江西省定南中学数列的概念试题及答案百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、数列的概念选择题
1.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )
(注:()()
22221211236
n n n n ++++++=
)
A .1624
B .1198
C .1024
D .1560
2.已知数列{}n a 满足12a =,11
1n n
a a +=-,则2018a =( ). A .2
B .
12 C .1-
D .12
-
3.已知数列{}
ij a 按如下规律分布(其中i 表示行数,j 表示列数),若2021ij a =,则下列结果正确的是( )
A .13i =,33j =
B .19i =,32j =
C .32i =,14j =
D .33i =,14j =
4.的一个通项公式是( )
A .n a =
B .n a =
C .n a =
D .n a =5.在数列{}n a 中,已知11a =,25a =,()
*
21n n n a a a n N ++=-∈,则5a 等于( )
A .4-
B .5-
C .4
D .5
6.数列1,3,6,10,…的一个通项公式是( )
A .()2
1n a n n =-- B .2
1n a n =-
C .()12
n n n a +=
D .()
12
n n n a -=
7.已知数列{}n a 满足()()*
6
22,6,6
n n p n n a n p
n -⎧--≤=∈⎨
>⎩N ,且对任意的*
n ∈N 都有
1n n a a +>,则实数p 的取值范围是( )
A .71,4⎛⎫ ⎪⎝⎭
B .101,
7⎛⎫
⎪⎝⎭
C .()1,2
D .10,27⎛⎫
⎪⎝⎭
8.已知等差数列{}n a 中,13920a a a ++=,则574a a -=( ) A .30
B .20
C .40
D .50
9.设()f x 是定义在R 上恒不为零的函数,且对任意的实数x 、y R ∈,都有
()()()f x f y f x y ⋅=+,若112
a =
,()()
*
n a f n n N =∈,则数列{}n a 的前n 项和n S 应满足( ) A .
1324
n S ≤< B .
3
14
n S ≤< C .102
n S <≤
D .
1
12
n S ≤< 10.已知数列{}n a 的通项公式为()()2
11n
n a n
=--,则6a =( )
A .35
B .11-
C .35-
D .11
11.已知数列{}n a 的前n 项和为n S ,已知1
3n n S +=,则34a a +=( )
A .81
B .243
C .324
D .216
12.设数列{},{}n n a b 满足*172
700,,105
n n n n n a b a a b n N ++==+∈若6400=a ,则( ) A .43a a >
B .43<b b
C .33>a b
D .44<a b
13.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列,如数列1,3,6,10,前后两项之差得到新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .184
B .174
C .188
D .160
14.若数列{a n }满足1112,1n
n n
a a a a ++==-,则2020a 的值为( ) A .2
B .-3
C .12
-
D .
13
15.已知数列{}n a 满足11a =,12
2
n n a a n n
+=+
+,则10a =( )
A .
259
B .
145
C .
3111
D .
176
16.已知数列{}n a 的前n 项和2n S n n =+,则4a 的值为( ) A .4
B .6
C .8
D .10
17.已知数列{}n a 满足:113a =,1(1)21n n n a na n ++-=+,*n N ∈,则下列说法正确的是( ) A .1n n a a +≥ B .1n n a a +≤
C .数列{}n a 的最小项为3a 和4a
D .数列{}n a 的最大项为3a 和4a
18.定义:在数列{}n a 中,若满足
21
1n n n n
a a d a a +++-=( *,n N d ∈为常数),称{}n a 为“等差比数列”,已知在“等差比数列”{}n a 中,1231,3a a a ===,则2020
2018
a a 等于( ) A .4×20162-1
B .4×20172-1
C .4×20182-1
D .4×20182
19.数列{}n a 满足1
111,(2)2
n n n a a a n a --==≥+,则5a 的值为( )
A .
18
B .
17 C .
131
D .
16
20.数列{}n a 中,12a =,121n n a a +=-,则10a =( ) A .511
B .513
C .1025
D .1024
二、多选题
21.已知数列{}n a 满足()
*11
1n n
a n N a +=-∈,且12a =,则( ) A .31a =- B .201912
a =
C .332
S =
D . 2 0192019
2
S =
22.已知数列{}n a 中,11a =,1111n n a a n n +⎛⎫
-=+ ⎪⎝⎭
,*n N ∈.若对于任意的[]1,2t ∈,不等式
()22212n
a t a t a a n
<--++-+恒成立,则实数a 可能为( ) A .-4
B .-2
C .0
D .2
23.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,….,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组
成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a =
B .733S =
C .135********a a a a a +++⋅⋅⋅+=
D .
222
122019
20202019
a a a a a ++⋅⋅⋅⋅⋅⋅+= 24.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .911a a = C .当9n =或10时,n S 取得最大值
D .613S S =
25.设数列{}n a 的前n 项和为*
()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是
( )
A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列
B .若2
n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列
C .若()11n
n S =--,则{}n a 是等比数列
D .若{}n a 是等差数列,则n S ,2n n S S -,*
32()n n S S n N -∈也成等差数列
26.设等差数列{}n a 的前n 项和为n S .若30S =,46a =,则( ) A .2
3n S n n =- B .2392
-=n n n
S
C .36n a n =-
D .2n a n =
27.等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则( ) A .若59S >S ,则150S > B .若59S =S ,则7S 是n S 中最大的项 C .若67S S >, 则78S S >
D .若67S S >则56S S >.
28.已知等差数列{}n a 的前n 项和为,n S 且15
11
0,20,a a a 则( )
A .80a <
B .当且仅当n = 7时,n S 取得最大值
C .49S S =
D .满足0n S >的n 的最大值为12
29.等差数列{}n a 中,n S 为其前n 项和,151115,a S S ==,则以下正确的是( )
A .1d =-
B .413a a =
C .n S 的最大值为8S
D .使得0n S >的最大整数15n =
30.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,且3201911
111
a a e e +≤++,则( ) A .当数列{}n a 为等差数列时,20210S ≥
B .当数列{}n a 为等差数列时,20210S ≤
C .当数列{}n a 为等比数列时,20210T >
D .当数列{}n a 为等比数列时,20210T <
31.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310
S S =
D .当8n ≥时,0n a <
32.已知数列{}n a 满足:13a =,当2n ≥时,)
2
11n a =
-,则关于数列
{}n a 说法正确的是( )
A .28a =
B .数列{}n a 为递增数列
C .数列{}n a 为周期数列
D .2
2n a n n =+
33.无穷数列{}n a 的前n 项和2
n S an bn c =++,其中a ,b ,c 为实数,则( )
A .{}n a 可能为等差数列
B .{}n a 可能为等比数列
C .{}n a 中一定存在连续三项构成等差数列
D .{}n a 中一定存在连续三项构成等比数列
34.公差为d 的等差数列{}n a ,其前n 项和为n S ,110S >,120S <,下列说法正确的有( ) A .0d <
B .70a >
C .{}n S 中5S 最大
D .49a a <
35.已知数列{}n a 是递增的等差数列,5105a a +=,
6914a a ⋅=-.12n n n n b a a a ++=⋅⋅,数列{}n b 的前n 项和为n T ,下列结论正确的是( )
A .320n a n =-
B .325n a n =-+
C .当4n =时,n T 取最小值
D .当6n =时,n T 取最小值
【参考答案】***试卷处理标记,请不要删除
一、数列的概念选择题 1.C 解析:C 【分析】
设该数列为{}n a ,令1n n n b a a +=-,设{}n b 的前n 项和为n B ,又令1+=-n n n c b b ,则
n c n =,依次用累加法,可求解.
【详解】
设该数列为{}n a ,令1n n n b a a +=-,设{}n b 的前n 项和为n B ,又令1+=-n n n c b b , 设{}n c 的前n 项和为n C ,易得n c n =,
()()()111121n n n n n n n C c c c b b b b b b +----=++
+=++++-
所以11n n b b C +=-,1213b a a -==
22n n n C +=,进而得21332n n n n
b C ++=+=+, 所以()211
33222n n n n b n -=+=-+,
()()()()
2
221111
1212332
2
6
n n n n B n n n n +-=
+++-
++++=
+
同理:()()()111112n n n n n n n B b b b a a a a a a +---=++
+=+++--
11n n a a B +-=
所以11n n a B +=+,所以191024a =. 故选:C 【点睛】
本题考查构造数列,用累加法求数列的通项公式,属于中档题.
2.B
解析:B 【分析】
利用递推关系可得数列{}n a 是以3为周期的周期数列,从而可得2018a . 【详解】 在数列{}n a 中,
11
1n n
a a +=-,且12a =, 211112
a a ∴=-=, 32
1
1121a a =-=-=- , ()413
1
1112a a a =-
=--== ∴数列{}n a 是以3为周期的周期数列,
201867232=⨯+,
201821
2
a a ∴==.
故选:B 【点睛】
本题考查了由数列的递推关系式研究数列的性质,考查了数列的周期性,属于基础题.
3.C
解析:C 【分析】
可以看出所排都是奇数从小到大排起.规律是先第一列和第一行,再第二列和第二行,再第三列第三行,并且完整排完n 次后,排出的数呈正方形.可先算2021是第几个奇数,这个奇数在哪两个完全平方数之间,再去考虑具体的位置. 【详解】
每排完n 次后,数字呈现边长是n 的正方形,所以排n 次结束后共排了2n 个数.
20211
110112
-+=,说明2021是1011个奇数. 而22961311011321024=<<=,故2021一定是32行,
而从第1024个数算起,第1011个数是倒数第14个,根据规律第1024个数排在第32行第1列,所以第1011个数是第32行第14列,即2021在第32行第14列. 故32,14i j ==. 故选:C. 【点睛】
本题考查数列的基础知识,但是考查却很灵活,属于较难题.
4.C
解析:C 【分析】
根据数列项的规律即可得到结论. 【详解】
因为数列3,7,11,15⋯的一个通项公式为41n -,
,⋯的一个通项公式是n a = 故选:C . 【点睛】
本题主要考查数列通项公式的求法,利用条件找到项的规律是解决本题的关键.
5.B
解析:B 【分析】
根据已知递推条件(
)*
21n n n a a a n N
++=-∈即可求得5
a
由(
)*
21n n n a a a n N
++=-∈知:
3214a a a 4321a a a 5
43
5a a a
故选:B 【点睛】
本题考查了利用数列的递推关系求项,属于简单题
6.C
解析:C 【分析】
首先根据已知条件得到410a =,再依次判断选项即可得到答案. 【详解】
由题知:410a =,
对选项A ,()2
444113a =--=,故A 错误;
对选项B ,2
44115a =-=,故B 错误;
对选项C ,()
4441102a ⨯+==,C 正确; 对选项D ,()
444162
a ⨯-==,故D 错误. 故选:C 【点睛】
本题主要考查数列的通项公式,属于简单题.
7.D
解析:D 【分析】
根据题意,得到数列是增数列,结合通项公式,列出不等式组求解,即可得出结果. 【详解】
因为对任意的*n ∈N 都有1n n a a +>, 则数列{}n a 单调递增; 又()()*
6
22,6,6
n n p n n a n p
n -⎧--≤=∈⎨
>⎩N ,
所以只需6
7201p p a a ->⎧⎪>⎨⎪<⎩,即21106p p p p
<⎧⎪
>⎨⎪-<⎩,解得1027p <<.
【点睛】
本题主要考查由数列的单调性求参数,属于基础题型.
8.B
解析:B 【分析】
利用等差数列{}n a 的通项公式代入可得574a a -的值. 【详解】
由13920a a a ++=,得131020a d +=,
则有5711144(4)631020a a a d a d a d -=+--=+=. 故选:B. 【点睛】
考查等差数列通项公式的运用,知识点较为简单.
9.D
解析:D 【分析】
根据题意得出111
2
n n n a a a a +==
,从而可知数列{}n a 为等比数列,确定该等比数列的首项和公比,可计算出n S ,然后利用数列{}n S 的单调性可得出n S 的取值范围. 【详解】
取1x =,(
)y n n N
*
=∈,由题意可得()()()111
112
n n n a
f n f f n a a a +=+=⋅==
, 11
2n n a a +∴
=,所以,数列{}n a 是以12为首项,以12
为公比的等比数列, 11112211212n n n S ⎛⎫
- ⎪⎝⎭
∴==--,所以,数列{}n S 为单调递增数列,则11n S S ≤<,即
1
12
n S ≤<. 故选:D.
【点睛】
本题考查等比数列前n 项和范围的求解,解题的关键就是判断出数列{}n a 是等比数列,考查推理能力与计算能力,属于中等题.
10.A
解析:A 【分析】
直接将6n =代入通项公式可得结果. 【详解】 因为()()2
11n
n a n
=--,所以626(1)(61)35a =--=.
故选:A 【点睛】
本题考查了根据通项公式求数列的项,属于基础题.
11.D
解析:D 【分析】
利用项和关系,1n n n a S S -=-代入即得解. 【详解】
利用项和关系,1332443=54=162n n n a S S a S S a S S -=-∴=-=-,
34216a a ∴+=
故选:D 【点睛】
本题考查了数列的项和关系,考查了学生转化与划归,数学运算能力,属于基础题.
12.C
解析:C 【分析】 由题意有13
28010
n n a a +=+且6400=a ,即可求34,a a ,进而可得34,b b ,即可比较它们的大小. 【详解】 由题意知:13
28010
n n a a +=
+,6400=a , ∴345400a a a ===,而700n n a b +=, ∴34300b b ==, 故选:C 【点睛】
本题考查了根据数列间的递推关系比较项的大小,属于简单题.
13.B
解析:B 【分析】
根据高阶等差数列的知识,结合累加法求得数列的通项公式,由此求得19a . 【详解】
3,4,6,9,13,18,24,1,2,3,4,5,6,
所以()1112,3n n a a n n a --=-≥=, 所以()()()112211n n n n n a a a a a a a a ---=-+-+
+-+
()()1213n n =-+-+
++()()()1111332
2
n n n n -+⋅--=
+=+.
所以191918
31742
a ⨯=+=. 故选:B 【点睛】
本小题主要考查数列新定义,考查累加法,属于基础题.
14.D
解析:D 【分析】
分别求出23456,,,,a a a a a ,得到数列{}n a 是周期为4的数列,利用周期性即可得出结果. 【详解】
由题意知,212312a +==--,3131132a -==-+,41
1121312a -
==+,5
1132113
a +
==-,612312
a +==--,…,
因此数列{}n a 是周期为4的周期数列, ∴20205054413
a a a ⨯===. 故选D. 【点睛】
本题主要考查的是通过观察法求数列的通项公式,属于基础题.
15.B
解析:B 【分析】 由122n n a a n n +=++转化为11
121n n a a n n +⎛⎫-=- ⎪+⎝⎭
,利用叠加法,求得23n
a n =-,即可求解. 【详解】 由122n n a a n n +=+
+,可得121
12(1)1n n a a n n n n +⎛⎫-==- ⎪++⎝⎭
,
所以()()()()11223211n n n n n n n a a a a a a a a a a -----=-+-+-++-+
11111
111222*********n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫
=-+-+-+
+-+ ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎝⎭
⎝⎭
122113n n ⎛⎫
=-+=- ⎪⎝⎭
,
所以102143105
a =-=. 故选:B. 【点睛】
数列的通项公式的常见求法:
1、对于递推关系式可转化为1()n n a a f n +-=的数列,通常采用叠加法(逐差相加法)求其通项公式;
2、对于递推关系式可转化为
1
()n n
a f n a +=的数列,并且容易求数列{()}f n 前n 项积时,通常采用累乘法求其通项公式; 3、对于递推关系式形如1
n n a pa q +=+的数列,可采用构造法求解数列的通项公式.
16.C
解析:C 【分析】
利用443a S S =-计算. 【详解】
由已知22
443(44)(33)8a S S =-=+-+=.
故选:C .
17.C
解析:C 【分析】
令n n b na =,由已知得121n n b b n +-=+运用累加法得2
+12n b n =,从而可得
12
+n a n n
=,作差得()()()+13+4+1n n a n n a n n -=-,从而可得12345>>n a a a a a a =<<
<,
由此可得选项. 【详解】
令n n b na =,则121n n b b n +-=+,又113a =,所以113b =,213b b -=,325b b -=, ,121n n b b n --=-, 所以累加得()()213+2113+
+122
n
n n b n --==,所以2+1212+n n
b n a
n n n n
===, 所以()()()()
+13+41212+1+
++1+1n n n n a a n n n n n n -⎛⎫-=-= ⎪⎝⎭,
所以当3n <时,+1n n a a <,当3n =时,+1n n a a =,即34a a =,当>3n 时,+1>n n a a , 即12345>>n a a a a a a =<<<,所以数列{}n a 的最小项为3a 和4a ,
故选:C. 【点睛】
本题考查构造新数列,运用累加法求数列的通项,以及运用作差法判断差的正负得出数列的增减性,属于中档题.
18.C
解析:C 【分析】
根据“等差比”数列的定义,得到数列1n n a a +⎧⎫
⎨⎬⎩⎭
的通项公式,再利用202020202019201820192019a a a a a a =⨯求解.
【详解】
由题意可得:3
23a a =,
211a a = ,3221
1a a a a -=, 根据“等差比数列”的定义可知数列1n n a a +⎧⎫
⎨⎬⎩⎭
是首先为1,公差为2的等差数列,
则()1
11221n n
a n n a +=+-⨯=-, 所以20202019220191220181a a =⨯-=⨯+,2019
2018
220181a a =⨯-, 所以
()()2202020202019
201820192019
220181220181420181a a a a a a =⨯=⨯+⨯-=⨯-. 故选:C 【点睛】
本题考查数列新定义,等差数列,重点考查理解题意,转化思想,计算能力,属于中档题型.
19.C
解析:C 【分析】
根据条件依次算出2a 、3a 、4a 、5a 即可. 【详解】 因为1
111,(2)2
n n n a a a n a --==
≥+,
所以211
123a =
=+,31131723a ==+,4117
11527a ==+,51
115131215
a ==+ 故选:C 20.B
解析:B 【分析】
根据递推公式构造等比数列{}1n a -,求解出{}n a 的通项公式即可求解出10a 的值. 【详解】
因为121n n a a +=-,所以121n n a a +=-,所以()1121n n a a +-=-,
所以
11
21
n n a a +-=-且1110a -=≠, 所以{}1n a -是首项为1,公比为2的等比数列,
所以112n n a --=,所以121n n a -=+,所以9
1021513a =+=,
故选:B. 【点睛】
本题考查利用递推公式求解数列通项公式,难度一般.对于求解满足
()11,0,0n n a pa q p p q +=+≠≠≠的数列{}n a 的通项公式,可以采用构造等比数列的方
法进行求解.
二、多选题 21.ACD 【分析】
先计算出数列的前几项,判断AC ,然后再寻找规律判断BD . 【详解】
由题意,,A 正确,,C 正确; ,∴数列是周期数列,周期为3. ,B 错; ,D 正确. 故选:ACD . 【点睛】 本
解析:ACD 【分析】
先计算出数列的前几项,判断AC ,然后再寻找规律判断BD . 【详解】
由题意211122a =-=,31
1112a =-=-,A 正确,313
2122
S =+-=,C 正确;
41
121
a =-
=-,∴数列{}n a 是周期数列,周期为3. 2019367331a a a ⨯===-,B 错;
201932019
67322
S =⨯=,D 正确.
故选:ACD . 【点睛】
本题考查由数列的递推式求数列的项与和,解题关键是求出数列的前几项后归纳出数列的性质:周期性,然后利用周期函数的定义求解.
22.AB 【分析】
由题意可得,利用裂项相相消法求和求出,只需对于任意的恒成立,转化为对于任意的恒成立,然后将选项逐一验证即可求解. 【详解】 ,, 则,,,,
上述式子累加可得:,, 对于任意的恒成立
解析:AB 【分析】 由题意可得
111
11n n a a n n n n +-=-++,利用裂项相相消法求和求出122n a n n
=-<,只需()222122t a t a a --++-+≥对于任意的[]1,2t ∈恒成立,转化为
()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,然后将选项逐一验证即可求解.
【详解】
111
n n n a a n n
++-
=,11111(1)1n n a a n n n n n n +∴-==-+++,
则
11111n n a a n n n n --=---,12111221n n a a n n n n ---=-----,,2111
122
a a -=-, 上述式子累加可得:111n a a n n -=-,1
22n a n n
∴=-<,
()222122t a t a a ∴--++-+≥对于任意的[]1,2t ∈恒成立,
整理得()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,
对A ,当4a =-时,不等式()()2540t t +-≤,解集5,42⎡⎤-⎢⎥⎣⎦
,包含[]1,2,故A 正确;
对B ,当2a =-时,不等式()()2320t t +-≤,解集3,22
⎡⎤-⎢⎥⎣⎦
,包含[]1,2,故B 正确;
对C ,当0a =时,不等式()
210t t +≤,解集1,02⎡⎤
-⎢⎥⎣⎦
,不包含[]1,2,故C 错误; 对D ,当2a =时,不等式()()2120t t -+≤,解集12,2
⎡⎤-⎢⎥⎣
⎦
,不包含[]1,2,故D 错误,
故选:AB. 【点睛】
本题考查了裂项相消法、由递推关系式求通项公式、一元二次不等式在某区间上恒成立,考查了转化与划归的思想,属于中档题.
23.ABCD 【分析】
由题意可得数列满足递推关系,对照四个选项可得正确答案. 【详解】
对A ,写出数列的前6项为,故A 正确; 对B ,,故B 正确; 对C ,由,,,……,,
可得:.故是斐波那契数列中的第
解析:ABCD 【分析】
由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,对照四个选项可得正确答案. 【详解】
对A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对B ,71123581333S =++++++=,故B 正确;
对C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-, 可得:135********a a a a a +++⋅⋅⋅+=.故1352019a a a a +++⋅⋅⋅+是斐波那契数列中的第2020项.
对D ,斐波那契数列总有21n n n a a a ++=+,则2
121a a a =,()222312321a a a a a a a a =-=-,
()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018a a a a a =-
2222123201920192020a a a a a a +++⋅⋅⋅⋅⋅⋅+=,故D 正确;
故选:ABCD.
【点睛】
本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换.
24.ABD 【分析】
由题意利用等差数列的通项公式、求和公式可得,结合等差数列的性质,逐一判断即可得出结论. 【详解】
∵等差数列的前项和为,, ∴,解得, 故,故A 正确; ∵,,故有,故B 正确; 该数
解析:ABD 【分析】
由题意利用等差数列的通项公式、求和公式可得19a d =-,结合等差数列的性质,逐一判断即可得出结论. 【详解】
∵等差数列{}n a 的前n 项和为n S ,1385a a S +=, ∴()11187
5282
a a d a d ⨯++=+
,解得19a d =-, 故10190a a d =+=,故A 正确;
∵918a a d d d =+=-=,11110a a d d =+=,故有911a a =,故B 正确; 该数列的前n 项和()21119
2
22
n n n n S na d d d n -=+=-⋅ ,它的最值,还跟d 的值有关,
故C 错误; 由于61656392S a d d ⨯=+=-,1311312
13392
S a d d ⨯=+=-,故613S S =,故D 正确, 故选:ABD. 【点睛】
思路点睛:利用等差数列的通项公式以及前n 项和公式进行化简,直接根据性质判断结果.
25.BCD 【分析】
利用等差等比数列的定义及性质对选项判断得解. 【详解】
选项A: ,得是等差数列,当时不是等比数列,故错;
选项B: ,,得是等差数列,故对; 选项C: ,,当时也成立,是等比数列
解析:BCD 【分析】
利用等差等比数列的定义及性质对选项判断得解. 【详解】
选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:
2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;
选项C: ()11n
n S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,
12(1)n n a -∴=⨯-是等比数列,故对;
选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*
32()n n S S n N -∈是等差数
列,故对; 故选:BCD 【点睛】
熟练运用等差数列的定义、性质、前n 项和公式是解题关键.
26.BC 【分析】
由已知条件列方程组,求出公差和首项,从而可求出通项公式和前项和公式 【详解】
解:设等差数列的公差为, 因为,, 所以,解得, 所以, , 故选:BC
解析:BC 【分析】
由已知条件列方程组,求出公差和首项,从而可求出通项公式和前n 项和公式 【详解】
解:设等差数列{}n a 的公差为d , 因为30S =,46a =,
所以1
13230236
a d a d ⨯⎧+=⎪⎨⎪+=⎩,解得133a d =-⎧⎨
=⎩, 所以1(1)33(1)36n a a n d n n =+-=-+-=-,
21(1)3(1)393222
n n n n n n n
S na d n ---=+=-+=
, 故选:BC
27.BC 【分析】
根据等差数列的前项和性质判断. 【详解】
A 错:;
B 对:对称轴为7;
C 对:,又,;
D 错:,但不能得出是否为负,因此不一定有. 故选:BC . 【点睛】
关键点点睛:本题考查等差数列
解析:BC 【分析】
根据等差数列的前n 项和性质判断. 【详解】
A 错:67895911415000S a a a a a S a S ⇒+++<>⇒+<⇒<;
B 对:n S 对称轴为
n =7;
C 对:6770S S a >⇒<,又10a >,887700a S a d S ⇒⇒<<⇒<>;
D 错:6770S S a >⇒<,但不能得出6a 是否为负,因此不一定有56S S >. 故选:BC . 【点睛】
关键点点睛:本题考查等差数列的前n 项和性质,(1)n S 是关于n 的二次函数,可以利用二次函数性质得最值;(2)1n n n S S a -=+,可由n a 的正负确定n S 与1n S -的大小;(3)1()
2
n n n a a S +=
,因此可由1n a a +的正负确定n S 的正负. 28.ACD 【分析】
由题可得,,,求出可判断A ;利用二次函数的性质可判断B ;求出可判断C ;令,解出即可判断D. 【详解】
设等差数列的公差为,则,解得, ,,且,
对于A ,,故A 正确; 对于B ,的对称
解析:ACD 【分析】
由题可得16a d =-,0d <,21322
n d d S n n =
-,求出80a d =<可判断A ;利用二次函数的性质可判断B ;求出49,S S 可判断C ;令213022
n d d
S n n =->,解出即可判断D. 【详解】
设等差数列{}n a 的公差为d ,则()5111122+4++100a a a d a d +==,解得16a d =-,
10a >,0d ∴<,且()21113+
222
n n n d d S na d n n -==-, 对于A ,
81+7670a a d d d d ==-+=<,故A 正确;
对于B ,21322n d d S n n =-的对称轴为13
2
n =,开口向下,故6n =或7时,n S 取得最大值,故B 错误;
对于C ,4131648261822d d S d d d =
⨯-⨯=-=-,9138191822
d d S d =⨯-⨯=-,故49S S =,故C 正确;
对于D ,令213022
n d d
S n n =->,解得013n <<,故n 的最大值为12,故D 正确. 故选:ACD. 【点睛】
方法点睛:由于等差数列()2111+
222n n n d d S na d n a n -⎛
⎫==+- ⎪⎝
⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值.
29.BCD 【分析】
设等差数列的公差为,由等差数列的通项公式及前n 项和公式可得,再逐项判断即可得解. 【详解】
设等差数列的公差为, 由题意,,所以,故A 错误; 所以,所以,故B 正确; 因为, 所以当
解析:BCD 【分析】
设等差数列{}n a 的公差为d ,由等差数列的通项公式及前n 项和公式可得1
215d a =-⎧⎨=⎩,再逐项判断即可得解.
【详解】
设等差数列{}n a 的公差为d , 由题意,1115411105112215
a d a d a ⨯⨯⎧+=+⎪⎨⎪=⎩,所以1215d a =-⎧⎨=⎩,故A 错误; 所以1131439,129a a d a d a =+==+=-,所以413a a =,故B 正确;
因为()
()2211168642
n n n a n d n n n S -=+=-+=--+, 所以当且仅当8n =时,n S 取最大值,故C 正确; 要使()28640n S n =--+>,则16n <且n N +∈,
所以使得0n S >的最大整数15n =,故D 正确.
故选:BCD.
30.AC
【分析】
将变形为,构造函数,利用函数单调性可得,再结合等差数列与等比数列性质即可判断正确选项
【详解】
由,可得,令,
,
所以是奇函数,且在上单调递减,所以,
所以当数列为等差数列时,;
解析:AC
【分析】 将3201911111a a e e +≤++变形为32019111101212
a a e e -+-≤++,构造函数()1112x f x e =
-+,利用函数单调性可得320190a a +≥,再结合等差数列与等比数列性质即可判断正确选项
【详解】 由3201911111a a e e +≤++,可得32019111101212a a e e -+-≤++,令()1112
x f x e =-+, ()()1111101111
x
x x x x e f x f x e e e e --+=+-=+-=++++,
所以()1112
x f x e =-+是奇函数,且在R 上单调递减,所以320190a a +≥, 所以当数列{}n a 为等差数列时,()320192*********
a a S +=≥; 当数列{}n a 为等比数列时,且3a ,1011a ,2019a 同号,所以3a ,1011a ,2019a 均大于零, 故()
2021202110110T a =>.
故选:AC
【点睛】
本题考查等差数列与等比数列,考查逻辑推理能力,转化与化归的数学思想,属于中档题 31.AD
【分析】
由已知得到,进而得到,从而对ABD 作出判定.对于C,利用等差数列的和与项的关系可等价转化为,可知不一定成立,从而判定C 错误.
【详解】
由已知得:,
结合等差数列的性质可知,,该等差
解析:AD
【分析】
由已知得到780,0a a ><,进而得到0d <,从而对ABD 作出判定.对于C,利用等差数列的和与项的关系可等价转化为160a d +=,可知不一定成立,从而判定C 错误.
【详解】
由已知得:780,0a a ><,
结合等差数列的性质可知,0d <,该等差数列是单调递减的数列,
∴A 正确,B 错误,D 正确,
310S S =,等价于1030S S -=,即45100a a a ++⋯+=,等价于4100a a +=,即160a d +=, 这在已知条件中是没有的,故C 错误.
故选:AD.
【点睛】
本题考查等差数列的性质和前n 项和,属基础题,关键在于掌握和与项的关系.
32.ABD
【分析】
由已知递推式可得数列是首项为,公差为1的等差数列,结合选项可得结果.
【详解】
得,
∴,
即数列是首项为,公差为1的等差数列,
∴,
∴,得,由二次函数的性质得数列为递增数列,
解析:ABD
【分析】
由已知递推式可得数列
2=,公差为1的等差数列,结合选项可得结果.
【详解】 )2
11n a =-得)2
11n a +=,
1=
,
即数列2=,公差为1的等差数列,
2(1)11n n =+-⨯=+,
∴22n a n n =+,得28a =,由二次函数的性质得数列{}n a 为递增数列,
所以易知ABD 正确,
故选:ABD.
【点睛】
本题主要考查了通过递推式得出数列的通项公式,通过通项公式研究数列的函数性质,属于中档题.
33.ABC
【分析】
由可求得的表达式,利用定义判定得出答案.
【详解】
当时,.
当时,.
当时,上式=.
所以若是等差数列,则
所以当时,是等差数列, 时是等比数列;当时,从第二项开始是等差数列. 解析:ABC
【分析】
由2n S an bn c =++可求得n a 的表达式,利用定义判定得出答案.
【详解】
当1n =时,11a S a b c ==++.
当2n ≥时,()()2
21112n n n a S S an bn c a n b n c an a b -=-=++-----=-+. 当1n =时,上式=+a b .
所以若{}n a 是等差数列,则0.a b a b c c +=++∴=
所以当0c 时,{}n a 是等差数列, 00
a c
b ==⎧⎨≠⎩时是等比数列;当0
c ≠时,{}n a 从第二项开始是等差数列.
故选:A B C
【点睛】
本题只要考查等差数列前n 项和n S 与通项公式n a 的关系,利用n S 求通项公式,属于基础题.
34.AD
【分析】
先根据题意得,,再结合等差数列的性质得,,,中最大,,即:.进而得答案.
【详解】
解:根据等差数列前项和公式得:,
所以,,
由于,,
所以,,
所以,中最大,
由于,
所以,即:
解析:AD
【分析】
先根据题意得1110a a +>,1120a a +<,再结合等差数列的性质得60a >,70a <,0d <,{}n S 中6S 最大,49a a <-,即:49a a <.进而得答案.
【详解】
解:根据等差数列前n 项和公式得:()111111102a a S +=
>,()112121202
a a S +=< 所以1110a a +>,1120a a +<,
由于11162a a a +=,11267a a a a +=+,
所以60a >,760a a <-<,
所以0d <,{}n S 中6S 最大,
由于11267490a a a a a a +=+=+<,
所以49a a <-,即:49a a <.
故AD 正确,BC 错误.
故选:AD.
【点睛】
本题考查等差数列的前n 项和公式与等差数列的性质,是中档题.
35.AC
【分析】
由已知求出数列的首项与公差,得到通项公式判断与;再求出,由的项分析的最小值.
【详解】
解:在递增的等差数列中,
由,得,
又,联立解得,,
则,.
.
故正确,错误;
可得数列的
解析:AC
【分析】
由已知求出数列{}n a 的首项与公差,得到通项公式判断A 与B ;再求出n T ,由{}n b 的项分析n T 的最小值.
【详解】
解:在递增的等差数列{}n a 中,
由5105a a +=,得695a a +=,
又6914a a =-,联立解得62a =-,97a =, 则967(2)3963
a a d ---===-,16525317a a d =-=--⨯=-. 173(1)320n a n n ∴=-+-=-.
故A 正确,B 错误;
12(320)(317)(314)n n n n b a a a n n n ++==---
可得数列{}n b 的前4项为负,第5项为正,第六项为负,第六项以后均为正. 而5610820b b +=-=>.
∴当4n =时,n T 取最小值,故C 正确,D 错误.
故选:AC .
【点睛】
本题考查等差数列的通项公式,考查数列的求和,考查分析问题与解决问题的能力,属于中档题.。