4.14h ,属于太阳能资源分布的三类地区[1]。
借助M et eonor m 气象信息软件,可得徐州市的年太阳能辐射总量达到1338.5kW ·h/m 2,全年每月的太阳辐射量均在63kW ·h/m 2以上,3—10月的月平均太阳能辐射量可达137.3kW ·h/m 2,适合建设光伏电站。
太阳能光伏发电系统设计[1]概要
![太阳能光伏发电系统设计[1]概要](https://img.taocdn.com/s3/m/fcb701c0524de518964b7d8a.png)
pecial Features论文荟萃April 2011 Vol.5 No.2太阳能光伏发电系统设计陈刚/ 姬鸿/ 王勇(中国航天建筑设计研究院(集团),北京 100071)Design of Solar Photovoltaic Power SystemChen Gang / Ji Hong / Wang Yong摘要针对光伏发电系统设计中,太阳能电池的测试条件及实际环境条件差异,作者提出了设计光伏发电系统的要点及注意事项。
并通过调研及对相关规范的学习,对太阳能电池板的选用、系统保护设置、并网要求等问题,提出一些看法供参考。
关键词太阳能电池逆变器光伏系统并网发电孤岛效应光斑效应并网发电光伏电站初期投入较大,尤其是电站的硬件设备投资最大,需专业人员维护管理,因此必须依据正确的设计要求选择合适的硬件设备,加强整个电站及人员的安全保护。
Abstract For the differences between the testing conditionsand actual environmental conditions of the solar cell, the authors propose the main points and precautions for the design of solar photovoltaic power system. And they present some recommendations for the choice of solar cell, the installation of the system protection and the requirement for the grid connecting through the investigation and the study of relative norms.Keywords solar cell, inverter, the grid-connected PV system,islanding effect, spot size effect2 太阳能光伏发电技术应用的要点2.1 太阳能光伏发电的转换条件根据GB/T 6495.3-1996《光伏器件第3部分:地面用光伏器件的测量原理及标准光谱辐照度数据》规定:太阳能电池板输出功率Wp值,是相应于AM1.5光谱分布、在与水平面成37°的倾斜面上太阳辐照度地面反射率0.2、环境温度25℃标准测试条件1kW/m2、下测得的最大功率。
(完整word版)Pvsyst参数中文翻译

Pvsyst后台参数的翻译Grid-connected systempre-sizing 并网系统初步设置Monocrystalline module efficiency单晶组件效率Polycrystalline efficiency多晶组件效率Thin film efficiency 薄膜组件效率Free standing temperature correction自由安装温度纠正系数Roof ventilated temperature correction屋顶通风温度纠正系数No ventilation temperature correction无通风温度纠正系数Ohmic wiring loss mismatch loss correction线缆欧姆损失,失配损失纠正系数IAM incidene angle modifier correction入射角改变纠正系数Inverter average efficiency逆变器平均效率Stand-alone systempre-sizing 独立系统初步设计Stand-alone:pv-array=>battery globa efficiency 阵列到电池整体效率Batterycharge/discharge energy efficiency 电池充放电能量效率Soc minimum threshold 荷电率最小阈值Battery capacity:C100/C10 ratio100 小时率比10小时率系数Generatorefficiency(15%=1.5kwh/liter)发电机效率Pumping:pv-array daily effic(optical,thermal ,etc) 光伏水泵方阵综合效率(光,热等) Matching effic (thresh.andmppt loss)direct coupling直接耦合匹配效率(阈值及最大跟踪损失)Matching effic(thresh.andmppt loss)with booster升压耦合匹配效率(阈值及最大跟踪损失)Matching effic(thresh.andmppt loss)cascading级联匹配效率(阈值及最大跟踪损失)Global effic.with fixed V DC converter 固定电压直流变换器耦合的综合效率Global effic.withmppt converter mppt 逆变器耦合综合效率DC-positive displacement pump efficiency 直流容积泵效率AC-positive displacement pump efficiency 交流容积泵效率Centrifugal pump efficiency 离心泵效率Oversizing{(pv field stc-losses)/pump power} 裕度(光伏阵列/泵功率)Specific pre-sizing costs(all systems) 所有系统初步设计价格Loan duration(=sexpected system lifetime) 系统寿命25 yearScale exponential factor(mouning and maintenance)规模指数因子0.6Systemdesign parameters 系统设计参数Minimum temperature for inverter Vmax design(需相应改动)逆变器最大电压设计使用的最低温度Winter operating temp.for inverter VmppMax design(需相应改动)逆变器跟踪最大电压值设计冬季运行温度Usual operating temperature at r1000W/m(需相应改动)平常运行温度Summer operating temp.for inverter VmppMin design(需相应改动)逆变器跟踪最小电压值设计夏季运行温度Voltage initial degradation amorphous 非晶硅初期压降Voltage initial degradation,microcrystalline 微晶硅初期压降Voltage initial degradation.CdTe 碲化镉太阳能组件初期压降Heat loss factor free mounting 自由安装式热损失因子Heat loss factor semi integrated 半集成式热损失因子Heat loss factor fully integrated 集成式热损失因子Heat loss factor according to wind velocity 根据风速定义的热损失因子Heat loss factor max./min. value 热损失最大/最小值Incidence angle modifier bo parameter 入射角改变纠正系数Copper Resistivity(at T=50 度)铜电阻率Aluminium Resistivity(at T=50 度)铝电阻率Max. wire section for specific admissible current对特定电流最大可接受线缆截面积Max. admissible current derating factor最大可允许电流衰减Default wiring resistance loss ratio at STC标况下默认线阻损失率Array resitance voltage drop at STC标况下阵列阻耗压降Irrad.absorption coefficient for tarray calculation阵列计算用辐射吸收系数Module dfficiency for temp.array calculation阵列计算用组件效率Series diode voltage drop二极管压降External transfo:iron losses外置变压器铁损External transfo:resist losses at STC外置变压器铜损Light soaking gain factor光辐照增益系数Default module quality factor默认组件质量因数Module quality loss:tolerance fraction组件质量因数公差LIDloss factorLID损失因子Default array mismatch power loss,crystalline默认阵列功率失配损失,晶硅组件Default array mismatch power loss, amorphous默认阵列功率失配损失,非晶硅Default array mismatch voltage loss ,crystalline默认阵列电压失配损失,晶硅组件Default array mismatch voltage loss , amorphous默认阵列电压失配损失,非晶硅Default soiling loss,yearly average默认年平均脏污损失Default unavailability loss默认无效损失Module strings shading ratio组串阴影率Module strings thin film shading ratio组串薄膜阴影率Grid inverter oversizing array/inverter nominal power并网阵列功率/逆变器裕度值SolaredgePnom ratio sizing,0=STC,1=real conditionsSolaredge功率比定型0=标况,1=真实条件Nominal medium voltage grid默认中压网络DC grid:arrayVnom/system Vnom ratio直流网:组件电压/系统电压Average pumping hours during a clear day晴空下平均抽水时间Pumps lifetime(economical evaluation)水泵寿命Fuel price (economical evaluation)燃油价格Flowrate oversizing accounting for average days平均流量裕度值Array current /pumps nominal current阵列电流/泵额定电流Detailed simulation verification conditions详细模拟检定条件Measured meteo in coll.plane:max.orientation difference吸收平面测量数据最大方位差Shading:max.orientation difference shaded #1-pv array遮光:遮光#1 阵列最大方位差Shading:max.orientation difference between shading planes遮光:遮光平面允许最大方位差Shadings with heterogeneous field:max.angle difference异形区域遮光最大角度差Helios3D:max.angle between palnes Helios3D:平面间最大角度差Shading:absolutemin.shading/field area ratio遮光:3D区域/系统定义区域绝对极小值Shading:warningmin. shading/field area ratio遮光:3D区域/系统定义区域禁告极小值Shading:warningmax.shading/field area ratio遮光:3D区域/系统定义区域禁告极大值Shading:absolutemax.shading/field area ratio遮光:3D区域/系统定义区域绝对极大值the inverter power is strongly oversized逆变器功率值严重过大the inverter power is slightly oversized逆变器功率值轻微过大acceptable overload loss for design可接受设计过载损失limit overload loss for design设计过载损失限值pv array/battery pack voltage:光伏阵列/蓄电池电压strongly undersized/oversized光伏阵列/蓄电池电压严重过小/过大slightly undersized/oversized光伏阵列/蓄电池电压轻微过小/过大pv array/regulator voltage:光伏阵列/控制器电压pv array/ regulator power:光伏阵列/控制器功率the battery pack capacity is perhaps:电池组容量the pv array power is slightly undersized/oversized阵列容量轻微过小/过大the pv array power is strongly undersized/oversized阵列容量严重过小/过大the pumping flowrate is strongly undersized/oversized水泵流量严重过小/过大the pumping flowrate is slightly undersized/oversized 水泵流量轻微过小/过大pumping: the array voltage is strongly undersized/oversized阵列电压严重过小/过大pumping: the array voltage is slightly undersized/oversized阵列电压轻微过小/过大pumping: the array current is strongly undersized/oversized阵列电流严重过小/过大pumping: the array current is slightly undersized/oversized阵列电流轻微过小/过大光伏组件:EGap-Si-Mono单晶硅禁带宽度EGap -Si-poly多晶硅禁带宽度EGapa-Si:H tandem双结氢化非晶硅禁带宽度EGapa-si:H triple三结氢化非晶硅禁带宽度EGapucSia-Si:H微晶硅氢化非晶硅双结电池禁带宽度EGapCdTe碲化镉薄膜电池禁带宽度EGap CIS铜铟硒(CIS)薄膜电池禁带宽度EGap CSG:CSG (CrystaIIineSiIiconONGIass)电池禁带宽度EGap HIT异质结太阳能电池禁带宽度EGapAsGa砷化钾太阳能电池禁带宽度EGap Galnp2/GaAs/GeGalnp2/GaAs/Ge 三结太阳能电池禁带宽度EGap Not Registered未定义电池禁带宽度Built-in voltage for amorphous tripple,add to Vmp非晶硅三结太阳能电池峰值电压Built-in voltage for amorphous single非晶硅单结太阳能电池峰值电压Built-in voltage for amorphous tandem非晶硅双结太阳能电池峰值电压Crystalline:Rsho/Rsh default multiplier value晶硅:Rsho/Rsh默认乘数值Amorphous:Rsho/Rsh default multiplier value非晶硅:Rsho/Rsh默认乘数值RShexp exponential parameterRShexp 指数Thin films:Pmpp Temperature coefficient薄膜:峰值功率温度系数Gamma defult for Rserie optimization Si-poly多晶硅串联电阻最优化默认Gamma 值Gamma defult for RSerie optimization Si-mono单晶硅串联电阻最优化默认Gamma 值Gamma defult for RSerie optimization a-Si:H tandem氢化非晶硅双结电池串联电阻最优化默认Gamma 值Gamma defult for RSerie optimization a-Si:H triple氢化非晶硅三结电池串联电阻最优化默认Gamma 值defult for RSerie optimization ucSia-Si:H多晶硅串联电阻最优化默认Gamma 值Gamma defult for RSerie optimization CdTe碲化镉薄膜电池串联电阻最优化默认Gamma 值Gamma defult for RSerie optimization CIS铜铟硒(CIS)薄膜电池串联电阻最优化默认Gamma 值Gamma defult for RSerie optimization CSGCSG (CrystaIIineSiIiconONGIass)电池串联电阻最优化默认Gamma 值Gamma defult for RSerie optimization HIT异质结太阳能电池串联电阻最优化默认Gamma 值Gamma defult for RSerie optimization AsGa砷化钾串联电阻最优化默认Gamma 值Gamma defult for RSerie optimization Galnp2/GaAs/GeGalnp2/GaAs/Ge 串联电阻最优化默认Gamma 值Gamma defult for RSerieoptimization,unregistered未定义太阳能电池串联电阻最优化默认Gamma 值Min lo value for Galnp2/GaAs/Ge:Galnp2/GaAs/Ge 最小lo 值Min lo value for all others:其他电池的最小lo 值Min./Max.VmppCell,Si- Crystalline:晶硅最小/最大峰值电压Min./Max.VmppCell,a-Si:Htandem:双结氢化非晶硅最小/最大峰值电压Min./Max.VmppCell,a-Si:Htriple junction:三结氢化非晶硅最小/最大峰值电压Min./Max.VmppCell,ucSia-Si:H:微晶硅氢化非晶硅双结电池最小/最大峰值电压Vmpp Cell,ucSia-Si:H:微晶硅氢化非晶硅双结电池最大峰值电压Min./Max.Vmpp Cell, CdTe:碲化镉薄膜电池最小/最大峰值电压Min./Max.Vmpp Cell, CIS:铜铟硒(CIS)薄膜电池最小/最大峰值电压Min./Max.VmppCell,CSG:CSG(CrystaIIineSiIiconONGIass)最小/最大峰值电压Min./Max.Vmpp Cell, HIT:异质结太阳能电池最小/最大峰值电压Min./Max.Vmpp Cell, AsGa:砷化钾太阳能电池最小/最大峰值电压Min./Max.Vmpp Cell,Galnp2/GaAs/Ge:Galnp2/GaAs/Ge三结太阳能电池最小/最大峰值电压Min./Max.Vmpp Cell, unregistered:未定义电池最小峰值电压Max. Imp/Isc ratio:Imp/Isc 最大比值Max.Vmp/Isc ratio:Vmp/Isc 最大比值Max.mulsc/Isc ratio:mulsc/Isc 最大比值Max.Pmpp deviation{at STC}by respect to Pnom:标况与实际情况下功率误差Rshun min calculation:securitycoeff.vs MPP:并联电阻电小值计算:mpp 安全系数Rserie default calculation:Min./Max.RSerie/RSmax ratio串联电阻默认计算:最大/最小RSerie/RSmax 比值D2/MuTaucalculation:Max. RSerie/RSmax ratioD2/MuTau 计算:Max. RSerie/RSmax 比值Amorphous Recombin.loss factor: 非晶硅复合损失因子:D2/MuTau default valueD2/MuTau 默认值By-pass diode resistance{10mv/A}:旁路二极管电阻efaultBRev parameter ratio:默认BRev 参数率Regulators and convertersVoltage drop for C10 current:10 小时率下压降Charging triggering OFF:充电截止电压阈值,关闭阈值open batteries:开口式蓄电池sealed batteries:密封式蓄电池AGM batteries:蓄电池Ni-Cd batteries:蓄电池Charging triggering ON again:充电开启电压阀值Discharging triggering OFF:放电截止电压阈值Discharging triggering ON again:放电截止电压阈值Back-up generator triggering ON again:备用发电机开启阈值Back-up generator triggering OFF:备用发电机关闭阈值Temper. Coefficient (per element)温度系数(单格)Reference temperature for these thresholds对这些阈值的参考温度Minimum hysteresis for swiching(per element)切换时最小磁滞(单格)Initial SOC for simulation仿真初始荷电状态MPPT converters:power thresh./pnom lower limit:MPPT 逆变器:功率阈值/正常功率下限值MPPT converters:defaultmax.efficiency:MPPT 逆变器:默认最大效率MPPT converters:defaultEURO.efficiency:MPPT 逆变器:默认最大欧洲效率Normalized resistance factor:标准化电阻因数Max./Minimum value of the max.effciency:最大效率的最大/最小值Minimum efficiency difference max –EURO:最小欧洲效率的偏差值Max. efficiency difference max –EURO:最大欧洲效率的偏差值Minimum difference between legal and solar time:法定时间和太阳时间的最小差值Max. difference between legal and solar time:法定时间和太阳时间的最大差值Minimum monthly ambient temperature:最小月环境温度Lower/Upper limit for monthly clearness index kt:月晴空指数下限/上限Best Ktcc days have slightly high/low values:最佳Ktcc日微高值/低值Best Ktcc days have strongly high/low values:最佳Ktcc日极高值/低值Best Ktcc :number of exception days:最佳Ktcc 日微高值Limit for kbeam in transposition:转置时kbeam 的限制Limit for global horiz.in retro-transposition:反转录时全景的限制Lower limit for monthly diffuse/Global:月漫反射/全局辐射下限值Default wind velocity:默认风速Horizon:characteristic height for albedo factor extinction:地平线:反色率因子无效特征高度Horizon:max.mumber of points in printed table:地平线:在打印的表格中点的最大数量Site altitude limit:地理海拔限制Project site-meteomax. distance:工程气象地点最大距离Economic evaluation:loan duration(=expected lifetime):经济评估:系统寿命Minimum piece kwh for enabling tariff:每度电最小税收Max. price kwh for enabling tariff:每度电最大税收Shadings:sun contrast for real objects:真实物体的太阳对照Shading animation:delay between steps:阴影动画,延迟间隔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、负载估算计算值
修正值
负载功率KW 5日工作时间h 10日用电量KWh
50
二、蓄电池设计直流母线电压V
48
负载工作,直流放电电流I
104.1666667
*
连续阴雨天数(蓄电池自治天数)
3对于负载对光伏要求不是很严两组最长连续阴雨天之间最短间隔天数Nw 10这个要在网上找到气象资料,
蓄电池最大允许放电深度0.7蓄电池充放电效率0.85
温度修正因子1一般在0℃以上取1,-10℃以上控制器效率
0.94*
所需的蓄电池容量Ah 5587.34132蓄电池型号选择
选用蓄电池单个容量Ah 1500
选用蓄电池电压2蓄电池串联数24
蓄电池并联数 3.7248942133尽量减少并联的数目,不要超
蓄电池总数
89.39746111
所选蓄电池单体价格1599
蓄电池总价
142946.5403
三、组件容量所选组件型号STP280
所选组件单体容量
280所选组件单体最佳电压Ump 36所选组件最佳工作电流Imp 8.1当地峰值日照时数T 3.6这个值可以通过PVsystem测算斜面修正系数Kop 1结合当地实际情况选择,一般库伦效率90%将太阳电池组件的功率增加10衰减因子Cz 90%
泥土,灰尘的覆盖和组件性能
串联组件数量
1.436111111
2只有当太阳能电池组件的串联
并联组件数量59.9784359960所需组件数量86.135********组件总容量24117.99554
33600
组件每瓦价格5
5组件总价格
120589.9777
168000
四.设计校核
校核蓄电池平均每天的放电深度
0.231481481小于0.8
校核光伏组件对蓄电池组的最大充电率11.49658708同蓄电池生产厂商提供的此型五、逆变器选型
逆变器型号
逆变器单价
逆变器个数
逆变器总价0
六、控制器选型
控制器型号
控制器单价
控制器个数
控制器总价0
七.柴油机
柴油机型号
柴油机单价
柴油机个数
柴油机总价0
八、系统总造价263536.518
黄色框为需要输入
对于负载对光伏要求不是很严格的光伏系统,自给天数为3-5天,否则7-14天
这个要在网上找到气象资料,若是客户能够提供最好
一般在0℃以上取1,-10℃以上取1.1,-10℃以下取1.2
尽量减少并联的数目,不要超过四组
这个值可以通过PVsystem测算
结合当地实际情况选择,一般选择1
将太阳电池组件的功率增加10%以抵消蓄电池的耗散损失
泥土,灰尘的覆盖和组件性能的慢慢衰变都能降低组件的输出
只有当太阳能电池组件的串联电压等于合适的浮充电压时,才能达到最佳的工作状态
同蓄电池生产厂商提供的此型号最大充电率进行比较。