初二下学期期末数学综合复习资料(三)
初中数学八年级数学第二学期期末数学复习(5)
年级数学第二学期期末数学复习(1)一、选择题:(每题3分,共30分) 1、若分式有意义,则x 的取值范围是( )A .B .C .D .x ≠-12、一射击运动员在一次射击练习中打出的成绩如下表所示:这次成绩的众数是( ) A;6 B;8 C;10 D;73、若一组数据1,2,3,x 的极差为6,则x 的值是( ) A .7 B .8 C .9 D .7或-34、矩形的面积为120cm 2,周长为46cm ,则它的对角线长为 ( ) A .15cm B .16cm C .17cm D .18cm5、如图,△ABC 中,AB =AC =10,BD 是AC 边上的高线,DC =2,则BD 等于( ). (A)4 (B)6 (C)8(D)第5题 第7题 第14题 第17题 6、等腰梯形ABCD 中,E 、F 、G 、H 分别是各边的中点,则四边形EFGH 的形状是( )A .平行四边形B .矩形C .菱形D .正方形7、函数y 1=x (x ≥0),(x >0)的图象如图所示,则结论: ①两函数图象的交点A 的坐标为(2,2); ②当x >2时,y 2>y 1;③当x =1时,BC =3; ④当x 逐渐增大时,y 1随着x 的增大而增大,y 2随着x 的增大而减小.其中正确结论的序号是( )A;①② B; ①②④ C; ①②③④ D; ①③④8、如图,将边长为8㎝的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长是( ) A .3cm B .4cm C .5cm D .6cm9、已知 ,则的值为 ( )A .12B .13C .14D .1510、三角形三边之比分别为①1:2:3,②3:4:5;③1.5:2:2.5,④4:5:6, 其中可以构成直角三角形的有( )A .1个B .2个C .3个D .4个二、填空题:(每题3分,共24分)11、数据2,x ,9,2,8,5的平均数为5,它的极差为 。
【解析版】初中数学八年级下期末经典复习题(课后培优)(3)
一、选择题1.(0分)[ID :10227]若63n 是整数,则正整数n 的最小值是( )A .4B .5C .6D .72.(0分)[ID :10223]下列各命题的逆命题成立的是( )A .全等三角形的对应角相等B .如果两个数相等,那么它们的绝对值相等C .两直线平行,同位角相等D .如果两个角都是45°,那么这两个角相等3.(0分)[ID :10222]一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥ 4.(0分)[ID :10220]顺次连接对角线互相垂直且相等的四边形各边中点所围成的四边形是( )A .矩形B .菱形C .正方形D .平行四边形5.(0分)[ID :10218]某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示: 鞋的尺码/cm 2323.5 24 24.5 25 销售量/双 1 3 3 6 2 则这15双鞋的尺码组成的一组数据中,众数和中位数分别为( )A .24.5,24.5B .24.5,24C .24,24D .23.5,246.(0分)[ID :10217]已知M 、N 是线段AB 上的两点,AM =MN =2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC ,BC ,则△ABC 一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形7.(0分)[ID :10208]下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有()个.A.4B.3C.2D.18.(0分)[ID:10202]如图,平行四边形ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则ABCD的面积是()A.30B.36C.54D.729.(0分)[ID:10193]如图,以 Rt△ABC的斜边 BC为一边在△ABC的同侧作正方形 BCEF,设正方形的中心为 O,连接 AO,如果 AB=4,AO=62,那么 AC 的长等于()A.12B.16C.43D.8210.(0分)[ID:10180]如图,一次函数y=mx+n与y=mnx(m≠0,n≠0)在同一坐标系内的图象可能是()A.B.C.D.的自变量取值范围是( )11.(0分)[ID:10175]函数y=√x+3A.x≠0B.x>﹣3C.x≥﹣3且x≠0D.x>﹣3且x≠0 12.(0分)[ID:10171]()23-)A.﹣3B.3或﹣3C.9D.313.(0分)[ID:10167]如图,在▱ABCD中,AB=6,BC=8,∠BCD的平分线交AD于点E,交BA的延长线于点F,则AE+AF的值等于()A .2B .3C .4D .614.(0分)[ID :10157]如图,一个工人拿一个2.5米长的梯子,底端A 放在距离墙根C 点0.7米处,另一头B 点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑( )米A .0.4B .0.6C .0.7D .0.815.(0分)[ID :10152]正比例函数()0y kx k =≠的函数值y 随x 的增大而增大,则y kx k =-的图象大致是( )A .B .C .D .二、填空题16.(0分)[ID :10325]将一次函数y=3x ﹣1的图象沿y 轴向上平移3个单位后,得到的图象对应的函数关系式为__.17.(0分)[ID :10319]在平面直角坐标系xOy 中,一次函数y =kx 和y =﹣x +3的图象如图所示,则关于x 的一元一次不等式kx <﹣x +3的解集是_____.18.(0分)[ID :10309]若ab <0,则代数式2a b 可化简为_____.19.(0分)[ID :10301]如图所示,将四根木条组成的矩形木框变成▱ABCD 的形状,并使其面积变为原来的一半,则这个平行四边形的一个最小的内角的度数是_____.20.(0分)[ID :10295]一艘轮船在小岛A 的北偏东60°方向距小岛80海里的B 处,沿正西方向航行3小时后到达小岛的北偏西45°的C 处,则该船行驶的速度为____________海里/时.21.(0分)[ID :10281]如图,在平行四边形ABCD 中,AB =3,BC =5,∠B 的平分线BE 交AD 于点E ,则DE 的长为____________.22.(0分)[ID :10260]在ABC ∆中,13AC BC ==, 10AB =,则ABC ∆面积为_______. 23.(0分)[ID :10259]甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图6-Z -2所示,那么三人中成绩最稳定的是________.24.(0分)[ID :10251]A 、B 、C 三地在同一直线上,甲、乙两车分别从A ,B 两地相向匀速行驶,甲车先出发2小时,甲车到达B 地后立即调头,并将速度提高10%后与乙车同向行驶,乙车到达A 地后,继续保持原速向远离B 的方向行驶,经过一段时间后两车同时到达C 地,设两车之间的距离为y (千米),甲行驶的时间x (小时).y 与x 的关系如图所示,则B 、C 两地相距_____千米.25.(0分)[ID :10246]一组数据:1、2、5、3、3、4、2、4,它们的平均数为_______,中位数为_______,方差是_______.三、解答题26.(0分)[ID :10421]如图,菱形ABCD 中,对角线AC 、BD 交于O 点,DE ∥AC ,CE ∥BD .(1)求证:四边形OCED为矩形;(2)在BC上截取CF=CO,连接OF,若AC=16,BD=12,求四边形OFCD的面积.27.(0分)[ID:10412]如图,在Rt△ABC中,∠A=90°,∠B=30°,D、E分别是AB、BC 的中点,若DE=3,求B C的长.28.(0分)[ID:10365]如图,已知四边形ABCD是平行四边形,点E,F分别是AB,BC 上的点,AE=CF,并且∠AED=∠CF D.求证:(1)△AED≌△CFD;(2)四边形ABCD是菱形.29.(0分)[ID:10359]已知:如图,E,F是正方形ABCD的对角线BD上的两点,且BE DF=.求证:四边形AECF是菱形.30.(0分)[ID:10337]将函数y=x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|x+b|(b为常数)的图象(1)当b=0时,在同一直角坐标系中分别画出函数112y x=+与y=|x+b|的图象,并利用这两个图象回答:x取什么值时,112x+比|x|大?(2)若函数y=|x+b|(b为常数)的图象在直线y=1下方的点的横坐标x满足0<x<3,直接写出b的取值范围【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.C3.A4.C5.A6.B7.C8.D9.B10.C11.B12.D13.C14.D15.B二、填空题16.y=3x+2【解析】【详解】将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后可得y=3x﹣1+3=3x+2故答案为y=3x+217.x<1【解析】观察图象即可得不等式kx<-x+3的解集是x<1点睛:本题主要考查了一次函数的交点问题及一次函数与一元一次不等式之间的关系会利用数形结合思想是解决本题的关键18.【解析】【分析】二次根式有意义就隐含条件b>0由ab<0先判断出ab的符号再进行化简即可【详解】若ab<0且代数式有意义;故有b>0a<0;则代数式=|a|=-a故答案为:-a【点睛】本题主要考查二19.30°【解析】【分析】过A作AE⊥BC于点E由四根木条组成的矩形木框变成▱ABCD的形状面积变为原来的一半可得AE=AB由此即可求得∠ABE=30°即平行四边形中最小的内角为30°【详解】解:过A作20.【解析】【分析】设该船行驶的速度为x海里/时由已知可得BC=3xAQ⊥BC∠BAQ=60°∠CAQ=45°AB=80海里在直角三角形ABQ中求出AQBQ再在直角三角形AQC中求出CQ得出BC=40+21.2【解析】【分析】根据平行四边形的性质可得出AD∥BC则∠AEB=∠CBE再由∠ABE =∠CBE则∠AEB=∠ABE则AE=AB从而求出DE【详解】解:∵四边形ABCD是平行四边形∴AD∥BC∴∠A22.60【解析】【分析】根据题意可以判断为等腰三角形利用勾股定理求出AB边的高即可得到答案【详解】如图作出AB边上的高CD∵AC=BC=13AB=10∴△ABC是等腰三角形∴AD=BD=5根据勾股定理C23.乙【解析】【分析】通过图示波动的幅度即可推出【详解】通过图示可看出一至三次甲乙丙中乙最稳定波动最小四至五次三人基本一样故选乙【点睛】考查数据统计的知识点24.【解析】【分析】根据题意和函数图象中的数据可以求得甲乙两车的速度再根据路程=速度×时间即可解答本题【详解】解:设甲车的速度为a千米/小时乙车的速度为b千米/小时解得∴AB两地的距离为:80×9=7225.33【解析】【分析】根据平均数的公式即可求出答案将数据按照由小到大的顺序重新排列中间两个数的平均数即是中位数根据方差的公式计算即可得到这组数据的方差【详解】平均数=将数据重新排列是:12233445三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】7n是完全平方数,满足条件的最小正整数n为7.【详解】∴7n是完全平方数;∴n的最小正整数值为7.故选:D.【点睛】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则a b ab ⋅=,除法法则b b a a=.解题关键是分解成一个完全平方数和一个代数式的积的形式. 2.C解析:C【解析】试题分析:首先写出各个命题的逆命题,再进一步判断真假.解:A 、逆命题是三个角对应相等的两个三角形全等,错误;B 、绝对值相等的两个数相等,错误;C 、同位角相等,两条直线平行,正确;D 、相等的两个角都是45°,错误.故选C .3.A解析:A【解析】【分析】观察函数图象结合点P 的坐标,即可得出不等式的解集.【详解】解:观察函数图象,可知:当3x ≤时,4kx b +≤.故选:A .【点睛】考查了一次函数与一元一次不等式以及一次函数的图象,观察函数图象,找出不等式4kx b +≤的解集是解题的关键.4.C解析:C【解析】【分析】根据三角形中位线定理得到所得四边形的对边都平行且相等,那么其为平行四边形,再根据邻边互相垂直且相等,可得四边形是正方形.【详解】解:∵E 、F 、G 、H 分别是AB 、BC 、CD 、AD 的中点,∴EH//FG//BD ,EF//AC//HG ,EH =FG =12BD ,EF =HG =12AC , ∴四边形EFGH 是平行四边形,∵AC ⊥BD ,AC =BD ,∴EF ⊥FG ,FE =FG ,∴四边形EFGH 是正方形,故选:C .【点睛】本题考查的是三角形中位线定理以及正方形的判定,解题的关键是构造三角形利用三角形的中位线定理解答.5.A解析:A【解析】【分析】根据众数和中位数的定义进行求解即可得.【详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5, 故选A .【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.6.B解析:B【解析】【分析】依据作图即可得到AC =AN =4,BC =BM =3,AB =2+2+1=5,进而得到AC 2+BC 2=AB 2,即可得出△ABC 是直角三角形.【详解】如图所示,AC =AN =4,BC =BM =3,AB =2+2+1=5,∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形,且∠ACB =90°,故选B .【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.7.C解析:C【解析】【分析】【详解】∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有2个,故选C.考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.8.D解析:D【解析】【分析】求▱ABCD的面积,就需求出BC边上的高,可过D作DE∥AM,交BC的延长线于E,那么四边形ADEM也是平行四边形,则AM=DE;在△BDE中,三角形的三边长正好符合勾股定理的逆定理,因此△BDE是直角三角形;可过D作DF⊥BC于F,根据三角形面积的不同表示方法,可求出DF的长,也就求出了BC边上的高,由此可求出四边形ABCD的面积.【详解】作DE∥AM,交BC的延长线于E,则ADEM是平行四边形,∴DE=AM=9,ME=AD=10,又由题意可得,BM=12BC=12AD=5,则BE=15,在△BDE中,∵BD2+DE2=144+81=225=BE2,∴△BDE是直角三角形,且∠BDE=90°,过D作DF⊥BE于F,则DF=365 BD DEBE⋅=,∴S▱ABCD=BC•FD=10×365=72.【点睛】此题主要考查平行四边形的性质和勾股定理的逆定理,正确地作出辅助线,构造直角三角形是解题的关键.9.B解析:B【解析】【分析】首选在AC 上截取4CG AB ==,连接OG ,利用SAS 可证△ABO ≌△GCO ,根据全等三角形的性质可以得到:62OA OG ==,AOB COG ∠=∠,则可证△AOG 是等腰直角三角形,利用勾股定理求出12AG =,从而可得AC 的长度.【详解】解:如下图所示,在AC 上截取4CG AB ==,连接OG ,∵四边形BCEF 是正方形,90BAC ∠=︒,∴OB OC =,90BAC BOC ∠=∠=︒,∴点B 、A 、O 、C 四点共圆,∴ABO ACO ∠=∠,在△ABO 和△GCO 中,{BA CGABO ACO OB OC=∠=∠=,∴△ABO ≌△GCO ,∴62OA OG ==,AOB COG ∠=∠,∵90BOC COG BOG ∠=∠+∠=︒,∴90AOG AOB BOG ∠=∠+∠=︒,∴△AOG 是等腰直角三角形,∴()()22626212AG =+=,∴12416AC =+=.故选:B .本题考查正方形的性质;全等三角形的判定与性质;勾股定理;直角三角形的性质.10.C解析:C【解析】【分析】根据m、n同正,同负,一正一负时利用一次函数的性质进行判断.【详解】解:①当mn>0时,m、n同号,y=mnx过一三象限;同正时,y=mx+n经过一、二、三象限,同负时,y=mx+n过二、三、四象限;②当mn<0时,m、n异号,y=mnx过二四象限,m>0,n<0时,y=mx+n经过一、三、四象限;m<0,n>0时,y=mx+n过一、二、四象限;故选:C.【点睛】本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.11.B解析:B【解析】【分析】【详解】由题意得:x+3>0,解得:x>-3.故选B.12.D解析:D【解析】【分析】本题考查二次根式的化简,(0)(0)a aa a⎧=⎨-<⎩.【详解】|3|3=-=.故选D.【点睛】本题考查了根据二次根式的意义化简.a≥0a;当a≤0a.13.C解析:C【解析】【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC=8,CD=AB=6,∴∠F=∠DCF,∵∠C平分线为CF,∴∠FCB=∠DCF,∴∠F=∠FCB,∴BF=BC=8,同理:DE=CD=6,∴AF=BF−AB=2,AE=AD−DE=2∴AE+AF=4故选C14.D解析:D【解析】【分析】【详解】解:∵AB=2.5米,AC=0.7米,∴BC(米).∵梯子的顶部下滑0.4米,∴BE=0.4米,∴EC=BC﹣0.4=2(米),∴DC(米),∴梯子的底部向外滑出AD=1.5﹣0.7=0.8(米).故选D.【点睛】此题主要考查了勾股定理在实际生活中的应用,关键是掌握直角三角形中,两直角边的平方和等于斜边的平方.15.B解析:B【解析】【分析】由于正比例函数y=kx(k≠0)函数值随x的增大而增大,可得k>0,-k<0,然后判断一次函数y=kx-k的图象经过的象限即可.【详解】解:∵正比例函数y=kx(k≠0)函数值随x的增大而增大,∴k>0,∴-k<0,∴一次函数y=kx-k的图象经过一、三、四象限;故选:B.本题主要考查了一次函数的图象,一次函数y=kx+b(k≠0)中k,b的符号与图象所经过的象限如下:当k>0,b>0时,图象过一、二、三象限;当k>0,b<0时,图象过一、三、四象限;k<0,b>0时,图象过一、二、四象限;k<0,b<0时,图象过二、三、四象限.二、填空题16.y=3x+2【解析】【详解】将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后可得y=3x﹣1+3=3x+2故答案为y=3x+2解析:y=3x+2.【解析】【详解】将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后,可得y=3x﹣1+3=3x+2.故答案为y=3x+2.17.x<1【解析】观察图象即可得不等式kx<-x+3的解集是x<1点睛:本题主要考查了一次函数的交点问题及一次函数与一元一次不等式之间的关系会利用数形结合思想是解决本题的关键解析:x<1【解析】观察图象即可得不等式kx<-x+3的解集是x<1.点睛:本题主要考查了一次函数的交点问题及一次函数与一元一次不等式之间的关系,会利用数形结合思想是解决本题的关键.18.【解析】【分析】二次根式有意义就隐含条件b>0由ab<0先判断出ab的符号再进行化简即可【详解】若ab<0且代数式有意义;故有b>0a<0;则代数式=|a|=-a故答案为:-a【点睛】本题主要考查二解析:【解析】【分析】二次根式有意义,就隐含条件b>0,由ab<0,先判断出a、b的符号,再进行化简即可.【详解】若ab<0故有b>0,a<0;.故答案为:.【点睛】本题主要考查二次根式的化简方法与运用:当a>0;当a<0;当a=0.19.30°【解析】【分析】过A作AE⊥BC于点E由四根木条组成的矩形木框变成▱ABCD的形状面积变为原来的一半可得AE=AB由此即可求得∠ABE=30°即平行四边形中最小的内角为30°【详解】解:过A作解析:30°【解析】【分析】过A作AE⊥BC于点E,由四根木条组成的矩形木框变成▱ABCD的形状,面积变为原来的一半,可得AE=12AB,由此即可求得∠ABE=30°,即平行四边形中最小的内角为30°.【详解】解:过A作AE⊥BC于点E,如图所示:由四根木条组成的矩形木框变成▱ABCD的形状,面积变为原来的一半,得到AE=12AB,又△ABE为直角三角形,∴∠ABE=30°,则平行四边形中最小的内角为30°.故答案为:30°【点睛】本题考查了平行四边形的面积公式及性质,根据题意求得AE=12AB是解决问题的关键.20.【解析】【分析】设该船行驶的速度为x海里/时由已知可得BC=3xAQ⊥BC∠BAQ=60°∠CAQ=45°AB=80海里在直角三角形ABQ中求出AQBQ 再在直角三角形AQC中求出CQ得出BC=40+404033【解析】【分析】设该船行驶的速度为x海里/时,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+3=3x,解方程即可.【详解】如图所示:该船行驶的速度为x海里/时,3小时后到达小岛的北偏西45°的C处,由题意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°−60°=30°,∴AQ=12AB=40,BQ3AQ=3在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+33x,解得:x=4033+.40403+/时;40403+【点睛】本题考查的是解直角三角形,熟练掌握方向角是解题的关键.21.2【解析】【分析】根据平行四边形的性质可得出AD∥BC则∠AEB=∠CBE 再由∠ABE=∠CBE则∠AEB=∠ABE则AE=AB从而求出DE【详解】解:∵四边形ABCD是平行四边形∴AD∥BC∴∠A解析:2【解析】【分析】根据平行四边形的性质,可得出AD∥BC,则∠AEB=∠CBE,再由∠ABE=∠CBE,则∠AEB=∠ABE,则AE=AB,从而求出DE.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵∠B的平分线BE交AD于点E,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AE =AB ,∵AB =3,BC =5,∴DE =AD -AE =BC -AB =5-3=2.故答案为2.【点睛】本题考查了平行四边形的性质、角平分线的定义,解题的关键是掌握平行四边形的性质:对边相等.22.60【解析】【分析】根据题意可以判断为等腰三角形利用勾股定理求出AB 边的高即可得到答案【详解】如图作出AB 边上的高CD∵AC=BC=13AB=10∴△ABC 是等腰三角形∴AD=BD=5根据勾股定理C 解析:60【解析】【分析】根据题意可以判断ABC ∆为等腰三角形,利用勾股定理求出AB 边的高,即可得到答案.【详解】如图作出AB 边上的高CD∵AC=BC=13, AB=10,∴△ABC 是等腰三角形,∴AD=BD=5,根据勾股定理 CD 2=AC 2-AD 2, 22135-,12ABC SCD AB =⋅=112102⨯⨯=60, 故答案为:60.【点睛】 此题主要考查了等腰三角形的判定及勾股定理,关键是判断三角形的形状,利用勾股定理求出三角形的高.23.乙【解析】【分析】通过图示波动的幅度即可推出【详解】通过图示可看出一至三次甲乙丙中乙最稳定波动最小四至五次三人基本一样故选乙【点睛】考查数据统计的知识点解析:乙【解析】【分析】通过图示波动的幅度即可推出.【详解】通过图示可看出,一至三次甲乙丙中,乙最稳定,波动最小,四至五次三人基本一样,故选乙【点睛】考查数据统计的知识点24.【解析】【分析】根据题意和函数图象中的数据可以求得甲乙两车的速度再根据路程=速度×时间即可解答本题【详解】解:设甲车的速度为a 千米/小时乙车的速度为b 千米/小时解得∴AB 两地的距离为:80×9=72解析:【解析】【分析】根据题意和函数图象中的数据,可以求得甲乙两车的速度,再根据“路程=速度×时间”,即可解答本题.【详解】解:设甲车的速度为a 千米/小时,乙车的速度为b 千米/小时,(62)()560(62)(96)a b b a -⨯+=⎧⎨-=-⎩,解得8060a b =⎧⎨=⎩, ∴A 、B 两地的距离为:80×9=720千米, 设乙车从B 地到C 地用的时间为x 小时,60x =80(1+10%)(x+2﹣9),解得,x =22,则B 、C 两地相距:60×22=1320(千米) 故答案为:1320.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.25.33【解析】【分析】根据平均数的公式即可求出答案将数据按照由小到大的顺序重新排列中间两个数的平均数即是中位数根据方差的公式计算即可得到这组数据的方差【详解】平均数=将数据重新排列是:12233445解析:3, 3,32. 【解析】【分析】根据平均数的公式即可求出答案,将数据按照由小到大的顺序重新排列,中间两个数的平均数即是中位数,根据方差的公式计算即可得到这组数据的方差.【详解】平均数=1(12533424)38⨯+++++++=,将数据重新排列是:1、2、2、3、3、4、4、5,∴中位数是3332+=, 方差=222221(13)2(23)2(33)2(43)(53)8⎡⎤⨯-+⨯-+⨯-+⨯-+-⎣⎦=32, 故答案为:3,3,32. 【点睛】此题考查计算能力,计算平均数,中位数,方差,正确掌握各计算的公式是解题的关键.三、解答题26.(1)证明见解析;(2)2165. 【解析】【分析】(1)由DE ∥AC ,CE ∥BD 可得四边形OCED 为平行四边形,又AC ⊥BD 从而得四边形OCED 为矩形;(2)过点O 作OH ⊥BC ,垂足为H ,由已知可得三角形OBC 、OCD 的面积,BC 的长,由面积法可得OH 的长,从而可得三角形OCF 的面积,三角形OCD 与三角形OCF 的和即为所求.【详解】(1)∵DE ∥AC ,CE ∥BD ,∴四边形OCED 为平行四边形.又∵四边形ABCD 是菱形,∴AC ⊥BD .∴∠DOC=90°.∴四边形OCED 为矩形.(2)∵菱形ABCD ,∴AC 与BD 互相垂直平分于点O ,∴OD =OB =12BD =6,OA =OC =12AC =8,∴CF=CO=8,S △BOC =S △DOC =12OD OC ⋅=24,在Rt △OBC 中,BC =10,.作OH ⊥BC 于点H ,则有12BC·OH=24,∴OH=245,∴S △COF =12CF·OH=965.∴S 四边形OFCD =S △DOC +S △OCF =2165.【点睛】本题考查菱形的性质,矩形的判定与性质,勾股定理,三角形面积的计算方法等知识点,熟练掌握基础知识点,计算出OH 的长度是解题关键.27.【解析】【分析】根据三角形中位线定理得AC=2DE=6,再根据30°的角所对的直角边等于斜边的一半求出BC 的长即可.【详解】∵ D 、E 是AB 、BC 的中点,DE=3∴AC=2DE=6∵∠A=90°,∠B=30°∴BC=2AC=12.【点睛】此题主要考查了三角形中位线定理以及30°的角所对的直角边等于斜边的一半,熟练掌握定理是解题的关键.28.(1)证明见解析;(2)证明见解析.【解析】分析:(1)由全等三角形的判定定理ASA 证得结论;(2)由“邻边相等的平行四边形为菱形”证得结论.详解:(1)证明:∵四边形ABCD 是平行四边形,∴∠A=∠C .在△AED 与△CFD 中,A C AE CFAED CFD ===∠∠⎧⎪⎨⎪∠∠⎩, ∴△AED ≌△CFD (ASA );(2)由(1)知,△AED ≌△CFD ,则AD=CD .又∵四边形ABCD 是平行四边形,∴四边形ABCD 是菱形.点睛:考查了菱形的判定,全等三角形的判定与性质以及平行四边形的性质,解题的关键是掌握相关的性质与定理.29.见解析【解析】【分析】连接AC,交BD于O,由正方形的性质可得OA=OC,OB=OD,AC⊥BD根据BE=DF可得OE=OF,由对角线互相垂直平分的四边形是菱形即可判定,【详解】∵四边形ABCD是正方形,∴OD=OB,OA=OC,BD⊥AC,∵BE=DF,∴DE=BF,∴OE=OF,∵OA=OC,AC⊥EF,OE=OF,∴四边形AECF为菱形.【点睛】本题考查了正方形对角线互相垂直平分的性质,考查了菱形的判定,对角线互相垂直且互相平分的四边形是菱形,熟练掌握菱形的判定方法是解题关键.30.(1)见解析,223x-<<;(2)21b--【解析】【分析】(1)画出函数图象,求出两个函数图象的交点坐标,利用图象法即可解决问题;(2)利用图象法即可解决问题.【详解】解:(1)当b=0时,y=|x+b|=|x|列表如下:x-101112y x =+ 121 12 y =|x|1 0 1 描点并连线;∴如图所示:该函数图像为所求∵1y x 12||y x ⎧=+⎪⎨⎪⎩= ∴2x=-32=-y 3⎧⎪⎪⎨⎪⎪⎩或y=x=22⎧⎨⎩ ∴两个函数的交点坐标为A 2233⎛⎫- ⎪⎝⎭,,B(2,2), ∴观察图象可知:223x -<<时,112x +比||x 大; (2)如图,观察图象可知满足条件的b 的值为21b --,【点睛】本题主要考查了一次函数的图象,一次函数的性质,一次函数图象与几何变换,掌握一次函数的图象,一次函数的性质,一次函数图象与几何变换是解题的关键.。
《常考题》初中数学八年级下期末复习题(含答案解析)
一、选择题1.(0分)[ID :10227]若63n 是整数,则正整数n 的最小值是( ) A .4 B .5C .6D .72.(0分)[ID :10226]甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m ,先到终点的人原地休息.已知甲先出发2s .在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系如图所示,给出以下结论:①a =8;②b =92;③c =123.其中正确的是( )A .①②③B .仅有①②C .仅有①③D .仅有②③3.(0分)[ID :10221]若等腰三角形的底边长为6,底边上的中线长为4,则它的腰长为( ) A .7B .6C .5D .44.(0分)[ID :10211]一次函数111y k x b =+的图象1l 如图所示,将直线1l 向下平移若干个单位后得直线2l ,2l 的函数表达式为222y k x b =+.下列说法中错误的是( )A .12k k =B .12b b <C .12b b >D .当5x =时,12y y >5.(0分)[ID :10205]以下命题,正确的是( ). A .对角线相等的菱形是正方形 B .对角线相等的平行四边形是正方形 C .对角线互相垂直的平行四边形是正方形 D .对角线互相垂直平分的四边形是正方形6.(0分)[ID :10203]三角形的三边长为22()2a b c ab +=+,则这个三角形是( ) A .等边三角形B .钝角三角形C .直角三角形D .锐角三角形7.(0分)[ID :10144]如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b .若8ab =,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .38.(0分)[ID :10141]计算12(75+313﹣48)的结果是( ) A .6B .43C .23+6D .129.(0分)[ID :10137]下列有关一次函数y =﹣3x +2的说法中,错误的是( ) A .当x 值增大时,y 的值随着x 增大而减小 B .函数图象与y 轴的交点坐标为(0,2) C .函数图象经过第一、二、四象限 D .图象经过点(1,5)10.(0分)[ID :10135]若函数()0y kx k =≠的值随自变量的增大而增大,则函敷2y x k =+的图象大致是( )A .B .C .D .11.(0分)[ID :10187]某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是( )A .参加本次植树活动共有30人B .每人植树量的众数是4棵C .每人植树量的中位数是5棵D .每人植树量的平均数是5棵12.(0分)[ID :10177]明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S (单位:m 2)与工作时间t (单位:h )之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是( )A .300m 2B .150m 2C .330m 2D .450m 213.(0分)[ID :10164]某商场对上周某品牌运动服的销售情况进行了统计,如下表所示: 颜色黄色绿色白色紫色红色数量(件)12015023075430经理决定本周进货时多进一些红色的,可用来解释这一现象的统计知识的( ) A .平均数B .中位数C .众数D .平均数与众数14.(0分)[ID :10160]如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 的中点C '上.若6AB =,9BC =,则BF 的长为( )A .4B .32C .4.5D .515.(0分)[ID :10159]将根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,设筷子露在杯子外面的长度hcm ,则h 的取值范围是( )A .h 17cm ≤B .h 8cm ≥C .7cm h 16cm ≤≤D .15cm h 16cm ≤≤二、填空题16.(0分)[ID :10332]如图,BD 是△ABC 的角平分线,DE∥BC,交AB 于点E ,DF∥AB,交BC 于点F ,当△ABC 满足_________条件 时,四边形BEDF 是正方形.17.(0分)[ID :10328]如图,矩形ABCD 中,AC 、BD 相交于点O ,AE 平分∠BAD ,交BC 于E ,若∠EAO=15°,则∠BOE 的度数为 度.18.(0分)[ID :10323]如图.过点A 1(1,0)作x 轴的垂线,交直线y=2x 于点B 1;点A 2与点O 关于直线A 1B 1对称,过点A 2作x 轴的垂线,交直线y=2x 于点B 2;点A 3与点O 关于直线A 2B 2对称.过点A 3作x 轴的垂线,交直线y=2x 于点B 3;…按此规律作下去.则点A 3的坐标为_____,点B n 的坐标为_____.19.(0分)[ID :10310]如果二次根式4x -有意义,那么x 的取值范围是__________. 20.(0分)[ID :10307]如图,一次函数y =kx+b 的图象与x 轴相交于点(﹣2,0),与y 轴相交于点(0,3),则关于x 的方程kx =b 的解是_____.21.(0分)[ID :10301]如图所示,将四根木条组成的矩形木框变成▱ABCD 的形状,并使其面积变为原来的一半,则这个平行四边形的一个最小的内角的度数是_____.22.(0分)[ID :10300]如图,在平面直角坐标系xOy 中,点(0,6)C ,射线//x CE 轴,直线y x b =-+交线段OC 于点B ,交x 轴于点A ,D 是射线CE 上一点.若存在点D ,使得ABD △恰为等腰直角三角形,则b 的值为_______.23.(0分)[ID :10281]如图,在平行四边形ABCD 中,AB =3,BC =5,∠B 的平分线BE 交AD 于点E ,则DE 的长为____________.24.(0分)[ID :10271]如图,已知ABC ∆中,10AB =,8AC =,6BC =,DE 是AC 的垂直平分线,DE 交AB 于点D ,连接CD ,则=CD ___25.(0分)[ID :10254]若一个多边形的内角和是900º,则这个多边形是 边形.三、解答题26.(0分)[ID :10423]小颖用的签字笔可在甲、乙两个商店买到.已知两个商店的标价都是每支签字笔2元.但甲商店的优惠条件是:购买10支以上,从第11支开始按标价的7折卖;乙商店的优惠条件是:从第1支开始就按标价的8.5折卖. (1)小颖要买20支签字笔,到哪个商店购买较省钱? (2)小颖现有40元,最多可买多少支签字笔?27.(0分)[ID :10412]如图,在Rt △ABC 中,∠A=90°,∠B=30°,D 、E 分别是AB 、BC 的中点,若DE=3,求B C 的长.28.(0分)[ID:10407]如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙底端C的距离为0.7米.如果梯子的顶端沿墙面下滑0.4米,那么点B将向左滑动多少米?29.(0分)[ID:10375]甲乙两位同学参加数学综合素质测试,各项成绩如下表:(单位:分)数与代数空间与图形统计与概率综合与实践学生甲93938990学生乙94929486(1)分别计算甲、乙同学成绩的中位数;(2)如果数与代数,空间与图形,统计与概率,综合与实践的成绩按4:3:1:2计算,那么甲、乙同学的数学综合素质成绩分别为多少分?30.(0分)[ID:10368]在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=3千米,CH=2.4千米,HB=1.8千米.(1)问CH是否为从村庄C到河边的最近路?(即问:CH与AB是否垂直?)请通过计算加以说明;(2)求原来的路线AC的长.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.A3.C4.B5.A6.C7.D8.D9.D10.C11.D12.B13.C14.A15.C二、填空题16.∠ABC=90°【解析】分析:由题意知四边形DEBF是平行四边形再通过证明一组邻边相等可知四边形DEBF是菱形进而得出∠ABC=90°时四边形BEDF是正方形详解:当△ABC满足条件∠ABC=90°17.75°【解析】试题分析:根据矩形的性质可得△BOA为等边三角形得出BA=BO又因为△BAE为等腰直角三角形BA=BE由此关系可求出∠BOE的度数解:在矩形ABCD中∵AE平分∠BAD∴∠BAE=∠E18.(40)(2n﹣12n)【解析】【分析】先根据题意求出A2点的坐标再根据A2点的坐标求出B2的坐标以此类推总结规律便可求出点A3Bn的坐标【详解】解:∵点A1坐标为(10)∴OA1=1过点A1作x轴19.x≥4【解析】分析:根据二次根式有意义的条件列出不等式解不等式即可详解:由题意得x−4⩾0解得x⩾4故答案为x⩾4点睛:此题考查二次根式有意义的条件二次根式有意义的条件是被开方部分大于或等于零二次根20.x=2【解析】【分析】依据待定系数法即可得到k和b的值进而得出关于x的方程kx=b的解【详解】解:∵一次函数y=kx+b的图象与x轴相交于点(﹣20)与y轴相交于点(03)∴解得∴关于x的方程kx=21.30°【解析】【分析】过A作AE⊥BC于点E由四根木条组成的矩形木框变成▱ABCD的形状面积变为原来的一半可得AE=AB由此即可求得∠ABE=30°即平行四边形中最小的内角为30°【详解】解:过A作22.3或6【解析】【分析】先表示出AB坐标分①当∠ABD=90°时②当∠ADB=90°时③当∠DAB=90°时建立等式解出b即可【详解】解:①当∠ABD=90°时如图1则∠DBC+∠ABO=90°∴∠D23.2【解析】【分析】根据平行四边形的性质可得出AD∥BC则∠AEB=∠CBE再由∠ABE =∠CBE则∠AEB=∠ABE则AE=AB从而求出DE【详解】解:∵四边形ABCD是平行四边形∴AD∥BC∴∠A24.5【解析】【分析】由是的垂直平分线可得AD=CD可得∠CAD=∠ACD利用勾股定理逆定理可得∠ACB=90°由等角的余角相等可得:∠DCB=∠B可得CD=BD可知CD=BD=AD=【详解】解:∵是的25.七【解析】【分析】根据多边形的内角和公式列式求解即可【详解】设这个多边形是边形根据题意得解得故答案为【点睛】本题主要考查了多边形的内角和公式熟记公式是解题的关键三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】7n是完全平方数,满足条件的最小正整数n为7.【详解】∴7n是完全平方数;∴n的最小正整数值为7.故选:D.【点睛】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.==.解题关键是分解成一个完全平方数和一个代数式的积的形式.2.A解析:A【解析】【分析】【详解】解:∵乙出发时甲行了2秒,相距8m,∴甲的速度为8/2=4m/ s.∵100秒时乙开始休息.∴乙的速度是500/100=5m/ s.∵a秒后甲乙相遇,∴a=8/(5-4)=8秒.因此①正确.∵100秒时乙到达终点,甲走了4×(100+2)=408 m,∴b=500-408=92 m.因此②正确.∵甲走到终点一共需耗时500/4=125 s,,∴c=125-2=123 s.因此③正确.终上所述,①②③结论皆正确.故选A.3.C解析:C【解析】 【分析】 【详解】∵等腰三角形ABC 中,AB =AC ,AD 是BC 上的中线, ∴BD =CD =12BC =3, AD 同时是BC 上的高线, ∴AB =22AD BD +=5.故它的腰长为5. 故选C.4.B解析:B 【解析】 【分析】根据两函数图象平行k 相同,以及平移规律“左加右减,上加下减”即可判断 【详解】∵将直线1l 向下平移若干个单位后得直线2l , ∴直线1l ∥直线2l , ∴12k k =,∵直线1l 向下平移若干个单位后得直线2l , ∴12b b >,∴当x 5=时,12y y > 故选B . 【点睛】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.5.A解析:A 【解析】 【分析】利用正方形的判定方法分别判断后即可确定正确的选项.A 、对角线相等的菱形是正方形,正确,是真命题;B 、对角线相等的平行四边形是矩形,故错误,是假命题;C 、对角线互相垂直的平行四边形是菱形,故错误,是假命题;D 、对角线互相垂直平分的四边形是菱形,故错误,是假命题,故选:A .【点睛】考查了命题与定理的知识,解题的关键是了解正方形的判定方法.6.C解析:C【解析】【分析】利用完全平方公式把等式变形为a 2+b 2=c 2,根据勾股定理逆定理即可判断三角形为直角三角形,可得答案.【详解】∵22()2a b c ab +=+,∴a 2+2ab+b 2=c 2+2ab ,∴a 2+b 2=c 2,∴这个三角形是直角三角形,故选:C .【点睛】本题考查了勾股定理的逆定理,如果一个三角形的两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形,最长边所对的角为直角. 7.D解析:D【解析】【分析】由题意可知:中间小正方形的边长为:-a b ,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【详解】解:由题意可知:中间小正方形的边长为:-a b每一个直角三角形的面积为:118422ab =⨯= 214()252ab a b ∴⨯+-= 2()25169a b ∴-=-=3a b ∴-=故选:D本题考查勾股定理的运用,稍有难度;利用大正方形与小正方形、直角三角形面积之间的等量关系是解答本题的关键.8.D解析:D【解析】【分析】【详解】===.12故选:D.9.D解析:D【解析】【分析】A、由k=﹣3<0,可得出:当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、利用一次函数图象上点的坐标特征,可得出:函数图象与y轴的交点坐标为(0,2),选项B不符合题意;C、由k=﹣3<0,b=2>0,利用一次函数图象与系数的关系可得出:一次函数y=﹣3x+2的图象经过第一、二、四象限,选项C不符合题意;D、利用一次函数图象上点的坐标特征,可得出:一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.此题得解.【详解】解:A、∵k=﹣3<0,∴当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、当x=0时,y=﹣3x+2=2,∴函数图象与y轴的交点坐标为(0,2),选项B不符合题意;C、∵k=﹣3<0,b=2>0,∴一次函数y=﹣3x+2的图象经过第一、二、四象限,选项C不符合题意;D、当x=1时,y=﹣3x+2=﹣1,∴一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.故选:D.【点睛】此题考查一次函数图象上点的坐标特征以及一次函数的性质,逐一分析四个选项的正误是解题的关键.10.C解析:C【解析】根据正比例函数和一次函数的图像与性质逐项判断即可求解.【详解】∵函数()0y kx k =≠的值随自变量的增大而增大,∴k >0,∵一次函数2y x k =+,∴1k =1>0,b=2k >0,∴此函数的图像经过一、二、四象限;故答案为C.【点睛】本题考查了正比例函数和一次函数的图像与性质,熟练掌握正比例函数和一次函数的图像特点是解题的关键.11.D解析:D【解析】试题解析:A 、∵4+10+8+6+2=30(人),∴参加本次植树活动共有30人,结论A 正确;B 、∵10>8>6>4>2,∴每人植树量的众数是4棵,结论B 正确;C 、∵共有30个数,第15、16个数为5,∴每人植树量的中位数是5棵,结论C 正确;D 、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),∴每人植树量的平均数约是4.73棵,结论D 不正确.故选D .考点:1.条形统计图;2.加权平均数;3.中位数;4.众数.12.B解析:B【解析】【分析】【详解】解:如图,设直线AB 的解析式为y=kx+b ,则4+=1200{5k+b=1650k b , 解得450{600k b ==- 故直线AB 的解析式为y=450x ﹣600,当x=2时,y=450×2﹣600=300, 300÷2=150(m 2)【点睛】本题考查一次函数的应用.13.C解析:C【解析】试题解析:由于销售最多的颜色为红色,且远远多于其他颜色,所以选择多进红色运动装的主要根据众数.故选C.考点:统计量的选择.14.A解析:A【解析】【分析】【详解】∵点C′是AB边的中点,AB=6,∴BC′=3,由图形折叠特性知,C′F=CF=BC-BF=9-BF,在Rt△C′BF中,BF2+BC′2=C′F2,∴BF2+9=(9-BF)2,解得,BF=4,故选A.15.C解析:C【解析】【分析】观察图形,找出图中的直角三角形,利用勾股定理解答即可.【详解】首先根据圆柱的高,知筷子在杯内的最小长度是8cm,则在杯外的最大长度是24-8=16cm;再根据勾股定理求得筷子在杯内的最大长度是(如图)2222+=+,则在杯外的最小长度是24-17=7cm,158AB BC所以h的取值范围是7cm≤h≤16cm,故选C.【点睛】本题考查了勾股定理的应用,注意此题要求的是筷子露在杯外的取值范围.主要是根据勾股定理求出筷子在杯内的最大长度.二、填空题16.∠ABC=90°【解析】分析:由题意知四边形DEBF是平行四边形再通过证明一组邻边相等可知四边形DEBF是菱形进而得出∠ABC=90°时四边形BEDF是正方形详解:当△ABC满足条件∠ABC=90°解析:∠ABC=90°【解析】分析: 由题意知,四边形DEBF是平行四边形,再通过证明一组邻边相等,可知四边形DEBF是菱形, 进而得出∠ABC=90°时,四边形BEDF是正方形.详解: 当△ABC满足条件∠ABC=90°,四边形DEBF是正方形.理由:∵DE∥BC,DF∥AB,∴四边形DEBF是平行四边形∵BD是∠ABC的平分线,∴∠EBD=∠FBD,又∵DE∥BC,∴∠FBD=∠EDB,则∠EBD=∠EDB,∴BE=DE.故平行四边形DEBF是菱形,当∠ABC=90°时,菱形DEBF是正方形.故答案为:∠ABC=90°.点睛: 本题主要考查了菱形、正方形的判定,正确掌握菱形以及正方形的判定方法是解题关键.17.75°【解析】试题分析:根据矩形的性质可得△BOA为等边三角形得出BA=B O又因为△BAE为等腰直角三角形BA=BE由此关系可求出∠BOE的度数解:在矩形ABCD中∵AE平分∠BAD∴∠BAE=∠E解析:75°.【解析】试题分析:根据矩形的性质可得△BOA为等边三角形,得出BA=BO,又因为△BAE为等腰直角三角形,BA=BE,由此关系可求出∠BOE的度数.解:在矩形ABCD中,∵AE平分∠BAD,∴∠BAE=∠EAD=45°,又知∠EAO=15°,∴∠OAB=60°,∵OA=OB,∴△BOA为等边三角形,∴BA=BO,∵∠BAE=45°,∠ABC=90°,∴△BAE为等腰直角三角形,∴BA=BE.∴BE=BO,∠EBO=30°,∠BOE=∠BEO,此时∠BOE=75°.故答案为75°.考点:矩形的性质;等边三角形的判定与性质.18.(40)(2n﹣12n)【解析】【分析】先根据题意求出A2点的坐标再根据A2点的坐标求出B2的坐标以此类推总结规律便可求出点A3Bn的坐标【详解】解:∵点A1坐标为(10)∴OA1=1过点A1作x轴解析:(4,0)(2n﹣1,2n)【解析】【分析】先根据题意求出A2点的坐标,再根据A2点的坐标求出B2的坐标,以此类推总结规律便可求出点A3、B n的坐标.【详解】解:∵点A1坐标为(1,0),∴OA1=1,过点A1作x轴的垂线交直线于点B1,可知B1点的坐标为(1,2),∵点A2与点O关于直线A1B1对称,∴OA1=A1A2=1,∴OA2=1+1=2,∴点A2的坐标为(2,0),B2的坐标为(2,4),∵点A3与点O关于直线A2B2对称.故点A3的坐标为(4,0),B3的坐标为(4,8),此类推便可求出点A n的坐标为(2n﹣1,0),点B n的坐标为(2n﹣1,2n).故答案为(4,0),(2n﹣1,2n).考点:一次函数图象上点的坐标特征.19.x≥4【解析】分析:根据二次根式有意义的条件列出不等式解不等式即可详解:由题意得x−4⩾0解得x⩾4故答案为x⩾4点睛:此题考查二次根式有意义的条件二次根式有意义的条件是被开方部分大于或等于零二次根解析:x≥4【解析】分析:根据二次根式有意义的条件列出不等式,解不等式即可.详解:由题意得,x−4⩾0,解得,x⩾4,故答案为x⩾4.点睛:此题考查二次根式有意义的条件,二次根式有意义的条件是被开方部分大于或等于零,二次根式无意义的条件是被开方部分小于0.20.x=2【解析】【分析】依据待定系数法即可得到k和b的值进而得出关于x的方程kx=b的解【详解】解:∵一次函数y=kx+b的图象与x轴相交于点(﹣20)与y轴相交于点(03)∴解得∴关于x的方程kx=解析:x=2【解析】【分析】依据待定系数法即可得到k和b的值,进而得出关于x的方程kx=b的解.【详解】解:∵一次函数y=kx+b的图象与x轴相交于点(﹣2,0),与y轴相交于点(0,3),∴0=-2k+b3=b⎧⎨⎩,解得323kb⎧=⎪⎨⎪=⎩,∴关于x的方程kx=b即为:32x=3,解得x=2,故答案为:x=2.【点睛】本题主要考查了待定系数法的应用,任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.21.30°【解析】【分析】过A作AE⊥BC于点E由四根木条组成的矩形木框变成▱ABCD的形状面积变为原来的一半可得AE=AB由此即可求得∠ABE=30°即平行四边形中最小的内角为30°【详解】解:过A作解析:30°【解析】【分析】过A作AE⊥BC于点E,由四根木条组成的矩形木框变成▱ABCD的形状,面积变为原来的一半,可得AE=12AB,由此即可求得∠ABE=30°,即平行四边形中最小的内角为30°.【详解】解:过A作AE⊥BC于点E,如图所示:由四根木条组成的矩形木框变成▱ABCD的形状,面积变为原来的一半,得到AE=12AB,又△ABE为直角三角形,∴∠ABE=30°,则平行四边形中最小的内角为30°.故答案为:30°【点睛】本题考查了平行四边形的面积公式及性质,根据题意求得AE=12AB是解决问题的关键.22.3或6【解析】【分析】先表示出AB坐标分①当∠ABD=90°时②当∠ADB=90°时③当∠DAB=90°时建立等式解出b即可【详解】解:①当∠ABD=90°时如图1则∠DBC+∠ABO=90°∴∠D解析:3或6【解析】【分析】先表示出A、B坐标,分①当∠ABD=90°时,②当∠ADB=90°时,③当∠DAB=90°时,建立等式解出b即可.【详解】解:①当∠ABD=90°时,如图1,则∠DBC+∠ABO=90°,,∴∠DBC=∠BAO,由直线y x b=-+交线段OC于点B,交x轴于点A可知OB=b,OA=b,∵点C(0,6),∴OC=6,∴BC=6-b,在△DBC和△BAO中,DBC BAO DCB AOB BD AB ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△DBC ≌△BAO (AAS ),∴BC=OA ,即6-b=b ,∴b=3;②当∠ADB=90°时,如图2,作AF ⊥CE 于F ,同理证得△BDC ≌△DAF ,∴CD=AF=6,BC=DF ,∵OB=b ,OA=b ,∴BC=DF=b-6,∵BC=6-b ,∴6-b=b-6,∴b=6;③当∠DAB=90°时,如图3,作DF ⊥OA 于F ,同理证得△AOB ≌△DFA ,∴OA=DF ,∴b=6;综上,b 的值为3或6,故答案为3或6.【点睛】本题考查了一次函数图像上点的坐标特征,等腰直角三角形的性质,三角形全等的判定和性质,作辅助线构建求得三角形上解题的关键.23.2【解析】【分析】根据平行四边形的性质可得出AD∥BC则∠AEB=∠CBE 再由∠ABE=∠CBE则∠AEB=∠ABE则AE=AB从而求出DE【详解】解:∵四边形ABCD是平行四边形∴AD∥BC∴∠A解析:2【解析】【分析】根据平行四边形的性质,可得出AD∥BC,则∠AEB=∠CBE,再由∠ABE=∠CBE,则∠AEB=∠ABE,则AE=AB,从而求出DE.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵∠B的平分线BE交AD于点E,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AE=AB,∵AB=3,BC=5,∴DE=AD-AE=BC-AB=5-3=2.故答案为2.【点睛】本题考查了平行四边形的性质、角平分线的定义,解题的关键是掌握平行四边形的性质:对边相等.24.5【解析】【分析】由是的垂直平分线可得AD=CD可得∠CAD=∠ACD利用勾股定理逆定理可得∠ACB=90°由等角的余角相等可得:∠DCB=∠B可得CD=BD 可知CD=BD=AD=【详解】解:∵是的解析:5【解析】【分析】由DE 是AC 的垂直平分线可得AD=CD ,可得∠CAD=∠ACD ,利用勾股定理逆定理可得∠ACB=90°由等角的余角相等可得:∠DCB=∠B ,可得CD=BD ,可知CD=BD=AD=152AB = 【详解】解:∵DE 是AC 的垂直平分线∴AD=CD∴∠CAD=∠ACD∵10AB =,8AC =,6BC =又∵2226+8=10∴222AC BC AB +=∴∠ACB=90°∵∠ACD+∠DCB=90°, ∠CAB+∠B=90°∴∠DCB=∠B∴CD=BD∴CD=BD=AD=152AB = 故答案为5【点睛】本题考查了线段垂直平分线、勾股定理逆定理以及等腰三角形的性质,掌握勾股定理逆定理及利用等腰三角形求线段是解题的关键. 25.七【解析】【分析】根据多边形的内角和公式列式求解即可【详解】设这个多边形是边形根据题意得解得故答案为【点睛】本题主要考查了多边形的内角和公式熟记公式是解题的关键解析:七【解析】【分析】根据多边形的内角和公式()2180n -⋅︒,列式求解即可.【详解】设这个多边形是n 边形,根据题意得,()2180900n -⋅︒=︒,解得7n =.故答案为7.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.三、解答题26.(1)两个商店一样 (2)24支【解析】【分析】(1)分别算出甲、乙两商店购买20支签字笔的价格,比较大小即可;(2)设小颖在甲、乙两商店购买()10x x >支签字笔的费用是1y 和2y 元,分别令1y =40和2y =40,求出相应x ,比较即可得出结论.【详解】解:(1)甲:()21020.7201034⨯+⨯⨯-=元,乙:20.852034⨯⨯=元,两个商店一样省钱;(2)由题意可知用40元可以买到签字笔的支数大于10,设小颖在甲、乙两商店购买()10x x >支签字笔的费用是1y 和2y 元,则()121020.710y x =⨯+⨯⨯-1.46x =+,当140y =时,得40 1.46x =+, 解得:2247x =, ∴在甲商店最多可买24支签字笔;220.85 1.7y x x =⨯=,当240y =时,得40 1.7x =, 解得92317x =, ∴在乙商店最多可买23支签字笔,∵23<24,∴小颖最多可买24支签字笔.【点睛】本题考查了一次函数的应用:根据题意用一次函数表示两个变量的关系,然后利用一次函数的性质解决问题.27.【解析】【分析】根据三角形中位线定理得AC=2DE=6,再根据30°的角所对的直角边等于斜边的一半求出BC 的长即可.【详解】∵ D 、E 是AB 、BC 的中点,DE=3∴AC=2DE=6∵∠A=90°,∠B=30°∴BC=2AC=12.【点睛】此题主要考查了三角形中位线定理以及30°的角所对的直角边等于斜边的一半,熟练掌握定理是解题的关键.28.点B将向左移动0.8米.【解析】【分析】根据勾股定理即可求AC的长度,根据AC=AA1+CA1即可求得CA1的长度,在直角三角形A1B1C中,已知AB=A1B1,CA1即可求得CB2的长度,根据BB1=CB1-CB即可求得BB1的长度.【详解】解:在△ABC中,∠C=90°,∴AC2+BC2=AB2,即AC2+0.72=2.52,∴AC=2.4.在△A1B1C中,∠C=90°,∴A1C2+B1C2=A1B12,即(2.4–0.4)2+B1C 2=2.52,∴B1C=1.5.∴B1B=1.5–0.7=0.8,即点B将向左移动0.8米.【点睛】本题考查的是勾股定理的应用及勾股定理在直角三角形中的正确运用,本题中求CB1的长度是解题的关键.29.(1)甲的中位数91.5,乙的中位数93;(2)甲的数学综合成绩92,乙的数学综合成绩91.8.【解析】【分析】(1)由中位数的定义求解可得;(2)根据加权平均数的定义计算可得.【详解】(1)甲的中位数=9093=91.52+,乙的中位数=9294=932+;(2)甲的数学综合成绩=93×0.4+93×0.3+89×0.1+90×0.2=92,乙的数学综合成绩=94×0.4+92×0.3+94×0.1+86×0.2=91.8.【点睛】此题考查了中位数和加权平均数,用到的知识点是中位数和加权平均数,掌握它们的计算公式是本题的关键.30.(1)CH是从村庄C到河边的最近路,理由见解析;(2)原来的路线AC的长为2.5千米.【解析】【分析】(1)根据勾股定理的逆定理解答即可;(2)根据勾股定理解答即可【详解】(1)是,理由是:在△CHB中,∵CH2+BH2=(2.4)2+(1.8)2=9BC2=9∴CH2+BH2=BC2∴CH⊥AB,所以CH是从村庄C到河边的最近路(2)设AC=x在Rt△ACH中,由已知得AC=x,AH=x﹣1.8,CH=2.4由勾股定理得:AC2=AH2+CH2∴x2=(x﹣1.8)2+(2.4)2解这个方程,得x=2.5,答:原来的路线AC的长为2.5千米.【点睛】此题考查勾股定理及其逆定理的应用,熟练掌握基础知识是解题的关键.。
北京市各区数学期末复习资料-初二下学期(几何综合+新定义问题)
每日一题—几何部分1.如图,在Rt △ABC 中,∠A =90°,AB =AC ,将线段BC 绕点B 逆时针旋转α°(0<α<180),得到线段BD ,且AD ∥BC . (1)依题意补全图形;(2)求满足条件的α的值; (3)若AB =2,求AD 的长.2.在Rt △ABC 中,∠ACB =90°,CA =CB .点D 为线段BC 上一个动点(点D 不与点B ,C重合),连接AD ,点E 在射线AB 上,连接DE ,使得DE =DA .作点E 关于直线BC 的对称点F ,连接BF , DF . (1)依题意补全图形; (2)求证:∠CAD =∠BDF ; (3)用等式表示线段AB ,BD ,BF 之间的数量关系,并证明.3.如图,在正方形ABCD 中,E 是边BC 上一动点(不与点B ,C 重合),连接DE ,点C 关于直线DE 的对称点为C ʹ,连接ACʹ并延长交直线DE 于点P ,F 是AC ′中点,连接DF . (1)求∠FDP 的度数;(2)连接BP ,请用等式表示AP ,BP ,DP 三条线段之间的数量关系,并证明. (3)连接AC ,若正方形的边长为2,请直接写出△ACC ′的面积最大值.FP C'BCA DE4.已知:Rt △ABC 中,∠ACB =90°,AC =BC .(1) 如图1,点D 是BC 边上一点(不与点B ,C 重合),连接AD ,过点B 作BE ⊥AD ,交AD 的延长线于点E ,连接CE . 若∠BAD =α,求∠DBE 的大小 (用含α的式子表示) ; (2) 如图2,点D 在线段BC 的延长线上时,连接AD ,过点B 作BE ⊥AD ,垂足E 在线段AD 上,连接CE . ①依题意补全图2;②用等式表示线段EA ,EB 和EC 之间的数量关系,并证明.图1 图25.在△ABC 中,∠ACB =90°,AC =BC , D 为AB 的中点,点E 为AC 延长线上一点,连接DE ,过点D 作DF ⊥DE 交CB 的延长线于点F .(1)求证:BF= CE ; (2)若CE =AC ,用等式表示线段DF 与AB 的数量关系,并证明.ABA6.如图,在等腰直角△ABC中,90CA CD),连接BD,ABC°,D是线段AC上一点(2过点C作BD的垂线,交BD的延长线于点E,交BA的延长线于点F.(1)依题意补全图形;(2)若ACE α,求ABD的大小(用含α的式子表示);(3)若点G在线段CF 上,CG BD,连接DG.①判断DG与BC的位置关系并证明;②用等式表示DG,CG,AB之间的数量关系为.7.如图,等边△ABC中,P是AB上一点,过点P作PD⊥AC于点D,作PE⊥BC于点E,M是AB的中点,连接ME,MD.(1)依题意补全图形;(2)用等式表示线段BE ,AD 与AB的数量关系,并加以证明;(3)求证:MD=ME.C8.如图,∠AOB = 90°,OC 为∠AOB 的平分线,点P 为OC 上一个动点,过点P 作射线PE交OA 于点E .以点P 为旋转中心,将射线PE 沿逆时针方向旋转90°,交OB 于点F . (1)根据题意补全图1,并证明PE = PF ;(2)如图1,如果点E 在OA 边上,用等式表示线段OE ,OP 和OF 之间的数量关系,并证明;(3)如图2,如果点E 在OA 边的反向延长线上,直接写出线段OE ,OP 和OF 之间的数量关系.图1 图29.已知ABC ∆为等边三角形,点D 是线段AB 上一点(不与A 、B 重合).将线段CD 绕点C 逆时针旋转60︒得到线段CE.连结DE 、BE. (1)依题意补全图1并判断AD 与BE 的数量关系. (2)过点A 作AF EB ⊥交EB 延长线于点F.用等式表示线段EB 、DB 与AF 之间的数量关系并证明.PPEECCBBOOAA图2D CBA图1A B CD10.在△ABC 中,∠ABC =120°,线段AC 绕点A 逆时针旋转60°得到线段AD ,连接CD ,BD 交AC 于P .(1)若∠BAC =α,直接写出∠BCD 的度数 (用含α的代数式表示); (2)求AB ,BC ,BD 之间的数量关系;(3)当α=30°时,直接写出AC ,BD 的关系.11,如图,在等边△ABC 中,D 为边AC 的延长线上一点()CD AC ,平移线段BC ,使点C 移动到点D ,得到线段ED ,M 为ED 的中点,过点M 作ED 的垂线,交BC 于点F ,交AC 于点G . (1)依题意补全图形; (2)求证:AG = CD ;(3)连接DF 并延长交AB 于点H ,用等式表示线段AH 与CG 的数量关系,并证明.12.已知:如图,在△ABC 中,AB >AC ,∠B =45°, 点D 是BC 边上一点,且AD=AC ,过点C 作CF ⊥AD 于点E ,与AB 交于点F .(1)若∠CAD =α,求∠BCF 的大小(用含α的式子表示); (2)求证:AC =FC ;(3)用等式直接表示线段BF 与DC 的数量关系.D BAB CDFE13.如图,在等边ABC △中,点D 是线段BC 上一点.作射线AD ,点B 关于射线AD 的对称点为E .连接CE 并延长,交射线AD 于点F .(1)设BAF α∠=,用α表示BCF ∠的度数;(2)用等式表示线段AF 、CF 、EF 之间的数量关系,并证明.14.如图,在△ABC 中,∠ABC =90°,BA =BC .将线段AB 绕点A 逆时针旋转90°得到线段AD ,E 是边BC 上的一动点,连接DE 交AC 于点F ,连接BF . (1)求证:FB =FD ;(2)点H 在边BC 上,且BH =CE ,连接AH 交BF 于点N .①判断AH 与BF 的位置关系,并证明你的结论;②连接CN .若AB =2,请直接写出线段CN 长度的最小值.H O DCBA15.已知:四边形ABCD 中,120ABC ∠=︒,60ADC ∠=︒,AD =CD ,对角线AC ,BD相交于点O ,且BD 平分∠ABC ,过点A 作AH BD ⊥,垂足为H . (1)求证:ADB ACB ∠=∠;(2)判断线段BH ,DH ,BC 之间的数量关系;并证明.16.如图,在△ABC 中,AB =BC ,∠B =90°,点D 为线段BC 上一个动点(不与点B ,C 重合),连接AD ,将线段AD 绕点D 顺时针旋转90°得到线段DE ,连接EC .(1) ① 依题意补全图1;② 求证:∠EDC =∠BAD ;(2) ① 小方通过观察、实验,提出猜想:在点D 运动的过程中,线段CE 与BD 的数量关系始终不变,用等式表示,并证明.图1 D C B A备用图AB CD每日一题—新定义部分1.在平面直角坐标系xOy 中,如果等边三角形的一边与x 轴平行或在x 轴上,则称这个等边三角形为水平正三角形.(1)已知A (1,0),B (-1,0),若△ABC 是水平正三角形,则点C 坐标的是 (只填序号); ①,②,③,④(2)已知点O ,E ,F ,以这三个点中的两个点及平面内的另一个点P为顶点,构成一个水平正三角形,则这两个点是 ,并求出此时点P 的坐标.2.在平面直角坐标系xOy 中,对于P ,Q 两点给出如下定义:若点P 到x 、y 轴的距离中的最大值等于点Q 到x 、y 轴的距离中的最大值,则称P ,Q 两点为“等距点”.下图中的P ,Q 两点即为“等距点”.(1)已知点A 的坐标为(-3,1),①在点E (0,3),F (3,-3),G (2,-5)中,为点A 的“等距点”的是________;②若点B 在直线y =x +6上,且A ,B 两点为“等距点”,则点B 的坐标为________; (2)直线l :y =kx -3(k >0)与x 轴交于点C ,与y 轴交于点D ,若T 1(-1,t 1),T 2(4,t 2),是直线l 上的两点,且T 1与T 2为“等距点”,求k 的值.()12,(0()01,-(0()00,(1()02,-3.对于平面直角坐标系xOy 中的点P 和图形G ,给出如下定义:若在图形G 上存在两个点A ,B ,使得以P ,A ,B 为顶点的三角形为等边三角形,则称P 为图形G 的“等边依附点”.已知M (-3,N (3,. ①在点C (-2,2),D (0,1),E (1,3)中,是线段MN 的“等边依附点”的是 ;②点P (m ,0)在x 轴上运动,若P 为线段MN 的“等边依附点”,求点P 的横坐标m 的取值范围。
人教版八年级数学下册期末复习资料《勾股定理》复习题
八年级数学期末复习资料《勾股定理》期末复习题1勾股定理:如果直角三角形的两条直角边长分别为a,b,斜边长为c ,那____________________勾股定理的逆定理:如果三角形的三边长a,b,c 满足222c b a =+,那么这个三角形是 __________1. 在Rt △ABC 中,∠C=90°,若c=13,b=12,则a=________;2.已知直角三角形的两条边长分别是3和4,则此三角形的第三边长度为_____________3.直角三角形的两直角边分别为5、12,则斜边上的高为________.4.在直角坐标系中,点P (-2,3)到原点的距离是__________5.如图,一根树在离地面9米处断裂,树的顶部落在离底部 12米处.树折断之前有______米.6在等腰△ABC 中,AB=AC=13,BC=10,则高AD 的长为________7、命题“全等三角形的面积相等”的逆命题是________________________, 它是 ________(填入“真”或“假”)命题。
8.如图,有一块直角三角形纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC沿直线AD 折叠,使它落在斜边AB 上,且与AE则CD 等于_________cm.9. 在△ABC 中,∠A=90°,∠A 、∠B 、∠C 的对边长分别为a 、b 、c ,则下列结论错误的是( )A. a 2+b 2=c 2B.b 2+c 2=a 2C.a 2-b 2=c 2D.a 2-c 2=b 210、如果正方形ABCD 的面积为92,则对角线AC 的长度为( );11.一架方梯长25米,如图,斜靠在一面墙上,梯子底端离墙7米, (1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米, 那么梯子的底端在水平方向滑动了几米?12.印度数学家什迦逻(1141年-1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲; 出泥不染亭亭立,忽被强风吹一边, 渔人观看忙向前,花离原位二尺远; 能算诸君请解题,湖水如何知深浅?”请用学过的数学知识解答这个问题.《勾股定理》期末复习题21.下列各组不能构成直角三角形的是( )A.11 12 15B. 5 5 25C.45 143 D. 1 3 22.在△ABC 中,已知AB=12cm ,AC=9cm ,BC=15cm ,则△ABC 的面积 等于( )A 108cm 2B 90cm 2C 180cm 2D 54cm 2 3.直角三角形的两直角边分别为5、12,则斜边上的高为________.4. 如下图,数轴上有两个Rt △ABC 、Rt △ABC ,OA 、OC 是斜边,且OB=1,AB=1,CD=1,OD=2,分别以O 为圆心,OA 、OC 为半径画弧交x 轴于E 、F ,则E 、F分别对应的数是_________。
八年级数学期末复习计划(通用6篇)
八年级数学期末复习计划八年级数学期末复习计划(通用6篇)如何进行有效的复习,大家都有写过复习计划吧,对自己的学情进行分析,找到自己的长处和缺陷部分,然后据此进行有目的的复习。
那么大家知道复习计划是怎么写的吗?下面是小编为大家整理的八年级数学期末复习计划(通用6篇),欢迎大家分享。
八年级数学期末复习计划1(一)思想方面的补差。
做好学生的思想工作,经常和学生谈心,关心他们,关爱他们,让学生觉得老师是重视他们的,激发他们学习的积极性。
了解学生们的学习态度、学习习惯、学习方法等。
从而根据学生的思想心态进行相应的辅导。
(二)有效补差措施。
利用课余时间和晚拖班及放学后,对各种情况的同学进行辅导、提高,“因材施教、对症下药”,根据学生的素质采取相应的方法辅导。
具体方法如下:1.课上差生板演,中等生订正,优等生解决难题。
2.安排座位时坚持“好差同桌”结为学习对子。
即“兵教兵”。
3.课堂练习分成三个层次:第一层“必做题”—基础题让差生做,第二层:“选做题”—中等题,满足不同层次学生的需要。
4.培优补差过程必须优化备课,功在课前,效在课上,成果巩固在课后培优。
培优补差尽可能“耗费最少的必要时间和必要精力”。
备好学生、备好教材、备好练习,才能上好课,才能保证补差的效果。
要精编习题、习题教学要有四度。
习题设计(或选编习题)要有梯度,紧扣重点、难点、疑点和热点,面向大多数学生,符合学生的认知规律,有利于巩固“双基”,有利于启发学生思维;习题讲评要增加信息程度,围绕重点,增加强度,引到学生高度注意,有利于学生学会解答;解答习题要有多角度,一题多解,一题多变,多题一解,扩展思路,培养学生思维的灵活性,培养学生思维的广阔性和变通性;解题训练要讲精度,精选构思巧妙,新颖灵活的典型题,有代表性和针对性的题,练不在数量而在质量,训练要有多样化。
(三)在补差中注意几点:1、不歧视学习有困难的学生,不纵容优秀的学生,一视同仁。
2、根据差生的实际情况制定学习方案,学困生则根据他们的程度给与相应的题目进行练习和讲解,已达到循序渐进的目的。
期末数学考试复习资料大全
期末数学考试复习资料大全期末数学考试复习资料大全数学作为一门重要的学科,不仅在学校教育中占据着重要地位,而且在我们日常生活中也随处可见其应用。
期末数学考试是对我们所学数学知识的一个综合性检验,为了帮助大家更好地复习数学知识,我整理了一份期末数学考试复习资料大全,希望对大家有所帮助。
一、基础知识回顾首先,我们需要回顾一下数学的基础知识。
这包括数学符号的运用、基本的数学运算、常用数学公式等。
在复习过程中,我们可以通过查阅教材或参考书籍来巩固这些基础知识。
二、重点章节梳理接下来,我们需要梳理数学课程中的重点章节。
这些章节通常包括代数、几何、概率与统计等内容。
在复习这些章节时,我们可以结合教材中的例题和习题来进行练习,加深对知识点的理解和掌握。
1. 代数代数是数学中的基础部分,也是数学思维的重要组成部分。
在代数中,我们需要掌握方程、不等式、函数等概念,并能够灵活运用它们解决实际问题。
在复习代数时,我们可以重点关注代数方程的解法、函数的性质以及不等式的求解方法。
2. 几何几何是数学中的一门重要分支,它研究的是空间和图形的性质。
在几何中,我们需要掌握点、线、面的概念,以及各种图形的性质和计算方法。
在复习几何时,我们可以通过绘制图形、推导证明等方式来加深对几何知识的理解。
3. 概率与统计概率与统计是数学中的一门应用性较强的学科,它研究的是随机事件的发生规律和数据的收集与分析方法。
在复习概率与统计时,我们需要掌握概率的计算方法、统计图表的绘制和数据的分析方法等。
三、解题技巧总结除了复习知识点,我们还需要总结解题技巧。
数学题目通常有一定的套路和规律,掌握了解题技巧可以更加高效地解决问题。
在复习解题技巧时,我们可以结合历年的考试题目进行分析,总结出一些常用的解题方法和技巧。
1. 分析题目在解决数学问题时,我们首先要仔细阅读题目,理解问题的要求和条件。
然后,我们可以通过画图、列式、设变量等方式来帮助我们理清思路,找到解题的关键。
八年级下册数学知识点背诵
八年级下册数学知识点背诵
数学知识点的背诵是学习数学的重要环节。
在八年级下册数学
学习中,有多个重要的知识点需要掌握。
以下是这些知识点及其
重点内容:
一、平面几何
1.图形类别:凸、凹、正、反、全等、相似、等腰、等边、直角、锐角、钝角、变形、对称、轴对称、中心对称、平移、旋转、翻折、缩放、相交
2.图形的性质:面积、周长、对角线、夹角、垂线、高线、中线、角平分线、对边平行、内角和、外角和、三角形面积公式、
余弦定理、正弦定理、勾股定理
二、数学运算
1.分数的加减乘除:分数的相加、分数的相减、分数的相乘、
分数的相除、分数转化为小数、小数转化为分数、分数化简
2.百分数:百分数转化为小数、小数转化为百分数、百分数的加减乘除、百分数与分数的互化、百分数计算
三、代数
1.代数式的基本概念:代数式的组成、代数式的计算
2.一元一次方程:基本概念、解一元一次方程的方法
3.多项式与因式分解:多项式的概念、多项式的加减乘法、因式分解的方法
四、统计与概率
1.数据的分析:各种类型的数据、中位数、平均数、众数、极差、四分位数、百分位数、数据的描绘
2.概率的计算:事件、随机事件、概率的基本概念、概率的计算方法
以上是八年级下册数学知识点的主要内容和重点,每个知识点都需要经常理解和掌握,特别是图形类别和平面几何还需要多画图来帮助记忆和理解。
相信只要学生认真背诵并不断提高自己的数学水平,学习数学并不会很难。
八年级初二数学下学期二次根式单元 期末复习综合模拟测评学能测试试题
一、选择题1.下列计算正确的是( )A =B .2=C .(26=D ==2.若2a <3=( ) A .5a -B .5a -C .1a -D .1a --3.( )A .1B .﹣1C .D -4. )A B C D 5.下列各式中,正确的是( )A B .C =D = - 46.化简 )AB C D 7.关于代数式12a a ++,有以下几种说法, ①当3a =-时,则12a a ++的值为-4.②若12a a ++值为2,则a = ③若2a >-,则12a a ++存在最小值且最小值为0. 在上述说法中正确的是( ) A .① B .①② C .①③ D .①②③8.实数a ,b ,c ,满足|a |+a =0,|ab |=ab ,|c |-c =0,a +b |+|a -c |-( )A .2c -bB .2c -2aC .-bD .b9.下列计算正确的是( )A =B =C 4=D 3=- 10.下列运算一定正确的是( )A a =B =C .222()a b a b ⋅=⋅D ()0n a m=≥ 二、填空题11.使函数212y x x=+有意义的自变量x 的取值范围为_____________12.将(0)a a -<化简的结果是___________________. 13.能力拓展:1A =2A =;3:A =;4A =________.…n A :________.()1请观察1A ,2A ,3A 的规律,按照规律完成填空.()2比较大小1A 和2A()3-14.=___________.15.已知a ,b 是正整数,若有序数对(a ,b )使得的值也是整数,则称(a ,b )是的一个“理想数对”,如(1,4)使得=3,所以(1,4)是的一个“理想数对”.请写出其他所有的“理想数对”: __________.16_____.17.已知x ,y ,则x 2+xy +y 2的值为______.18.若1+x有意义,则x的取值范围是____.19.下列各式:①25②21+n③2b④0.1y是最简二次根式的是:_____(填序号)20.代数式4x-有意义,则x的取值范围是_____.三、解答题21.阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如3、3+1这样的式子,其实我们还可以将其进一步化简:535==33333⨯⨯;22(31)2(31)=313+1(3+1)(31)(3)1⨯-⨯-==---.以上这种化简过程叫做分母有理化.3+1还可以用以下方法化简:22(3)1(3+1)(31)=313+13+13+13+1--===-.(1)请用其中一种方法化简1511-;(2)化简:++++3+15+37+599+97.【答案】(1) 15+11;(2) 311-1.【分析】(1)运用了第二种方法求解,即将4转化为1511-;(2)先把每一个加数进行分母有理化,再找出规律,即后面的第二项可以和前面的第一项抵消,然后即可得出答案.【详解】(1)原式==;(2)原式=+++…=﹣1+﹣+﹣+…﹣=﹣1=3﹣1【点睛】本题主要考查了分母有理化,找准有理化的因式是解题的关键.22.先观察下列等式,再回答下列问题:111111112=+-=+;111112216=+-=+1111133112=+-=+(1) (2)请你按照上面各等式反映的规律,用含n 的等式表示(n 为正整数).【答案】(1)1120(2)()111n n ++(n 为正整数) 【解析】试题分析:(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子.试题解析:(1)=1+14−141+=1120,1120(2)1 n −1 n 1+=1+()1n n 1+ (n 为正整数).a =,也考查了二次根式的运算.此题是一道阅读题目,通过阅读找出题目隐含的条件.总结:找规律的题目,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.23.计算②)21-【答案】① 【分析】 ①根据二次根式的加减法则计算;②利用平方差、完全平方公式进行计算.【详解】解:①原式=②原式=(5-2-=【点睛】本题考查二次根式的运算,熟练掌握完全平方公式、平方差公式是关键.24.计算(2)2;(4)【答案】(1)2)9-;(3)1;(4)【分析】(1)根据二次根式的性质和绝对值的代数意义进行化简后合并即可;(2)根据完全平方公式进行计算即可;(3)根据二次根式的乘除法法则进行计算即可;(4)先进行乘法运算,再合并即可得到答案.【详解】解:==(2)2=22-=63-=9-=1;(4)===【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.25.计算:(1)0 1 2⎛⎫ ⎪⎝⎭(2)(4【答案】(1)-5;(2)9【分析】(1)第一项利用算术平方根的定义计算,后一项利用零指数幂法则计算,即可得到结果;(2)利用平方差公式计算即可.【详解】(1)0 1 2⎛⎫ ⎪⎝⎭41=--,5=-;(2)(4167=-9=.【点睛】本题考查了二次根式的混合运算以及零指数幂,熟练掌握平方差公式是解题的关键.26.计算:(1)11(233÷【答案】(12+;(2)【分析】(1)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同;(2)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同.【详解】解:)1131-=23==【点睛】本题考查了二次根式的混合运算,二次根式的混合运算顺序与实数的混合运算顺序一样,先乘方,再乘除,最后加减,有括号时要先算括号里的或先去括号.27.计算下列各题(1)⎛÷ ⎝(2)2-【答案】(1)1;(2).【分析】(1)先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算即可;(2)利用完全平方公式和平方差公式展开,然后再进行合并即可.【详解】(1)原式=1;(2)原式+2).【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.28.化简求值:212(1)211x x x x -÷-+++,其中1x =.【答案】3【解析】分析:先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.详解:原式2112,2111x x x x x x -+⎛⎫=÷- ⎪++++⎝⎭2112,211x x x x x -+-=÷+++ ()211,11x x x x -+=⋅-+ 1.1x =+当1x =时,113x ==+ 点睛:考查分式的混合运算,掌握运算顺序是解题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】5==,=,(24312=⨯=,选项D 正确.2.D解析:D【分析】||a =,然后再根据a 的范围去掉绝对值后即可求解.【详解】|2|=-a ,且2a <,∴|2|2=-=-+a a ,原式|2|3231=--=-+-=--a a a ,故选:D . 【点睛】||a =这个公式是解决本题的关键.解析:C【解析】解:原式=故选C.4.A解析:A【分析】根据二次根式的性质把每一项都化为最简二次根式,再根据同类二次根式的定义判断即可.【详解】解:A=B3C不是同类二次根式,不合题意;D3故选:A.【点睛】本题考查了同类二次根式的定义和二次根式的性质,属于基本题型,熟练掌握基本知识是解题关键.5.C解析:C【分析】根据算术平方根与平方根的定义、二次根式的加法与乘除法逐项判断即可.【详解】A4=,此项错误B、4=±,此项错误C==,此项正确D==故选:C.【点睛】本题考查了算术平方根与平方根的定义、二次根式的加法与乘除法,掌握二次根式的运算法则是解题关键.6.C解析:C根据二次根式有意义的条件可知﹣1x>0,求得x <0,然后根据二次根式的化简,可得x. 故选C .7.C解析:C【分析】①将3a =-代入12a a ++计算验证即可;②根据题意12a a ++=2,解得a 的值即可作出判断;③若a >-2,则a+2>0,则对12a a ++配方,利用偶次方的非负性可得答案. 【详解】解:①当3a =-时,1134232a a +=-+=-+-+. 故①正确; ②若12a a ++值为2, 则122a a +=+, ∴a 2+2a+1=2a+4,∴a 2=3,∴a =.故②错误;③若a >-2,则a+2>0, ∴12a a ++=1222a a ++-+=222+-=2≥0. ∴若a >-2,则12a a ++存在最小值且最小值为0. 故③正确.综上,正确的有①③.故选:C .【点睛】本题考查了分式的加减法、分式的值的计算及最值问题等知识点,熟练运用相关公式及运算法则是解题的关键.8.D解析:D【解析】解:∵|a|+a=0,∴|a|=﹣a,∴﹣a≥0,∴a≤0,∵|ab|=ab,∴ab≥0,∴b≤0,∵|c|﹣c=0,∴| c|=c,∴c≥0,∴原式=﹣b+(a+b)﹣(a﹣c)﹣(c﹣b)=b.故选D.9.B解析:B【分析】由二次根式的乘法、除法,二次根式的性质,分别进行判断,即可得到答案.【详解】解:A A错误;B=,故B正确;C==C错误;=,故D错误;D3故选:B.【点睛】本题考查了二次根式的乘法、除法,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.10.C解析:C【分析】直接利用二次根式的性质与化简以及积的乘方运算法则分别计算即可得出答案.【详解】A|a|,故此选项错误;B.,则a,b均为非负数,故此选项错误;C.a2•b2=(a•b)2,正确;D m n a(a≥0),故此选项错误.故选C.【点睛】本题主要考查了二次根式的性质与化简以及积的乘方运算,正确掌握相关运算法则是解题的关键.二、填空题11.【分析】利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,解得:①当时,解得:即:①当时,解得:即:故自变量x 的取值范围为【点睛】 解析:11,022x x -≤≤≠ 【分析】利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,220x x +≠解得:0,2x x ≠≠-12||0x -≥①当0x >时,120x -≥ 解得:12x ≤ 即:102x <≤ ①当0x <时,120x +≥ 解得:21x ≥-即:102x -≤< 故自变量x 的取值范围为11,022x x -≤≤≠ 【点睛】本题考查二次根式以及分式有意义的条件,熟练掌握分类讨论和解不等式组是解题关键.12..【分析】根据二次根式的性质化简即可.【详解】∵a <0.∴a -3<0,∴==.故答案为:.【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.解析:【分析】根据二次根式的性质化简即可.【详解】∵a <0.∴a -3<0,∴(a -=-=故答案为:【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.13.(1)、;(2);(3)【解析】【分析】(1)观察A1,A2,A3的规律可知将等式的右边乘以分母的有理化分式,即可得到左边的代数式;(2)先根据不等式的性质等式的两边同时加上或減去一个数,等解析:(1)=;(2),,><<;(3) ,,<<< 【解析】【分析】(1)观察A 1,A 2,A 3的规律可知将等式的右边乘以分母的有理化分式,即可得到左边的代数式;(2)先根据不等式的性质等式的两边同时加上或減去一个数,等式仍成立,求得>1)的结论解答;(3)利用(2)的结论进行填空.【详解】解:(1)观察A 1,A 2,A 3的规律可知,将等式右边的分式分母有理化,即得等式左边的代数式,所以=,(2>1>>,<<(3)由(1)、(2<,故答案为:=;(2),,><<;(3),,<<< 【点睛】 主要考查二次根式的有理化.根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.14.+1【分析】先将用完全平方式表示,再根据进行化简即可.【详解】因为,所以,故答案为:.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二+1【分析】先将3+,()()()0000a a a a a a ⎧>⎪===⎨⎪-<⎩进行化简即可.【详解】因为(2231211+=+=+=+,11===故答案为:1.【点睛】 本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二次根式利用完全平方公式分解.15.(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9)【解析】试题解析:当a=1,=1,要使为整数,=1或时,分别为4和3,得出(1,4)和(1,1)是的“理想数对”,解析:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9)【解析】试题解析:当a =1,要使或12时,分别为4和3,得出(1,4)和(1,1)是的“理想数对”,当a =412,要使+或12时,分别为3和2,得出(4,1)和(4,4)是的“理想数对”,当a =913,要使16时,=1,得出(9,36)是的“理想数对”,当a =1614,要使14时,=1,得出(16,16)是的“理想数对”,当a =3616,要使13时,=1,得出(36,9)是的“理想数对”, 即其他所有的“理想数对”:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9).故答案为:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9).16.6【分析】利用二次根式乘除法法则进行计算即可.【详解】===6,故答案为6.【点睛】本题考查了二次根式的乘除法,熟练运用二次根式的乘除法法则是解题的关键.解析:6【分析】==进行计算即可. 【详解】=6,故答案为6.【点睛】本题考查了二次根式的乘除法,熟练运用二次根式的乘除法法则是解题的关键. 17.4【详解】根据完全平方公式可得:原式=-xy==5-1=4.解析:4【详解】根据完全平方公式可得:原式=2()x y +-xy=251515151)222=5-1=4. 18.x≥0.【分析】直接利用二次根式有意义的条件进而分析得出答案.【详解】∵有意义,∴x≥0,故答案为x≥0.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.解析:x≥0.【分析】直接利用二次根式有意义的条件进而分析得出答案.【详解】有意义,∴x≥0,故答案为x≥0.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.19.②③【分析】根据最简二次根式的被开方数不含分母;被开方数不含能开得尽方的因数或因式,可得答案.【详解】②③是最简二次根式,故答案为②③.【点睛】本题考查最简二次根式的定义,解析:②③【分析】根据最简二次根式的被开方数不含分母;被开方数不含能开得尽方的因数或因式,可得答案.【详解】是最简二次根式,故答案为②③.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.20.x>4【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,x﹣4>0,解得,x>4,故答案为:x>4.【点睛】本题主要考查的是二次根解析:x>4【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,x﹣4>0,解得,x>4,故答案为:x>4.【点睛】本题主要考查的是二次根式有意义的条件、分式有意义的条件,掌握二次根式的被开方数是非负数、分式分母不为0是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
初二数学下册知识点梳理
学习这件事不在乎有没有人教你,最重要的是在于你自己有没有觉悟和恒心。
任何科目学习方法其实都是一样的,不断的记忆与练习,使知识刻在脑海里。
下面是小编给大家整理的一些初二数学的知识点,希望对大家有所帮助。
八年级数学知识点整理数据的收集、整理与描述一.知识框架二.知识概念1.全面调查:考察全体对象的调查方式叫做全面调查.2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查.3.总体:要考察的全体对象称为总体.4.个体:组成总体的每一个考察对象称为个体.5.样本:被抽取的所有个体组成一个样本.6.样本容量:样本中个体的数目称为样本容量.7.频数:一般地,我们称落在不同小组中的数据个数为该组的频数.8.频率:频数与数据总数的比为频率.9.组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距.初二期末上册数学复习资料1.多边形的分类:2.平行四边形、菱形、矩形、正方形、等腰梯形的定义、性质、判别:(1)平行四边形:两组对边分别平行的四边形叫做平行四边形。
平行四边形的对边平行且相等;对角相等,邻角互补;对角线互相平分。
两条对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形; 对角线互相平分的四边形是平行四边形。
(2)菱形:一组邻边相等的平行四边形叫做菱形。
菱形的四条边都相等;对角线互相垂直平分,每一条对角线平分一组对角。
四条边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形;一组邻边相等的平行四边形是菱形;对角线互相平分且垂直的四边形是菱形。
菱形的面积等于两条对角线乘积的一半(面积计算,即 S 菱形=L1.L2/2)。
(3)矩形:有一个内角是直角的平行四边形叫做矩形。
矩形的对角线相等; 四个角都是直角。
对角线相等的平行四边形是矩形;有一个角是直角的平行四边形是矩形。
初二下学期数学期末试卷复习资料精选
初二下学期数学期末试卷答案(经典版)一、选择题 (每小题3分,共30分) 1.下列计算中,正确的是 ﹙ ﹚A .123-⎪⎭⎫ ⎝⎛-=23B .a 1+b 1=b a +1C .b a b a --22=a+bD .0203⎪⎭⎫⎝⎛-=02.纳米是一种长度单位,1纳米=910-米。
已知某种花粉的直径为35000纳米,则用科学计数法表示该花粉的直径为 ( )A. m 6105.3-⨯B. m 5105.3-⨯C. m 41035-⨯D. m 4105.3⨯ 3.某八年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小华已经知道了自己的成绩,他想知道自己能否进入决赛,还需要知道这13名同学成绩的( )A.中位数 B.众数 C.极差 D.平均数 4.下列三角形中是直角三角形的是( )A.三边之比为7:6:5 B.三边之比为2:3:1 C.三边之长为2225,4,3 D.三边之长为13,14,15 5.正方形具有菱形不一定具有的性质是( )A .对角线互相垂直B .对角线互相平分C .对角线相等D .对角线平分一组对角 6.已知三点),(111y x P ),(222y x P )2,1(3-P都在反比例函数xky =的图象上,若0,021><x x ,则下列式子正确的是( )A .120y y <<B .120y y <<C .120y y >>D .120y y >>7.如图,在周长为20cm 的平行四边形ABCD 中,AB≠AD,AC 、BD 相交于点O ,OE⊥BD 交AD 于E ,则△ABE 的周长为( )A .4cm B.6cm C.8cm D.10cm8.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AB 于点N,则MN等于( )A.56 B.59 C.512 D.5169.若31=+xx ,则1242++x x x 的值是 ( ) A BCO EA.81 B. 101 C. 21 D. 41 10.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m 3 ) 的反比例函数,其图象如图所示.当气球内的气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应( ). A .不小于54m 3 B .小于54m 3C .不小于45m 3D .小于45m 3二、填空题 (每小题4分,共24分)11.当x=1时,分式nx mx -+2无意义,当x=4分式的值为零, 则n m +=________. 12.样本数据3,6,a,4,2的平均数是5,则这个样本的方差是___________. 13.如图,在菱形ABCD 中,∠A=060,E 、F 分别是AB 、AD 的中点,若 EF=2,则菱形ABCD的边长是____. 14.若分式方程931312-=++-x kx x 无解,则k =_________.15.如图,一次函数11y x =-与反比例函数22y x=的图象交于点A (2,1), B (-1,-2),则使12y y >的x 的取值范围是 .16.如图,正方形ABCD 的面积为25,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD+PE 的和最小,则这个最小值为_____________。
人教版八年级下册数学专题复习及练习(含解析):等腰三角形
专题13.3 等腰三角形知识点1:等腰三角形1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.2.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线,底边上的中线、 底边上的高互相重合(通常称作“三线合一”).3.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).知识点2:等边三角形1.定义:三条边相等的三角形叫做等边三角形.2.等边三角形的性质和判定:(1)等边三角形的三个内角都相等,并且每一个角都等于60°。
(2)三个角都相等的三角形是等边三角形。
(3)有一个角是60°的等腰三角形是等边三角形。
知识点3:直角三角形的一个定理在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.【例题1】如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:△ABC各角的度数.【例题2】证明:在直角三角形中,如果一个锐角等于30°, 那么它所对的直角边等于斜边的一半. 已知:如图,在Rt △ABC 中,∠C=90°,∠BAC=30°.求证:BC=AB .【例题7】已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )A .B .C .D .不能确定【例题3】如图,已知AC ⊥BC ,BD ⊥AD ,AC 与BD 交于点O ,AC=BD.求证:(1)BC=AD ;(2)△OAB 是等腰三角形.一、选择题1.已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )12C AA.B.C.D.不能确定2.如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A.AC>BC B.AC=BC C.∠A>∠ABC D.∠A=∠ABC3.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN 为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上4.如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.3二、解答题5.已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.6.如图,在△ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E.求证:AE=CE.7.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:∠CAE 是△ABC 的外角,∠1=∠2,AD ∥BC (如图).求证:AB=AC .8.已知:如图,AD ∥BC ,BD 平分∠ABC .求证:AB=AD .9.证明:等腰三角形两底角的平分线相等.已知:如图,在△ABC 中,AB=AC ,BD 、CE 是△ABC 的平分线.求证:BD=CE .10.证明:等腰三角形两腰上的高相等.已知:如图,在△ABC 中,AB=AC ,BE 、CF 分别是△ABC 的高.E DCAB11.证明:等腰三角形两腰上的中线相等.已知:如图,在△ABC 中,AB=AC ,BD 、CE 分别是两腰上的中线.求证:BD=CE .12.已知:如图,在△ABC 中,AB=AC=2a ,∠ABC=∠ACB=15°,CD 是腰AB 上的高.求:CD 的长.13.已知:如图,△ABC 中,∠ACB=90°,CD 是高,∠A=30°.求证:BD=AB .14.已知直角三角形的一个锐角等于另一个锐角的2倍,这个角的平分线把对边分成两条线段.求证:其中一条是另一条的2倍.已知:在Rt △ABC 中,∠A=90°,∠ABC=2∠C ,BD 是∠ABC 的平分线.1415.已知:如图,在Rt △ABC 中,∠C=90°,BC=AB .求证:∠BAC=30°.16.已知,如图,点C 为线段AB 上一点,△ACM 、△CBN 是等边三角形.求证:AN=BM .17.一个直角三角形房梁如图所示,其中BC ⊥AC ,∠BAC=30°,AB=10cm , CB 1⊥AB ,B 1C ⊥AC 1,垂足分别是B 1、C 1,那么BC 的长是多少?18.如图,△ABC 中,AB=AC ,∠A=36°,AC 的垂直平分线交AB 于E ,D 为垂足,连接EC .(1)求∠ECD 的度数;(2)若CE=5,求BC 长.12专题13.3 等腰三角形知识点1:等腰三角形1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.2.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线,底边上的中线、 底边上的高互相重合(通常称作“三线合一”).3.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).知识点2:等边三角形1.定义:三条边相等的三角形叫做等边三角形.2.等边三角形的性质和判定:(1)等边三角形的三个内角都相等,并且每一个角都等于60°。
八年级下册数学总复知识点
八年级下册数学总复知识点一. 代数
1. 代数式的基本性质
2. 代数式的加减法、乘除法
3. 一元多项式及其乘法
4. 因式分解
5. 推广因式定理
6. 分式的加减乘除
7. 二次根式及其运算
8. 平方根与立方根
9. 特殊化运算
二. 几何
1. 平面图形的性质:六类三角形、四边形、圆、等腰梯形
2. 平面图形间的关系
3. 勾股定理及其应用
4. 圆周角和弧度制
5. 直线和平面的交角关系
6. 空间图形:正方体、立方体、金字塔等的计算
三. 线性方程组
1. 同解方程组、不同解方程组、无解方程组
2. 单解公式:三元一次方程组
3. 二元一次方程组的解法:消元法、代入法
4. 实际问题中的线性方程组
四. 函数
1. 函数的定义:自变量、函数值、定义域、值域、图像
2. 常见函数:多项式函数、绝对值函数、一次函数、二次函数
3. 函数的图像和性质
4. 函数的运算:加减乘除、复合、反函数
5. 实际问题中的函数
五. 概率
1. 随机事件和样本空间
2. 概率的基本属性:非负性、规范性、可加性
3. 古典概型、几何概型、条件概率、贝叶斯公式
4. 事件的独立性、互斥性、全面性
6. 离散型随机变量的概率分布、期望、方差
七. 统计
1. 数据的收集、整理、分析
2. 典型数据集的描述、统计量:均值、中位数、众数、四分位数
3. 离均差和标准差的计算
4. 一元统计
5. 相关性的度量:相关系数。
成都市石室双楠实验学校初中数学八年级下期末复习题(答案解析)
一、选择题1.(0分)[ID:10225]如图,矩形ABCD的对角线AC与数轴重合(点C在正半轴上),AB=,125、的交点在数轴上BC=,若点A在数轴上表示的数是-1,则对角线AC BD表示的数为( )A.5.5B.5C.6D.6.52.(0分)[ID:10214]要使函数y=(m﹣2)x n﹣1+n是一次函数,应满足()A.m≠2,n≠2B.m=2,n=2C.m≠2,n=2D.m=2,n=0 3.(0分)[ID:10207]如图,在四边形ABCD中,AB∥CD,要使得四边形ABCD是平行四边形,可添加的条件不正确的是 ( )A.AB=CD B.BC∥AD C.BC=AD D.∠A=∠C4.(0分)[ID:10193]如图,以 Rt△ABC的斜边 BC为一边在△ABC的同侧作正方形 BCEF,设正方形的中心为 O,连接 AO,如果 AB=4,AO=62,那么 AC 的长等于()A.12B.16C.3D.25.(0分)[ID:10189]为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表:尺码(厘米)2525.52626.527购买量(双)12322则这10双运动鞋尺码的众数和中位数分别为()A.25.5厘米,26厘米B.26厘米,25.5厘米C.25.5厘米,25.5厘米D.26厘米,26厘米6.(0分)[ID:10186]如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=8,则HE等于()A.20B.16C.12D.87.(0分)[ID:10181]若一个直角三角形的两边长为12、13,则第三边长为()A.5B.17C.5或17D.5或√3138.(0分)[ID:10180]如图,一次函数y=mx+n与y=mnx(m≠0,n≠0)在同一坐标系内的图象可能是()A.B.C.D.9.(0分)[ID:10177]明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t (单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m2的自变量取值范围是( )10.(0分)[ID:10175]函数y=√x+3A .x ≠0B .x >﹣3C .x ≥﹣3且x ≠0D .x >﹣3且x ≠0 11.(0分)[ID :10169]直角三角形中,有两条边长分别为3和4,则第三条边长是( )A .1B .5C .7D .5或712.(0分)[ID :10160]如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 的中点C '上.若6AB =,9BC =,则BF 的长为( )A .4B .32C .4.5D .513.(0分)[ID :10155]如图,将四边形纸片ABCD 沿AE 向上折叠,使点B 落在DC 边上的点F 处.若AFD 的周长为18,ECF 的周长为6,四边形纸片ABCD 的周长为()A .20B .24C .32D .4814.(0分)[ID :10152]正比例函数()0y kx k =≠的函数值y 随x 的增大而增大,则y kx k =-的图象大致是( )A .B .C .D .15.(0分)[ID :10149]如图,函数y =ax +b 和y =kx 的图像交于点P ,关于x ,y 的方程组0y ax bkx y -=⎧⎨-=⎩的解是( )A .23x y =-⎧⎨=-⎩B .32x y =-⎧⎨=⎩C .32x y =⎧⎨=-⎩D .32x y =-⎧⎨=-⎩二、填空题16.(0分)[ID :10326]在函数41x y x -=+中,自变量x 的取值范围是______. 17.(0分)[ID :10319]在平面直角坐标系xOy 中,一次函数y =kx 和y =﹣x +3的图象如图所示,则关于x 的一元一次不等式kx <﹣x +3的解集是_____.18.(0分)[ID :10302]如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、E 的面积分别为2,5,1,10.则正方形D 的面积是______.19.(0分)[ID :10281]如图,在平行四边形ABCD 中,AB =3,BC =5,∠B 的平分线BE 交AD 于点E ,则DE 的长为____________.20.(0分)[ID :10279]菱形ABCD 的边长为5,一条对角线长为6,则该菱形的面积为__________.21.(0分)[ID :10278]观察下列各式:221111++1212⨯,221111++=1+2323⨯, 221111++=1+3434⨯, ……请利用你所发现的规律, 计算22111++12+22111++23+22111++34+…+22111++910,其结果为_______. 22.(0分)[ID :10277]如图所示,已知ABCD 中,下列条件:①AC =BD ;②AB =AD ;③∠1=∠2;④AB ⊥BC 中,能说明ABCD 是矩形的有______________(填写序号)23.(0分)[ID :10274]如果一组数据1,3,5,a ,8的方差是0.7,则另一组数据11,13,15,10a +,18的方差是________.24.(0分)[ID :10271]如图,已知ABC ∆中,10AB =,8AC =,6BC =,DE 是AC 的垂直平分线,DE 交AB 于点D ,连接CD ,则=CD ___25.(0分)[ID :10266]如图,菱形ABCD 中,E 、F 分别是AB 、AC 的中点,若EF =3,则菱形ABCD 的周长是 .三、解答题26.(0分)[ID :10399]如图,▱ABCD 的对角线AC ,BD 相交于点O .E ,F 是AC 上的两点,并且AE=CF ,连接DE ,BF . (1)求证:△DOE ≌△BOF ;(2)若BD=EF ,连接DE ,BF .判断四边形EBFD 的形状,并说明理由.27.(0分)[ID :10381]若一次函数y kx b =+,当26x -≤≤时,函数值的范围为119y -≤≤,求此一次函数的解析式?28.(0分)[ID :10351]已知:2y -与x 成正比例,且2x =时,8y =. (1)求y 与x 之间的函数关系式; (2)当3y <时,求x 的取值范围.29.(0分)[ID :10342]已知:如图,在▱ABCD 中,设BA =a ,BC =b . (1)填空:CA = (用a 、b 的式子表示)(2)在图中求作a +b .(不要求写出作法,只需写出结论即可)30.(0分)[ID :10431]已知:如图,在平行四边形ABCD 中,点E 、F 在AC 上,且AE=CF 求证:四边形BECF 是平行四边形.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.A 2.C3.C4.B5.D6.D7.D8.C9.B10.B11.D12.A13.B14.B15.D二、填空题16.x≥4【解析】【分析】根据被开方数为非负数及分母不能为0列不等式组求解可得【详解】解:根据题意知解得:x≥4故答案为x≥4【点睛】本题考查函数自变量的取值范围自变量的取值范围必须使含有自变量的表达式17.x<1【解析】观察图象即可得不等式kx<-x+3的解集是x<1点睛:本题主要考查了一次函数的交点问题及一次函数与一元一次不等式之间的关系会利用数形结合思想是解决本题的关键18.2【解析】【分析】设中间两个正方形和正方形D的面积分别为xyz然后有勾股定理解答即可【详解】解:设中间两个正方形和正方形D的面积分别为xyz则由勾股定理得:x=2+5=7;y=1+z;7+y=7+119.2【解析】【分析】根据平行四边形的性质可得出AD∥BC则∠AEB=∠CBE再由∠ABE =∠CBE则∠AEB=∠ABE则AE=AB从而求出DE【详解】解:∵四边形ABCD是平行四边形∴AD∥BC∴∠A20.24【解析】【分析】根据菱形的性质利用勾股定理求得另一条对角线再根据菱形的面积等于两对角线乘积的一半求得菱形的面积【详解】解:如图当BD=6时∵四边形ABCD是菱形∴AC⊥BDAO=COBO=DO=21.【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案详解:由题意可得:+++…+=+1++1++…+1+=9+(1﹣+﹣+﹣+…+﹣)=9+=9故答案为9点睛:此题主要考查了数字变化规律正确22.①④【解析】矩形的判定方法由:①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形由此可得能使平行四边形ABCD是矩形的条件是①和④23.7【解析】【分析】根据题目中的数据和方差的定义可以求得所求数据的方差【详解】设一组数据135a8的平均数是另一组数据111315+1018的平均数是+10∵=07∴==07故答案为07【点睛】本题考24.5【解析】【分析】由是的垂直平分线可得AD=CD可得∠CAD=∠ACD利用勾股定理逆定理可得∠ACB=90°由等角的余角相等可得:∠DCB=∠B可得CD=BD可知CD=BD=AD=【详解】解:∵是的25.【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出BC再根据菱形的周长公式列式计算即可得解【详解】∵EF分别是ABAC的中点∴EF是△ABC 的中位线∴BC=2EF=2×3=6∴菱三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试1.A解析:A 【解析】【分析】连接BD交AC于E,由矩形的性质得出∠B=90°,AE=12AC,由勾股定理求出AC,得出OE,即可得出结果.【详解】连接BD交AC于E,如图所示:∵四边形ABCD是矩形,∴∠B=90°,AE=12 AC,∴222251213AB BC+=+=,∴AE=6.5,∵点A表示的数是-1,∴OA=1,∴OE=AE-OA=5.5,∴点E表示的数是5.5,即对角线AC、BD的交点表示的数是5.5;故选A.【点睛】本题考查了矩形的性质、勾股定理、实数与数轴;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.2.C解析:C【解析】【分析】根据y=kx+b(k、b是常数,k≠0)是一次函数,可得m-2≠0,n-1=1,求解即可得答案.【详解】解:∵y=(m﹣2)x n﹣1+n是一次函数,∴m﹣2≠0,n﹣1=1,∴m≠2,n=2,【点睛】本题考查了一次函数,y=kx+b ,k 、b 是常数,k≠0,x 的次数等于1是解题关键.3.C解析:C 【解析】 【分析】根据平行四边形的判定方法,逐项判断即可. 【详解】 ∵AB ∥CD ,∴当AB=CD 时,由一组对边平行且相等的四边形为平行四边形可知该条件正确; 当BC ∥AD 时,由两组对边分别平行的四边形为平行四边形可知该条件正确; 当∠A=∠C 时,可求得∠B=∠D ,由两组对角分别相等的四边形为平行四边形可知该条件正确;当BC=AD 时,该四边形可能为等腰梯形,故该条件不正确; 故选:C . 【点睛】本题主要考查平行四边形的判定,掌握平行四边形的判定方法是解题的关键.4.B解析:B 【解析】 【分析】首选在AC 上截取4CG AB ==,连接OG ,利用SAS 可证△ABO ≌△GCO ,根据全等三角形的性质可以得到:OA OG ==AOB COG ∠=∠,则可证△AOG 是等腰直角三角形,利用勾股定理求出12AG =,从而可得AC 的长度. 【详解】 解:如下图所示,在AC 上截取4CG AB ==,连接OG , ∵四边形BCEF 是正方形,90BAC ∠=︒, ∴OB OC =,90BAC BOC ∠=∠=︒, ∴点B 、A 、O 、C 四点共圆, ∴ABO ACO ∠=∠, 在△ABO 和△GCO 中,{BA CGABO ACO OB OC=∠=∠=, ∴△ABO ≌△GCO ,∴OA OG ==AOB COG ∠=∠,∵90BOC COG BOG ∠=∠+∠=︒,∴90AOG AOB BOG ∠=∠+∠=︒,∴△AOG 是等腰直角三角形,∴()()22626212AG =+=,∴12416AC =+=.故选:B .【点睛】本题考查正方形的性质;全等三角形的判定与性质;勾股定理;直角三角形的性质.5.D解析:D【解析】【分析】【详解】试题分析:众数是26cm,出现了3次,次数最多;在这10个数中按从小到大来排列最中间的两个数是26,26;它们的中位书为26cm考点:众数和中位数点评:本题考查众数和中位数,解本题的关键是熟悉众数和中位数的概念6.D解析:D【解析】【分析】根据三角形中位线定理得出AC 的长,再根据直角三角形斜边上的中线等于斜边的一半即可求出【详解】∵D 、F 分别是AB 、BC 的中点,∴DF 是△ABC 的中位线,∴DF=12AC ; ∵FD=8∴AC=16 又∵E 是线段AC 的中点,AH ⊥BC ,∴EH=12 AC,∴EH=8.故选D.【点睛】本题综合考查了三角形中位线定理、直角三角形斜边上的中线.熟记性质与定理并准确识图是解题的关键.7.D解析:D【解析】【分析】根据告诉的两边长,利用勾股定理求出第三边即可.注意13,12可能是两条直角边也可能是一斜边和一直角边,所以得分两种情况讨论.【详解】当12,13为两条直角边时,第三边=√122+132=√313,当13,12分别是斜边和一直角边时,第三边=√132−122=5.故选D.【点睛】本题考查了勾股定理的知识,题目中渗透着分类讨论的数学思想.8.C解析:C【解析】【分析】根据m、n同正,同负,一正一负时利用一次函数的性质进行判断.【详解】解:①当mn>0时,m、n同号,y=mnx过一三象限;同正时,y=mx+n经过一、二、三象限,同负时,y=mx+n过二、三、四象限;②当mn<0时,m、n异号,y=mnx过二四象限,m>0,n<0时,y=mx+n经过一、三、四象限;m<0,n>0时,y=mx+n过一、二、四象限;故选:C.【点睛】本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.9.B解析:B【解析】【分析】【详解】解:如图,设直线AB 的解析式为y=kx+b ,则4+=1200{5k+b=1650k b , 解得450{600k b ==- 故直线AB 的解析式为y=450x ﹣600,当x=2时,y=450×2﹣600=300, 300÷2=150(m 2)故选B .【点睛】本题考查一次函数的应用.10.B解析:B【解析】【分析】【详解】由题意得:x +3>0,解得:x >-3.故选B .11.D解析:D【解析】【分析】分第三边为直角边或斜边两种情况,根据勾股定理分别求第三边.【详解】当第三边为直角边时,4为斜边,第三边2243-7;当第三边为斜边时,3和4为直角边,第三边2243+=5,故选:D .【点睛】本题考查了勾股定理.关键是根据第三边为直角边或斜边,分类讨论,利用勾股定理求解.12.A解析:A【解析】【分析】【详解】∵点C′是AB边的中点,AB=6,∴BC′=3,由图形折叠特性知,C′F=CF=BC-BF=9-BF,在Rt△C′BF中,BF2+BC′2=C′F2,∴BF2+9=(9-BF)2,解得,BF=4,故选A.13.B解析:B【解析】【分析】根据折叠的性质易知矩形ABCD的周长等于△AFD和△CFE的周长的和.【详解】由折叠的性质知,AF=AB,EF=BE.所以矩形的周长等于△AFD和△CFE的周长的和为18+6=24cm.故矩形ABCD的周长为24cm.故答案为:B.【点睛】本题考查了折叠的性质,解题关键是折叠前后图形的形状和大小不变,对应边和对应角相等.14.B解析:B【解析】【分析】由于正比例函数y=kx(k≠0)函数值随x的增大而增大,可得k>0,-k<0,然后判断一次函数y=kx-k的图象经过的象限即可.【详解】解:∵正比例函数y=kx(k≠0)函数值随x的增大而增大,∴k>0,∴-k<0,∴一次函数y=kx-k的图象经过一、三、四象限;故选:B.【点睛】本题主要考查了一次函数的图象,一次函数y=kx+b(k≠0)中k,b的符号与图象所经过的象限如下:当k>0,b>0时,图象过一、二、三象限;当k>0,b<0时,图象过一、三、四象限;k<0,b>0时,图象过一、二、四象限;k<0,b<0时,图象过二、三、四象限.15.D解析:D【解析】【分析】根据两图象的交点坐标满足方程组,方程组的解就是交点坐标.【详解】由图可知,交点坐标为(﹣3,﹣2),所以方程组的解是32 xy=-⎧⎨=-⎩.故选D.【点睛】本题考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.二、填空题16.x≥4【解析】【分析】根据被开方数为非负数及分母不能为0列不等式组求解可得【详解】解:根据题意知解得:x≥4故答案为x≥4【点睛】本题考查函数自变量的取值范围自变量的取值范围必须使含有自变量的表达式解析:x≥4【解析】【分析】根据被开方数为非负数及分母不能为0列不等式组求解可得.【详解】解:根据题意,知4010xx-≥⎧⎨+≠⎩,解得:x≥4,故答案为x≥4.【点睛】本题考查函数自变量的取值范围,自变量的取值范围必须使含有自变量的表达式都有意义:①当表达式的分母不含有自变量时,自变量取全体实数.例如y=2x+13中的x.②当表达式的分母中含有自变量时,自变量取值要使分母不为零..③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.17.x<1【解析】观察图象即可得不等式kx<-x+3的解集是x<1点睛:本题主要考查了一次函数的交点问题及一次函数与一元一次不等式之间的关系会利用数形结合思想是解决本题的关键解析:x<1【解析】观察图象即可得不等式kx<-x+3的解集是x<1.点睛:本题主要考查了一次函数的交点问题及一次函数与一元一次不等式之间的关系,会利用数形结合思想是解决本题的关键.18.2【解析】【分析】设中间两个正方形和正方形D的面积分别为xyz然后有勾股定理解答即可【详解】解:设中间两个正方形和正方形D的面积分别为xyz则由勾股定理得:x=2+5=7;y=1+z;7+y=7+1解析:2【解析】【分析】设中间两个正方形和正方形D的面积分别为x,y,z,然后有勾股定理解答即可.【详解】解:设中间两个正方形和正方形D的面积分别为x,y,z,则由勾股定理得:x=2+5=7;y=1+z;7+y=7+1+z=10;即正方形D的面积为:z=2.故答案为:2.【点睛】本题考查了勾股定理的应用,掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.19.2【解析】【分析】根据平行四边形的性质可得出AD∥BC则∠AEB=∠CBE 再由∠ABE=∠CBE则∠AEB=∠ABE则AE=AB从而求出DE【详解】解:∵四边形ABCD是平行四边形∴AD∥BC∴∠A解析:2【解析】【分析】根据平行四边形的性质,可得出AD∥BC,则∠AEB=∠CBE,再由∠ABE=∠CBE,则∠AEB=∠ABE,则AE=AB,从而求出DE.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵∠B的平分线BE交AD于点E,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AE=AB,∵AB=3,BC=5,∴DE=AD-AE=BC-AB=5-3=2.故答案为2.【点睛】本题考查了平行四边形的性质、角平分线的定义,解题的关键是掌握平行四边形的性质:对边相等.20.24【解析】【分析】根据菱形的性质利用勾股定理求得另一条对角线再根据菱形的面积等于两对角线乘积的一半求得菱形的面积【详解】解:如图当BD=6时∵四边形ABCD是菱形∴AC⊥BDAO=COBO=DO=解析:24【解析】【分析】根据菱形的性质利用勾股定理求得另一条对角线,再根据菱形的面积等于两对角线乘积的一半求得菱形的面积.【详解】解:如图,当BD=6时,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO=3,∵AB=5,∴AO=√AB2−BO2=4,∴AC=4×2=8,∴菱形的面积是:6×8÷2=24,故答案为:24.【点睛】本题考查了菱形的面积公式,以及菱形的性质和勾股定理,关键是掌握菱形的面积等于两条对角线的积的一半.21.【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案详解:由题意可得:+++…+=+1++1++…+1+=9+(1﹣+﹣+﹣+…+﹣)=9+=9故答案为9点睛:此题主要考查了数字变化规律正确解析:9 9 10【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:=11+12⨯+1+123⨯+1+134⨯+ (1)1910⨯=9+(1﹣12+12﹣13+13﹣14+…+19﹣110)=9+9 10=99 10.故答案为99 10.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.22.①④【解析】矩形的判定方法由:①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形由此可得能使平行四边形ABCD是矩形的条件是①和④解析:①④【解析】矩形的判定方法由:①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形,由此可得能使平行四边形ABCD是矩形的条件是①和④.23.7【解析】【分析】根据题目中的数据和方差的定义可以求得所求数据的方差【详解】设一组数据135a8的平均数是另一组数据111315+1018的平均数是+10∵=07∴==07故答案为07【点睛】本题考解析:7【解析】【分析】根据题目中的数据和方差的定义,可以求得所求数据的方差.【详解】设一组数据1,3,5,a,8的平均数是x,另一组数据11,13,15,x+10,18的平均数是x+10,∵22222 (1)(3)(5)()(8)5x x x a x x-+-+-+-+-=0.7,∴222 (1110)(1310)(1810)5x x x--+--+⋯--=22222(1)(3)(5)()(8)5x x x a x x -+-+-+-+- =0.7,故答案为0.7.【点睛】本题考查方差,解答本题的关键是明确题意,利用方差的知识解答.24.5【解析】【分析】由是的垂直平分线可得AD=CD 可得∠CAD=∠ACD 利用勾股定理逆定理可得∠ACB=90°由等角的余角相等可得:∠DCB=∠B 可得CD=BD 可知CD=BD=AD=【详解】解:∵是的解析:5【解析】【分析】由DE 是AC 的垂直平分线可得AD=CD ,可得∠CAD=∠ACD ,利用勾股定理逆定理可得∠ACB=90°由等角的余角相等可得:∠DCB=∠B ,可得CD=BD ,可知CD=BD=AD=152AB = 【详解】解:∵DE 是AC 的垂直平分线∴AD=CD∴∠CAD=∠ACD∵10AB =,8AC =,6BC =又∵2226+8=10∴222AC BC AB +=∴∠ACB=90°∵∠ACD+∠DCB=90°, ∠CAB+∠B=90°∴∠DCB=∠B∴CD=BD∴CD=BD=AD=152AB = 故答案为5【点睛】本题考查了线段垂直平分线、勾股定理逆定理以及等腰三角形的性质,掌握勾股定理逆定理及利用等腰三角形求线段是解题的关键. 25.【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出BC 再根据菱形的周长公式列式计算即可得解【详解】∵EF 分别是ABAC 的中点∴EF 是△ABC 的中位线∴BC=2EF=2×3=6∴菱解析:【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出BC ,再根据菱形的周长公式列式计算即可得解.【详解】∵E 、F 分别是AB 、AC 的中点,∴EF 是△ABC 的中位线,∴BC=2EF=2×3=6,∴菱形ABCD 的周长=4BC=4×6=24.故答案为24.【点睛】本题主要考查了菱形的四条边都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.三、解答题26.(2)证明见解析;(2)四边形EBFD 是矩形.理由见解析.【解析】分析:(1)根据SAS 即可证明;(2)首先证明四边形EBFD 是平行四边形,再根据对角线相等的平行四边形是矩形即可证明;【解答】(1)证明:∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD ,∵AE=CF ,∴OE=OF ,在△DEO 和△BOF 中,OD OB DOE BOF OE OF ⎧⎪∠∠⎨⎪⎩===,∴△DOE ≌△BOF .(2)结论:四边形EBFD 是矩形.理由:∵OD=OB ,OE=OF ,∴四边形EBFD 是平行四边形,∵BD=EF ,∴四边形EBFD 是矩形.点睛:本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.27.y=52x-6或y=-52x+4【解析】【分析】根据函数自变量的取值范围,分两种情况用待定系数法求函数解析式.【详解】解:设所求的解析式为y=kx+b,分两种情况考虑:(1)将x=-2,y=-11代入得:-11=-2k+b,将x=6,y=9代入得:9=6k+b,∴211 69k bk b-+=-⎧⎨+=⎩,解得:k=52,b=-6,则函数的解析式是y=52x-6;(2)将x=6,y=-11代入得:-11=6k+b,将x=-2,y=9代入得:9=-2k+b,∴29 611k bk b-+=⎧⎨+=-⎩,解得:k=-52,b=4,则函数的解析式是y=-52x+4.综上,函数的解析式是y=52x-6或y=-52x+4.故答案为:y=52x-6或y=-52x+4.【点睛】本题考查了一次函数的图像与性质,待定系数法求函数解析式,要注意利用一次函数自变量的取值范围,来列出方程组,求出未知数,写出解析式.28.(1)y=3x+2(2)x<1 3【解析】【分析】(1)根据y-2与x成正比例可设y与x之间的函数关系式为y-2=2k,将点的坐标代入一次函数关系式中求出k 值,此题得解;(2)令y<3,由此即可得出关于x 的一元一次不等式,解之即可得出结论.【详解】解:(1)∵2y -与x 成正比例,∴设2y kx -=,∵2x =时,8y =,∴822k -=,∴3k =,∴32y x =+;(2)∵3y <,∴323x +<, 即13x <. 故答案为(1)y=3x+2;(2)x <13. 【点睛】 本类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用不等式解决问题.29.(1) a -b ;(2) BD【解析】【分析】(1)根据三角形法则可知:,CA CB BA =+延长即可解决问题;(2)连接BD .因为,BD BA AD =+ ,AD BC =即可推出.BD a b =+【详解】解:(1)∵,CA CB BA =+ BA =a ,BC =b∴.CA a b =-故答案为a -b .(2)连接BD .∵,BD BA AD =+ ,AD BC =∴.BD a b =+∴BD即为所求;【点睛】本题考查作图﹣复杂作图、平行四边形的性质、平面向量等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.30.证明见解析.【解析】【分析】根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形式平行四边形,可得证明结论.【详解】如答图,连接BC,设对角线交于点O.∵四边形ABCD是平行四边形,∴OA=OD,OB=OC.∵AE=DF,OA﹣AE=OD﹣DF,∴OE=OF.∴四边形BEDF是平行四边形.。
八年级下册数学知识点大纲
八年级下册数学知识点大纲一、分数
1. 什么是分数
2. 分数的分类
3. 分数的加减乘除
4. 分数化简
5. 分数的大小比较
6. 分数的应用
二、代数式
1. 什么是代数式
2. 代数式的分类
3. 代数式的加减乘除
4. 代数式的同类项合并
5. 代数式的化简
6. 代数式的应用
三、线性方程组
1. 什么是线性方程组
2. 线性方程组的解法
3. 线性方程组的应用
四、平面几何
1. 基本概念与性质
2. 垂线、角平分线、中线、高线与中垂线
3. 三角形的相似
4. 三角形的等角关系和全等关系
5. 三角形面积与勾股定理
五、正比例函数
1. 什么是正比例函数
2. 正比例函数的图像特征
3. 正比例函数的性质和应用
六、平方根与立方根
1. 平方根的计算及其性质
2. 立方根的计算及其性质
3. 平方根、立方根的化简与应用
七、统计与概率
1. 数据的收集、整理和表达
2. 统计量的计算及其意义
3. 概率的基本概念与性质
4. 事件的概率和互斥事件
八、三角函数
1. 什么是三角函数
2. 正弦函数、余弦函数、正切函数的性质
3. 三角函数的应用
以上为八年级下册数学知识点大纲。
在学习这些知识点时,需
要掌握概念、性质和公式等基础知识,加强练习、提高思维能力,将知识点应用于实际问题中,达到对数学知识的全面掌握和灵活
应用。
人教版八年级数学下册复习提纲
人教版八年级数学下册复习提纲
一、整数和有理数
1. 整数概念及性质
2. 整数的加减法运算
3. 整数的乘法和除法运算
4. 整数的混合运算和运算规律
5. 有理数概念及性质
6. 有理数的加减法运算
7. 有理数的乘法和除法运算
8. 有理数的混合运算和运算规律
二、平方根和实数
1. 平方根的概念及性质
2. 平方根的运算法则
3. 二次根式的概念及性质
4. 二次根式的加减法运算
5. 二次根式的乘法和除法运算
6. 实数的概念及性质
7. 实数的加减法运算
8. 实数的乘法和除法运算
三、图形的性质
1. 平面直角坐标系
2. 点、线、面的基本概念
3. 图形的相似性质
4. 图形的对称性质
5. 图形的投影性质
6. 图形的旋转性质
四、一元一次方程与一元一次不等式
1. 一元一次方程的基本概念
2. 一元一次方程的解集及解的性质
3. 一元一次方程的加减消元和倍增消元
4. 一元一次方程的应用问题
5. 一元一次不等式的基本概念
6. 一元一次不等式的解集及解的性质
7. 一元一次不等式的加减消元和倍增消元
8. 一元一次不等式的应用问题
以上为人教版八年级数学下册复习提纲,以帮助复习重要知识点和概念。
请根据提纲进行系统性的复习和练习,以加深对数学知识的理解和掌握。
初二下数学试卷资料推荐
随着我国教育改革的不断深入,初二下学期数学学习的重要性日益凸显。
为了帮助同学们更好地备战期末考试,提高解题能力,以下是一份针对初二下学期数学试卷的资料推荐,旨在全面提升同学们的数学素养。
一、教材同步练习册教材同步练习册是同学们必备的复习资料。
它以教材为基础,对每章节的重点、难点进行详细讲解,并配有大量的练习题。
以下是几款推荐的教材同步练习册:1.《人教版初二下册数学同步练习》2.《苏教版初二下册数学同步练习》3.《北师大版初二下册数学同步练习》二、历年中考真题汇编历年中考真题汇编是检验同学们学习成果的重要资料。
通过对历年中考真题的练习,同学们可以了解中考的题型、难度和出题规律。
以下是几款推荐的历年中考真题汇编:1.《人教版初二下册数学历年中考真题汇编》2.《苏教版初二下册数学历年中考真题汇编》3.《北师大版初二下册数学历年中考真题汇编》三、专项练习资料针对初二下学期数学的重点、难点,以下推荐几款专项练习资料:1.《初二下册数学几何专题练习》2.《初二下册数学代数专题练习》3.《初二下册数学应用题专项练习》四、解题技巧与策略为了帮助同学们提高解题速度和准确率,以下推荐几款解题技巧与策略资料:1.《初二下册数学解题技巧与策略》2.《初中数学解题方法与技巧》3.《初中数学解题思维训练》五、辅导资料推荐在备考过程中,同学们可以参考以下辅导资料,以便更好地掌握知识点和解题方法:1.《初中数学知识要点》2.《初中数学解题方法大全》3.《初中数学解题技巧与策略》总结:通过以上推荐,相信同学们在备考初二下学期数学时能够有针对性地进行复习,全面提升解题能力。
同时,同学们要注重学习方法,合理安排时间,保持良好的心态,相信在期末考试中一定能取得优异的成绩。
祝同学们学习进步!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二下学期期末数学综合复习资料(三)
一、填空题:
1、计算
)3225)(65(-+= ;=⋅182 ;=+3
1648 。
2、23-的倒数是 。
3、当x 时,二次根式
2-x 有意义。
4、当x <0时,2x = 。
5、在△中,D 、E 分别是、的中点,若=8cm ,则= 。
6、菱形的一个内角是60°,边长为5cm ,则这个菱形较短的对角线长是 。
7、如果梯形的两底之比为2∶5,中位线长14cm ,那么较大的底长为 。
8、已知线段a =4cm ,b =9cm ,线段c 是a 、b 的比例中项,则c = 。
9、已知线段a =2,b =3,c =6,d 是a 、b 、c 的第四比例项,那么d = 。
10、梯形的中位线长为6cm ,上底长为4cm ,那么这个梯形的下底长为 。
11、矩形的对角线、相交于点O ,∠=60°,=3.6,那么的长
为 。
12、如图,∥且=,若=5,=10,则的长为 ;若=10,
则的长为 。
E D C B A F
E D C
B A
13、如图,直角梯形的一条对角线将梯形分成两个三角形,△是边
长为10的等边三角形,则梯形的中位线= 。
14、矩形中,⊥,E 为垂足,∠∶∠=3∶1,那么∠= 度。
二、选择题:
1、下列图形中,不是中心对称图形的是( )
A 、菱形
B 、平行四边形
C 、正方形
D 、等腰梯
形
2、如果一个多边形的内角和等于720°,那么这个多边形是( )
A 、正方形
B 、三角形
C 、五边形
D 、六边形
3、顺次连结任意四边形各边中点所得的四边形是( )
A 、平行四边形
B 、矩形
C 、菱形
D 、正方形
4、化简
a a 3-的结果为( ) A 、a - B 、a - C 、a -- D 、a
5、当1<x <2时,化简|3|)1(2-+-x x 的结果是( )
A 、2
B 、—2
C 、—4
D、2x-4
6、下列两个三角形一定相似的是()
A、两个直角三角形
B、两个锐角三角形
C、两个等腰三角形
D、两个等边三角形
7、下列性质中,平行四边形不一定具备的是()
A、邻角互补
B、对角互补
C、对边相等
D、对角线互相平分
8、下列命题正确的是()
A、两条对角线相等的四边形是矩形
B、两条对角线互相垂直的四边形是菱形
C、两条对角线互相垂直平分的四边形是正方形
D、两条对角线相等的梯形是等腰梯形
9、下列二次根式中与3是同类二次根式的是()
A、18
B、3.0
C、30
D、300
10、下列命题中真命题是()
A、两个直角三角形是相似三角形
B、两个等边三角形是相似三角形
C、两个等腰三角形是相似三角形
D、等边三角形是中心对称图形
11、矩形具有而菱形不一定具有的性质是()
A、对角线互相平分
B、对角线互相垂直
C、对角线相等
D、对边相等
三、解答题:
1、已知:223-=
x ,223+=y 。
求y x 11-的值。
2、已知321+=a ,求a a a a a a a a 112121222--+---+-的值。
3、已知:如图,矩形中,E 、F 是上的两点,且=;求证:∠=∠
F E D C
B A E
D C B A O
F
E D C B A
4、已知:如图,△中,=,是边上的高,是△的外角平分线,∥交于点E ,求证:四边形是矩形。
5、已知:如图,菱形的对角线与交于点O ,延长到点E ,使=21,连结、,并延长交的延长线于点F ;求证:=2
1。
6、已知:如图,在正方形中,F 是边上的中点,点P 在上,∠1=∠2,⊥交于点E ,垂足为P 。
求证:=3。
21
P F
E D C B A
21O
D C B A F
E D
C
B A
7、如图,梯形中,∥,对角线、交于点O ,∠1=∠2,=2;求证:=3
8、已知:如图,在△中,∠=90°,D 、E 分别是、的中点,点F 在延长线上,且∠=∠A ;
(1)求证:四边形是平行四边形;
(2)
53=AB BC ,四边形的周长为22,求的长。
参考答案或提示
(第三套)
一:1、219;6、36;2、23+;3、≥2;4、x -;5、4;6、5;7、20;
8、6cm ;9、9cm ;10、8cm ;11、7.2;12、310,3
10。
13、
7.5;14、450。
二、,,C
三:1、原式=24=-xy
x y 2、原式=311111-=-=-+-a a a a
3、可证:△≌△()
4、提示:证是平行四边形得平行且等于,又因为=,所以平行且等于,故是平行四边形,又因∠=∠,所以是矩形。
5、菱形⇒∥FD FE CD AE =⇒,又∵=,=21。
∴21=FD FE ∴是△斜边上的中线,∴0E =21。
6、∵△是等腰直角三角形
∴=
由△∽△可得2
1==AB FC BP PC ; ∴31=BC PC ∴3
1=AB PE 即=3 7、提示; △∽△BO OD BO DB AB DB BD
AB AB OB 342=⇒=⇒=⇒=⇒
梯形AB CD OD OB DC AB DC AB 3=⇒=⇒⇒ 8、①∵是△斜边上的中线
∴=
∴∠A =∠ 又∵∠A =∠
∴∠=∠
∴∥ 又∵中位线∥
∴是平行四边形
②设=k 3,则=k 5,===k 5.2,==k 5.1,由周长为22可得k =2,故=3。