Aspen板翅换热器的帮助文件剖析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Thermal Design of Plate fin Heat Exchangers 板翅换热器的热力设计
目录
PlateFin Input 输入界面 (4)
Problem Definition 任务定义 (4)
Headings/Remarks 标题/备注 (4)
Application Options应用选项 (4)
Calculation Mode:计算模式 (5)
Application Control 应用控制 (13)
Process Data 过程数据 (15)
Process 过程 (15)
Process Options 过程选项 (23)
Partial Draw-off 部分抽取 (29)
Physical Property Data 物理属性数据 (30)
Composition 组成 (32)
Properties 属性 (34)
Exchanger Geometry 换热器几何形状 (37)
General 综合 (37)
General 综合 (38)
Layer Pattern 层排列样式 (42)
PlateFin Kettles 釜式板翅 (45)
Layer Types 层型 (47)
Distributors 分配器 (59)
Standard Distributors 标准分配器 (59)
Special Distributors 特殊分配器 (63)
Exchanger Diagram 换热器图 (74)
Fins 翅片 (74)
Fin Geometry 翅片几何形状 (77)
Fin Performance 翅片性能 (79)
Thermosiphons 热虹吸 (83)
Pipework 管线 (88)
Program Options 程序选项 (92)
Design Options 设计选项 (92)
Design Calculation 设计计算 (92)
Design Limits 设计限制 (96)
Stream Design 流设计 (98)
Thermal Analysis 热力分析 (101)
Exchanger 换热器 (102)
Heat Transfer/Pressure Drop 热传递和压力降 (104)
Calculation Options 计算选项 (112)
Calculation 计算 (112)
Convergence 收敛性 (116)
Flow Maldistribution 流的分布不良 (122)
PlateFin Results 板翅结果 (129)
Result Summary 结果摘要 (129)
Thermal / Hydraulic Summary 热力/水力摘要 (131)
Thermal Performance 热力性能 (131)
Pressure Change 压力变化 (135)
Thermosiphons (137)
Solution Overview (139)
Mechanical Summary (141)
Exchanger Diagram (141)
Exchanger (143)
Distributors and Headers (146)
Calculation Details (148)
Stream Details (149)
Stream Properties (157)
Temperatures and Qualities (157)
Wall Temperatures (160)
PlateFin Getting Started Guide PlateFin入门指南 (163)
Plate-fin Exchangers 板翅换热器 (169)
PlateFin How to Use the Program 如何使用板翅 (175)
Optimization of Design 优化设计 (190)
PlateFin MUSE and PlateFin MUSE板翅和板翅 (202)
PlateFin Input 输入界面
Problem Definition 任务定义
The Problem Definition section includes the following sections: Headings/Remarks
Application Options
Process Data
任务定义部分包括下列各节:
标题/备注
应用选项
过程数据
Headings/Remarks 标题/备注
The Headings/Remarks section includes the following screens: Headings
标题/备注部分包括以下屏幕:
标题
Headings
The Headings appear at the top of the results sheets.Headings are 1 to 5 lines of up to 75 characters per line. Note that only the first 40 characters of each line appear on the drawings.Remarks appear at the bottom of the results specification sheet.
标题显示在结果报表的上部,有1到5行,每行最多75个字。
但在图表上仅显示每行的前40个字符。
备注显示在报表的底部,有1到3行。
Application Options应用选项
The Application Options screen includes the following inputs: Calculation Mode
Exchanger Type
Number of Streams
Number of Fins
Number of Layer Types
Number of Thermosiphon Streams
Number of Distributor Types
Fin Databank Option
应用选项屏幕包含以下输入:
计算模式
换热器类型
流数
翅片的数目
层型的数目
热虹吸流数
分发服务器类型数目
翅片数据库选项
Calculation Mode:计算模式
There are two Simulation options and one Design option. Both Simulations use specified inlet conditions of each stream, and predict the outlet conditions. The exchanger geometry must be specified. For Design, the required inlet and outlet conditions must both be specified. No geometry data are needed.
Stream by stream simulation: In calculating stream outlet conditions for each stream, the program uses an overall metal temperature profile along the length of the exchanger. This is the common wall temperature assumption. Specification of the layer pattern is optional; the program just needs to know the number of layers of each type. It effectively assumes that the layer pattern is good.
Layer by layer simulation: In calculating stream outlet conditions for each stream, the program does separate calculations for every layer in the exchanger and derives the metal temperature profile along every parting sheet between layers. The layer pattern (stacking pattern) must be specified. The calculation effectively evaluates how good the layer pattern is. The detailed metal temperatures it produces can be used to assess thermal stresses.
Layer by layer calculations are currently restricted to axial flow exchangers. Stream by stream calculations can be used for axial and crossflow exchangers. Layer by layer calculations can take significantly longer than stream by stream calculations, particularly for exchangers with a large number of layers.
First Shot Design: These calculations provide an initial estimate of the size of exchanger(s) needed to perform a specified duty. They predict the number of layers for each stream and the size of all layers, together with the finning to be used in each, and distributor and header locations and dimensions. They do not determine a layer pattern. The term "first shot" is used because an experienced designer may well be able to significantly improve the design, and because (unless proprietary fin performance data is used) a manufacturer will almost certainly produce a different design for the duty.
Design calculations are restricted to axial flow exchangers. They cannot be used for crossflow exchangers at present.
No geometry information is needed for a Design calculation, but any that is provided will be incorporated when possible. This could for example include specification of some or all of the fins to be used.
Design calculations are based on the common stream temperature assumption.
计算方式有两个模拟选项和一个设计选项(还有一个核算模式)。
这两个模拟模式的计算必须指定每个物流的进口条件和预测出口参数,并指定换热器几何尺寸。
对于设计模式,必须指定所需的入口和出口条件,但不需要指定几何数据。
逐流模拟: 在计算每个流的出口参数时,该程序使用沿热交换器长度的整体金属温度分布。
这是基于等壁温假设。
建议指定层的排列方式;程序只需要知道每个类型的层数。
程序假定层的排列方式是好的。
逐层模拟: 在计算每个流的流出口参数时,程序分别计算换热器的每一层并推导出层间金属隔板的温度。
必须指定层的排列方式 (堆叠的模式)。
这个计算会评价何种层排列好。
计算生成的隔板金属温度,可用于评估热应力。
逐层计算目前限于轴向流换热器,逐流计算可用于轴流和错流热交换器。
逐层计算优于逐流计算,特别适用于层数很多的换热器。
设计模式: 这些计算提供特定负荷所需换热器大小的初步估计。
将预测流的层数和所有层的大小,以及翅片、分配器和封头的位置和尺寸,但不确定层的排列。
说初步设计,是因为有经验的设计师很可能能够显著改善设计。
制造商(除非使用特别性能数据的专有翅片)对于特定的负荷一般会有不同的设计。
设计计算仅限于轴向流换热器,目前还不能用于错流换热器。
当没有几何信息时,需要进行设计计算。
但应尽量采用可能的已知条件。
例如,可以采用部分或全部翅片的规范。
设计计算是基于等流温度假设。
Common Wall Temperature Assumption
The common wall temperature assumption is used for stream-by-stream simulations.
It assumes that all the layers of a given type behave identically, and that, at any point along the exchanger, all the parting sheets (separating plates between layers) have the same temperature.
For common wall temperature calculation the program uses only the number of layers of each stream, not the order in which they are arranged (the layer pattern or stacking pattern). It is effectively assumed that there is a “good” layer pat tern, meeting the objective of minimal temperature variation through the depth of the exchanger.
In order to determine how good a layer pattern is, full layer by layer calculations should be performed.
等壁温假设
等壁温假设用于逐流模拟。
它假定一个给定类型的所有层的行为相同,并且沿着热交换器(深度和宽度方向上)的任何点,所有的隔板(层间的间隔板)具有相同的温度。
对共用壁温计算,程序只使用每个流的层数,不定义它们的排列方式(单叠或复叠)。
它假定那是一个"好"的层排列方式。
在热交换器的深度方向上,实现温度变化最小的目标。
为了确定如何实现好的层排列,还应进行全面的逐层计算。
Common Stream Temperature Assumption
The common stream temperature assumption is that not only do all the layers of a given stream behave identically, but that at any point along the exchanger, all the hot streams are at one temperature and all the cold stream are at one temperature. There is thus one temperature profile along the exchanger for all hot streams, and one for all cold streams, rather than there being a separate profile for each stream (as in the common wall temperature assumption) or one for each layer.
The common stream temperature assumption is justified in that it is a design objective. Heat transfer is most efficient when all the hot streams are at the same temperature and all the cold streams are at the same temperature. Temperature uniformity also reduces thermal stresses. In reality, at any point along the exchanger, each stream may be slightly above or slightly below the average for its type (hot or cold).
等流温度假设
共同流温度假设是不仅给定流的所有层行为完全相同,而且沿换热器的任一点、所有的热流是一个温度和所有的冷流是一个温度。
因此,对所有的热流、冷流,换热器有一个温度轮廓线,而不是每个流或每个层(如常见的墙体温度假设) 都有单独的温度分布。
常见的流温度假设作为一个设计目标是合理的。
当所有的热流都在相同的温度和所有的冷流都在相同的温度时,传热是最有效的。
温度均匀性也减少了热应力。
在实际中,沿换热器的任何点,每个流可能略高于或略低于其类型的平均水平(热或冷)。
Checking and Simulation
There are two calculation modes which are rating modes, Checking and Simulation. Strictly, these might be termed Heat Load Checking and Heat Load Simulation. Their definition for multi-stream exchangers is more subtle than for two-stream exchangers.
检查和模拟
校核模式有两种计算模式,检查和模拟。
严格地说,也就是热负荷校核和热负荷模拟。
他们在多股流换热器中的定义是比两股流换换热器更严格。
Checking and Simulation, Heat Load
Heat Load Simulation involves calculating the heat load of each stream, and in its most common form, involves calculating the stream outlet conditions for fixed inlet conditions. Variants such as calculating the stream inlet conditions for a fixed outlet are also available but should be used with care.
Heat Load Checking involves calculating a scaling factor so that if the calculated heat transfer were divided by this factor, the specified heat load would be achieved. Conventionally, for two stream exchangers, this scaling factor is the same for both streams and is referred to as the area ratio, the ratio of actual to required area. Values above unity indicate that the exchanger will exceed the required duty, but offer little quantitative insight into by how much.
For Heat Load Checking in multi-stream exchangers, a separate scaling factor is calculated for each stream. While values above unity are broadly
good, for these exchangers, they are of less direct use than for two-stream exchangers. There is no guarantee that the notional excess of actual over required area will be in the part of the exchanger where it is most needed, particularly when streams enter and leave at different points along the exchanger length.
Heat Load Checking or Simulation is a single option selected for the entire exchanger. Checking has not previously been available in EDR software for plate-fin exchangers. It is provided because it is already in the standard E DR solution procedures used, and because it provides an option which may be useful if Simulation calculations encounter convergence difficulties.
Heat Load Checking is only available for stream-by-stream calculations. Heat Load Simulation can be done on either a stream-by-stream or
layer-by-layer calculation.
By analogy, it is possible to define Pressure Checking or Pressure Simulation, among other options, when calculating the pressure of each stream.
检查和模拟_热负荷
热负荷模拟包括计算每个流的热负荷,最常见的形式就是计算在固定的入口条件下的出口参数。
一种变化就是根据出口条件计算入口参数,但应小心使用。
热负荷检查涉及到计算一个比例因子,所以,如果计算的传热除以这一因素,将实现指定的热负荷。
以往,对于两股流换热器,这个因子对于两侧流体是相同的,与面积比相关,比实际需要面积的比率。
上面的值表示该换热器能够满足所需的负荷,但几乎无法指明量的多少。
对于多股流换热器的热负荷检查,需要计算每个流的单独比例因子。
虽然这个值大体上是好的,但不如两股流换热器的直接应用。
不能保证在最需要的换热器部分名义过量超过实际需要面积,特别是当多股流在换热器长度的不同点进入和离开的状况。
热负荷检查或仿真对于整个换热器是一个独立选项。
检查模式在以前EDR 软件板翅式换热器中没有应用。
它被提供是因为它已经用于标准的EDR 解决过程中,如果模拟计算收敛困难可能会有用。
热负荷检查仅可用于逐流的计算。
热负荷仿真可以用于逐流或逐层计算。
通过类比,在计算每个流的压力时,除其选项外,也可以定义压力检查或压力仿真。
Checking and Simulation, Pressure
Although the terms Checking and Simulation normally refer to heat loads, it is also possible by analogy to define Checking and Simulation for pressure calculations. Conventionally pressure calculations involve Pressure Simulation, usually calculation of outlet pressures for a specified inlet. Pressure Checking involves keeping the inlet and outlet pressures fixed and calculating a scaling factor, which if applied to the calculated pressure change, would give consistency with the specified inlet and outlet pressures. The pressure at any point within the exchanger is found using the inlet pressure and the scaled pressure change to that point. There is a further form of pressure calculation which involves Simulation as long as the outlet pressure does not fall below a specified
minimum pressure, but reverts to Checking, using the inlet and the specified minimum, for higher predicted pressure changes. This is the default option, since it is “safe” in preventing implausibly low pressures, and concomitant calculation instabilities. When this occurs there is a warning that scaled pressure changes have been used to determine pressures.
Explicit specification of the minimum pressure was introduced in V7.3.2.0. Prior to that the minimum used for this purpose was effectively the inlet pressure less the maximum allowed pressure drop. The default for minimum is such that warnings about scaled pressure changes will occur less frequently. Pressure Checking or Simulation, and other related options, are available individually for each stream, and each can be used in conjunction with either a Heat Load Simulation or Heat Load Checking Mode. None of the above applies to Design mode, which uses an entirely separate calculation method.
检查和模拟_压力
虽然条件检查和模拟通常指的是热载荷作用,它也是可能通过类比来定义检查和模拟压力计算。
传统的压力计算涉及压力模拟,通常计算一种指定入口的出口压力。
压力检查涉及固定的进口和出口压力,如果应用于计算的压力变化,会与指定的进口和出口压力保持一致。
换热器内的任何点压力是入口压力经过变化后所达到的这一点。
还有另一种形式的压力计算涉及模拟,只要出口压力不低于指定的最小压力,使用入口和指定的最小压力,预测高的的压力变化,也就回归为检查。
这是默认选项,因为在防止难以置信的低压力和随之而来的计算不稳定性状况下,它是"安全"的。
当发生这种情况时,会发出一个缩放压力变化的警告,被用于确定压力。
V7.3.2.0 介绍了最低压力的明确规范。
在此之前,用于此目的的最小有效入口压力是最大允许压力降。
最低的默认值是这样规模的压力变化的警告会发生频率较低。
压力检查或模拟和其他相关的选项,可单独用于每个流,也可用于配合热负荷仿真或热负荷检查模式。
以上都不适用于设计模式,它使用一种完全独立的计算方法。
Exchanger Type
You can specify various exchanger types:
•Standard axial flow: All streams are in co- or counter-current axial flow, normally with the hot streams flowing down and the cold streams flowing up. This exchanger type applies to most large brazed aluminum exchangers used for cryogenic applications.
•Simple crossflow: This applies to two-stream exchangers, in which one stream flow vertically (up or down) while the other stream flows horizontally. There are no distributors, and stream headers cover the entire ends (or sides) of the exchanger. This exchanger type often applies to steel (or other metal) exchangers used for gas-gas
applications at room temperature or above. They are used for other applications as well, and there is no restriction of the applications which can be modeled.
•Multi-pass crossflow: This applies to crossflow exchangers with one (or more) axial flow stream and one (or more) crossflow stream, each
flowing in one or more crossflow passes. Axial flow streams may optionally have distributors. These exchangers are at present
restricted to cases where multiple passes for any stream are in series in the same layer
•Plate-fin kettles: These are kettle reboilers, in which a crossflow plate-fin exchanger is used instead on a tube bundle. The parting sheets are vertical. The cold stream has vertical fins, open at the top and bottom to permit boiling in upflow, and return of unvaporized liquid to the pool in which the exchanger is immersed. The hot
(condensing) stream flows horizontally. The exchanger is defined as being horizontal, with the condensing stream inlet at end A. The condensing stream has distributors. The program calculates the
flowrate of the internal recirculation, and overall stream outlet conditions.
•Standard axial flow exchangers are modeled along one main dimension, the exchanger length. They usually have an end-to-end temperature difference which is much larger than the typical local hot to cold stream temperature difference.
•Crossflow exchangers are modeled in two dimensions, along and across the layers. Stream temperature changes are often relatively small.
Hot to cold stream temperature differences can sometimes be very small in one corner of the exchanger, but elsewhere are often relatively large.
•Axial flow exchangers should have most streams in axial flow. It is permissible for them to have a stream in multipass crossflow –
zig-zagging up the exchanger, in a large number of cross-flow passes, or to have a stream in single pass crossflow occupying only a small fraction of the exchanger length. Temperature differences are modeled as if the stream were in axial flow, but using the correct crossflow dimensions to give mass fluxes for calculating heat transfer and pressure drop.
Note: For all the three crossflow exchanger types, stream-by- stream Simulation (using the common wall temperature assumption) is the only available calculation mode. Layer by layer simulation, and Design options are not available.
你可以指定换热器类型:
• 标准轴流: 所有流都是并向或逆向轴向流,通常都是热流向下和冷流向上流动。
这种换热器类型适用于低温应用中的大多数大型铝钎焊换热器。
• 简单错流: 这适用于两股流换热器,其中一个流流向竖直(向上或向下),而另一个流流向水平。
热交换器没有分配段,端部或侧面没有封头。
这种换热器类型通常用于室温或以上气-气交换的钢制(或其他金属) 换热器。
也适用于其他应用,并没有限制。
• 多通道错流: 这种错流换热器有一个(或多个) 轴向流和一个(或多个) 横向流,每个流有一个或多个横流通道。
轴向流可以具有分配段。
这些换热器目前限于任何流在同层中多次传递的情况(参见“错逆流”)
• 釜式板翅: 这些就是釜式再沸器,用错流板翅式换热器代替管束。
隔板是垂直的。
冷流通过垂直的翅片,在顶部和底部开口,允许沸腾流向上,未气化的液体返回到热交换器沉浸池中。
热(冷凝) 流水平流动。
该换热器被定义为卧式,冷凝流(热流)入口为A端。
冷凝流有分配段。
程序计算内部循环流量和全部流的出口参数。
• 标准轴向流换热器是沿着一个主要维度——换热器长度方向建模。
他们通常端到端的温差比局部的热-冷流温差大得多。
• 错流换热器是沿着层通道的两个维度建模。
流温度的变化往往相对较小。
在换热器的一个角落里,热-冷流温度差异有时可以很小,但其他地方往往相对较大。
• 轴向流换热器的大多数流是在轴向流动中的。
也允许某个流有多程横流——锯齿
翅片的热交换器中有大量的交叉流通道,或是单通错流的流在换热器长度上只占一小部分。
温度差异按照轴向流动建模,但应使用正确的错流质量通量尺寸来计算传热和压力降。
注: 对于三个错流的换热器类型,逐流模拟(使用共同的壁温假设) 是唯一可用的计算
模式。
逐层模拟和设计选项不可用。
Number of Fins
You may find it helpful to explicitly specify the number of types of fin used in the exchanger. This should include main fins, distributor fins and hardway fins if any.
Fins are normally numbered 1, 2, 3 etc, although reference can be made to fins in a data bank which have numbers in the hundreds or thousands. If omitted, the program will simply count the number of different types of fin you have specified for the various layer types and their distributors.
你会发现明确指定换热器使用的翅片类型数是有益的。
包括主要翅片、导流翅片、阻挡
翅片。
翅片通常编号为1、2、3等,可以参考数据库中的千百种翅片。
如果省略,程序将只是计数你所指定的不同层型和分配段的不同类型的翅片。
Number of Streams
You must specify the number of process streams in the exchanger.Up to 20 process streams can be specified.
你必须指定热交换器中的过程流数目。
最多可以指定20个过程流。
Number of Layer Types
You should indicate the number of different types of layer in the exchanger. Layer types are the basis on which exchanger geometry is specified. Layers types are designated A, B, C, D etc. This permits the layer pattern (stacking pattern) to be specified as a sequence of letters. In stream by stream simulation, if you do not specify a layer pattern, you will need to explicitly specify the number of layers of each type.
You may include layer types which contain no streams but are used for instrumentation.
Layer type input is not used in Design Mode.
你应该指定换热器中不同类型的层数。
层的布置类型是设计换热器定几何尺寸的基础。
层(通道)类型指定为A、B、C、D 等。
这允许将层(通道)的布置方式(堆叠模式)
指定为字母序列。
在逐流模拟中,如果你不指定层模式,你将需要明确指定每个类型层的层数。
你可以包括不走流体的强度层(假通道)。
在设计模式下不使用层类型数的输入。
Number of Thermosiphon Streams
A thermosiphon stream is the cold stream in a thermosiphon reboiler. At present there can be at most one such stream.
Thermosiphons can be external (connected to the column by pipework) or internal (immersed in a column sump). No pipework is needed for internal reboilers.
For a thermosiphon reboiler, in addition to this input, you need to identify the stream type for one stream as thermosiphon in the Process Options section of input.
热虹吸流是热虹吸再沸器中的冷流。
目前最多可以有这样一个流。
热虹吸可以是外部(通过管道连接到集液池) 或内部(浸泡在集液池内)。
内部再沸器不需要管道。
对于热虹吸再沸器,除了此输入,你需要在进程选项中确定一个流型作为热虹吸流的。
Number of Distributor Types
The number of distributor types is usually the same as the number of streams. If there are N streams, then Distributors 1-N relate to streams 1-N respectively. There can be situations, however, where a stream has different distributor geometries in different layer types, which means it is necessary to specify two (or more) inlet and two (or more) outlet distributors for a stream. One set of inlet/outlet distributors will have the same number as the stream number, other sets must have numbers above N.
If you have an exchanger with this type of complexity, specify a number of distributor types which is greater than the number of streams. Note: This number only applies to main inlet and outlet distributors. Redistributors and intermediate distributors can be allocated numbers different from their stream number, so there should be no problem specifying multiple such distributors for a single stream, should this be necessary.
分配器的类型数量通常和流的数目相同。
如果有N股流,然后分配器1- N 分别对应流1-N。
也可能有这种情况,一股流对应不同的流道类型有不同的分配器几何形状,这意味着一股流需要指定两个(或更多) 的入口与出口分配器。
一套入口/出口分配器将具有流号码相同的号码,其他必须是大于N的号码。
如果你有复杂类型的换热器,指定分配器类型的数目要大于流的数目。
注意:这一数字仅应用于主要入口和出口的分配器。
再分配器和中间分配器的数码可以不同于其流数,所以指定多个此类分配器给单个流是没问题的,也是必需的。
Fin Databank Option
A fin databank is a simple text file that contains fin identification numbers, geometry, and performance data. The format of a fin databank is described in the Fin databank help. PlateFin can access this data and offers two options for Fin databank.
•Program (the default option) requires that the fin databank have the filename Findata.txt and be located in the same directory as the PlateFin program executable file.
•User Option causes a file selection menu to become available, letting you identify the name and location of the databank file you wish to use.
If you have selected one databank file, and wish to change to another, reset the input first to Program and then back to User to give access to the file selection menu again.
A record of the Fin databank file name and location is included in the Output, under Mechanical Summary | Exchanger | Fin Geometry.
翅片数据库是一个简单的文本文件,包含翅片识别号码、几何形状和性能数据。
翅片数据库的格式在翅片数据库帮助中有所介绍。
PlateFin 可以访问这些数据,并提供两个翅片数据库的选项。
• 程序选项(默认) 要求翅片数据库具有Findata.txt 的文件名和PlateFin程序在同一个目录下的可执行文件。
• 用户选项会打开一个文件选择窗口,让你确定你要使用的数据库文件的名称和位置。
如果你选定了一个数据库文件,而想要更改到另一个,可以返回到程序,然后重新选择。
翅片数据库文件的名称和位置记录包含在输出中,在机械摘要|换热器|翅片几何形状项下。
Application Control 应用控制
The Application Control screen includes the following inputs: Recalculate Properties before run
Output all Repeat Messages
Storage for Recap of Designs
Generate Full Output
Use Phase Compositions
Program calling this EDR program
应用控制屏幕包括下列输入:
在运行前重新计算属性
输出所有重复信息
存储设计回顾
生成完整输出
使用相组成
调用EDR 程序
Recalculate Properties before run
This input item controls whether properties are recalculated for the specified components, compositions, and temperature range every time you click Run. The default is No, so if you load a case with properties calculated on a previous version of a properties package, the previous properties are retained. Properties can be regenerated at any point by selecting a stream and clicking Get Properties. See Physical Property Data Overview
If you click Run and the program detects that no properties have been generated for any stream, then properties are regenerated (for all streams), regardless of the value of this input item.
This input item was introduced in part to accelerate calculation times.
此输入项控制在每次单击运行时是否对指定组分、组合物和温度范围内的属性重新计算。
缺省设置为No,所以,如果你加载的属性包中包含先前计算的属性,将保留以前的属性。
通过选择流,单击获取属性,可以在任意点再生属性。
请参见物性数据概述如果你单击运行,对于任意流,程序没有检测到属性产生,属性会重新生成(对于所有流),忽略输入项的值。
这个选择项可以减少计算的时间。
Output all Repeat Messages
This option controls whether the program lists all error or warning messages relating to a single class of input, or a smaller number of messages with an indication of how many similar repeat messages which have been suppressed.
此选项控制程序是否列出与一类输入有关的所有错误或警告消息,或减少大量类似重复已取消的消息。
Storage for Recap of Designs
In order to permit results of a sequence of calculations to be compared, the Recap of Designs facility stores tabulated values of key output parameters and lets you customize the table by adding values. It also lets you select and reload a previous case in the sequence.
Full recovery means that the facility to select and reload a case is available. Table only means that it is not. An indication of the whether or not a case can be selected for full recovery is given in the Recap of Designs table. The case as initially loaded (case A in the Recap table) is always fully recoverable.
Storing all input and output values at the end of every run is time consuming and unnecessary if the Select/reload facility is not going to be used.
This input item was introduced to accelerate calculation times.
为了比较一系列的计算结果,设计回顾工具存储关键输出参数列表的值,并允许你将值添加到自定义表。
也允许你选择和重新加载序列中以前的一个实例。
完全恢复意味着选择和重新加载实例工具可用。
表值意味着它不是。
表明是否可以选择一个实列完整恢复到回顾表中。
初始加载(A状况在回顾表) 总是完全恢复。
如果不使用选择/重装工具,在每次运行结束时存储所有的输入和输出值,是耗费时间和不
必要的。
此输入项的引入,可加快计算速度。
Generate Full Output
This item is not yet implemented in PlateFin.
此项在PlateFin 中尚未实施。
Use Phase Compositions
This item is not yet implemented in PlateFin.
此项在PlateFin 中尚未实施。
Program calling this EDR program
This input indicates the calling program. It helps accelerate calculation times by eliminating unnecessary calculations and data transfers when the program is called directly from a process simulator, such as Aspen HYSYS or Aspen Plus.
This input is set to Standalone when the program is run from the standard user interface.
这个输入指示如何调用程序。
通过调用直接过程的仿真程序,消除不必要的计算和数据传输,加快计算速度,如Aspen HYSYS 或Aspen Plus。
从标准用户界面运行时,此输入设置为独立程序。
Process Data 过程数据
The Process Data section includes the following screens:
Process
Process Options
Partial Draw-off
Process data are the most important: here, you can specify inlet and outlet conditions - some or all of pressure, temperature, specific enthalpy, quality. According to the calculation, some of these will be fixed, others will be initial estimates.
Process Options includes other process-related parameters for each stream. Many have default values, but you should check these are acceptable. Process Options is also where you identify which stream is a thermosiphon stream.
过程数据部分包含以下屏幕:
过程
过程选项
部分牵引
过程数据是最重要的: 在这里,你可以指定入口和出口条件-部分或全部的压力、温度、焓、质量。
根据计算,其中一些将固定,其他人会初步估计。
过程选项包括其他与进程相关的参数,每个流。
很多人有默认值,但你应该检查这些都是可以接受。
过程选项也是,你可以识别哪个流是热虹吸流。
Process 过程
The Process screen includes the following inputs:
Stream Name
Total Mass Flow Rate
Mass Flow Multiplier
Inlet Temperature
Outlet Temperature
Inlet Quality (vapor mass fraction)
Outlet Quality (vapor mass fraction)。