梓潼县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
梓潼县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 设βα,是两个不同的平面,是一条直线,以下命题正确的是( ) A .若α⊥l ,βα⊥,则β⊂l B .若α//l , βα//,则β⊂l C .若α⊥l ,βα//,则β⊥l D .若α//l ,βα⊥,则β⊥l 2. 设a ,b ,c ,∈R +,则“abc=1”是
“”的( )
A .充分条件但不是必要条件
B .必要条件但不是充分条件
C .充分必要条件
D .既不充分也不必要的条件
3. 若y x ,满足约束条件⎪⎪⎩
⎪
⎪⎨⎧≥≤-+≥+-0
033033y y x y x ,则当31++x y 取最大值时,y x +的值为( )
A .1-
B .
C .3-
D .3
4. 函数f (x )=cos 2x ﹣cos 4x 的最大值和最小正周期分别为( ) A
.,π
B
.
,
C
.,π
D
.
,
5. 根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20﹣80mg/100ml (不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100ml (含80)以上,属于醉酒驾车.据《法制晚报》报道,2011年3月15日至3月28日,全国查处酒后驾车和醉酒驾车共28800人,如下图是对这28800人酒后驾车血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为( )
A .2160
B .2880
C .4320
D .8640
6. 在平面直角坐标系中,若不等式组
(为常数)表示的区域面积等于, 则的值为( )
A .
B .
C .
D .
7. 过点P (﹣2,2)作直线l ,使直线l 与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l 一共有( )
A .3条
B .2条
C .1条
D .0条
8. 已知a ∈R ,复数z=(a ﹣2i )(1+i )(i 为虚数单位)在复平面内对应的点为M ,则“a=0”是“点M 在第四象限”的( )
A .充分而不必要条件
B .必要而不充分条件
C .充分必要条件
D .既不充分也不必要条件
9. 已知集合{}{}
421,2,3,,4,7,,3A k B a a a ==+,且*
,,a N x A y B ∈∈∈使B 中元素31y x =+和A 中的元素
x 对应,则,a k 的值分别为( )
A .2,3
B .3,4
C .3,5
D .2,5
10.已知命题“如果﹣1≤a ≤1,那么关于x 的不等式(a 2﹣4)x 2+(a+2)x ﹣1≥0的解集为∅”,它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )
A .0个
B .1个
C .2个
D .4个
11.如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是( )
A .i ≥7?
B .i >15?
C .i ≥15?
D .i >31?
12.S n 是等差数列{a n }的前n 项和,若3a 8-2a 7=4,则下列结论正确的是( ) A .S 18=72 B .S 19=76 C .S 20=80
D .S 21=84
二、填空题
13.已知命题p :实数m 满足m 2+12a 2<7am (a >0),命题q :实数m 满足方程+=1表示的焦点
在y 轴上的椭圆,且p 是q 的充分不必要条件,a 的取值范围为 .
14.已知点A (﹣1,1),B (1,2),C (﹣2,﹣1),D (3,4),求向量
在
方向上的投影.
15.若非零向量,满足|+|=|﹣|,则与所成角的大小为.
16.如图,一个空间几何体的正视图和侧视图都是边长为2的正三角形,俯视如图是一个圆,那么该几何体的体积是
.
17.直角坐标P(﹣1,1)的极坐标为(ρ>0,0<θ<π).
18.若函数f(x)=x2﹣(2a﹣1)x+a+1是区间(1,2)上的单调函数,则实数a的取值范围是.
三、解答题
19.(本小题满分12分)某旅行社组织了100人旅游散团,其年龄均在[10,60]岁间,旅游途中导游发现该旅游散团人人都会使用微信,所有团员的年龄结构按[10,20),[20,30),[30,40),[40,50),[50,60]分成5组,分别记为,,,,
A B C D E,其频率分布直方图如下图所示.
(Ⅰ)根据频率分布直方图,估计该旅游散团团员的平均年龄;
(Ⅱ)该团导游首先在,,
C D E三组中用分层抽样的方法抽取了6名团员负责全团协调,然后从这6名团员中随机选出2名团员为主要协调负责人,求选出的2名团员均来自C组的概率.
20.已知函数f(x)=2|x﹣2|+ax(x∈R).
(1)当a=1时,求f(x)的最小值;
(2)当f(x)有最小值时,求a的取值范围;
(3)若函数h(x)=f(sinx)﹣2存在零点,求a的取值范围.
21.在平面直角坐标系中,矩阵M对应的变换将平面上任意一点P(x,y)变换为点P(2x+y,3x).(Ⅰ)求矩阵M的逆矩阵M﹣1;
(Ⅱ)求曲线4x+y﹣1=0在矩阵M的变换作用后得到的曲线C′的方程.
22.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知tanA=,c=.
(Ⅰ)求;
(Ⅱ)若三角形△ABC的面积为,求角C.
23.已知数列{a n}的首项a1=2,且满足a n+1=2a n+3•2n+1,(n∈N*).(1)设b n=,证明数列{b n}是等差数列;
(2)求数列{a n}的前n项和S n.
24.已知y=f(x)是R上的偶函数,x≥0时,f(x)=x2﹣2x (1)当x<0时,求f(x)的解析式.
(2)作出函数f(x)的图象,并指出其单调区间.
梓潼县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题
1.【答案】C111]
【解析】
考点:线线,线面,面面的位置关系
2.【答案】A
【解析】解:因为abc=1,所以,则=
=≤a+b+c.
当a=3,b=2,c=1时,显然成立,但是abc=6≠1,
所以设a,b,c,∈R+,则“abc=1”是“”的充分条件但不是必要条件.
故选A.
3.【答案】D
【解析】
考点:简单线性规划.
4.【答案】B
【解析】解:y=cos2x﹣cos4x=cos2x(1﹣cos2x)=cos2x•sin2x=sin22x=,
故它的周期为=,最大值为=.
故选:B.
5.【答案】C
【解析】解:由题意及频率分布直方图的定义可知:属于醉酒驾车的频率为:(0.01+0.005)×10=0.15,
又总人数为28800,故属于醉酒驾车的人数约为:28800×0.15=4320.
故选C
【点评】此题考查了学生的识图及计算能力,还考查了频率分布直方图的定义,并利用定义求解问题.
6.【答案】B
【解析】【知识点】线性规划
【试题解析】作可行域:
由题知:
所以
故答案为:B
7.【答案】C
【解析】解:假设存在过点P(﹣2,2)的直线l,使它与两坐标轴围成的三角形的面积为8,设直线l的方程为:,
则.
即2a﹣2b=ab
直线l与两坐标轴在第二象限内围成的三角形面积S=﹣ab=8,
即ab=﹣16,
联立,
解得:a=﹣4,b=4.
∴直线l的方程为:,
即x﹣y+4=0,
即这样的直线有且只有一条,
故选:C
【点评】本题考查了直线的截距式、三角形的面积计算公式,属于基础题.
8. 【答案】A
【解析】解:若a=0,则z=﹣2i (1+i )=2﹣2i ,点M 在第四象限,是充分条件, 若点M 在第四象限,则z=(a+2)+(a ﹣2)i ,推出﹣2<a <2,推不出a=0,不是必要条件;
故选:A .
【点评】本题考查了充分必要条件,考查了复数问题,是一道基础题.
9. 【答案】D 【解析】
试题分析:分析题意可知:对应法则为31y x =+,则应有42331331a a a k ⎧=⨯+⎪⎨+=⋅+⎪⎩(1)或4231
3331
a k a a ⎧=⋅+⎪⎨+=⨯+⎪⎩(2),
由于*
a N ∈,所以(1)式无解,解(2)式得:25
a k =⎧⎨=⎩。
故选D 。
考点:映射。
10.【答案】C
【解析】解:若不等式(a 2﹣4)x 2
+(a+2)x ﹣1≥0的解集为∅”,
则根据题意需分两种情况: ①当a 2﹣4=0时,即a=±2,
若a=2时,原不等式为4x ﹣1≥0,解得x ≥,故舍去, 若a=﹣2时,原不等式为﹣1≥0,无解,符合题意; ②当a 2﹣4≠0时,即a ≠±2,
∵(a 2﹣4)x 2
+(a+2)x ﹣1≥0的解集是空集,
∴
,解得
,
综上得,实数a 的取值范围是
.
则当﹣1≤a ≤1时,命题为真命题,则命题的逆否命题为真命题, 反之不成立,即逆命题为假命题,否命题也为假命题, 故它的逆命题、否命题、逆否命题及原命题中是假命题的共有2个,
故选:C .
【点评】本题考查了二次不等式的解法,四种命题真假关系的应用,注意当二次项的系数含有参数时,必须进行讨论,考查了分类讨论思想.
11.【答案】C
【解析】解:模拟执行程序框图,可得 S=2,i=0
不满足条件,S=5,i=1 不满足条件,S=8,i=3 不满足条件,S=11,i=7 不满足条件,S=14,i=15
由题意,此时退出循环,输出S 的值即为14, 结合选项可知判断框内应填的条件是:i ≥15? 故选:C .
【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的S ,i 的值是解题的关键,属于基本知识的考查.
12.【答案】
【解析】选B.∵3a 8-2a 7=4, ∴3(a 1+7d )-2(a 1+6d )=4,
即a 1+9d =4,S 18=18a 1+18×17d 2=18(a 1+17
2d )不恒为常数.
S 19=19a 1+19×18d
2=19(a 1+9d )=76,
同理S 20,S 21均不恒为常数,故选B.
二、填空题
13.【答案】 [,] .
【解析】解:由m 2﹣7am+12a 2
<0(a >0),则3a <m <4a
即命题p :3a <m <4a ,
实数m 满足方程
+
=1表示的焦点在y 轴上的椭圆,
则, ,解得1<m <2,
若p 是q 的充分不必要条件,
则,
解得
,
故答案为[,].
【点评】本题考查充分条件、必要条件,一元二次不等式的解法,根据不等式的性质和椭圆的性质求出p ,q 的等价条件是解决本题的关键.
14.【答案】
【解析】解:∵点A (﹣1,1),B (1,2),C (﹣2,﹣1),D (3,4),
∴向量=(1+1,2﹣1)=(2,1),
=(3+2,4+1)=(5,5);
∴向量
在方向上的投影是
=
=
.
15.【答案】 90° .
【解析】解:∵
∴=
∴
∴α与β所成角的大小为90° 故答案为90°
【点评】本题用向量模的平方等于向量的平方来去掉绝对值.
16.【答案】
.
【解析】解:此几何体是一个圆锥,由正视图和侧视图都是边长为2的正三角形,其底面半径为1,且其高为正三角形的高 由于此三角形的高为,故圆锥的高为
此圆锥的体积为
=
故答案为
【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是圆锥的体积.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是新课标的新增内容,在以后的高考中有加强的可能.
17.【答案】.
【解析】解:ρ==,tanθ==﹣1,且0<θ<π,∴θ=.
∴点P的极坐标为.
故答案为:.
18.【答案】{a|或}.
【解析】解:∵二次函数f(x)=x2﹣(2a﹣1)x+a+1 的对称轴为x=a﹣,
f(x)=x2﹣(2a﹣1)x+a+1是区间(1,2)上的单调函数,∴区间(1,2)在对称轴的左侧或者右侧,
∴a﹣≥2,或a﹣≤1,∴a≥,或a≤,
故答案为:{a|a≥,或a≤}.
【点评】本题考查二次函数的性质,体现了分类讨论的数学思想.
三、解答题
19.【答案】
【解析】【命题意图】本题考查频率分布直方图与平均数、分层抽样、古典概型等基础知识,意在考查审读能力、识图能力、获取数据信息的能力.
20.【答案】
【解析】解:(1)当a=1时,f(x)=2|x﹣2|+x=…(2分)
所以,f(x)在(﹣∞,2)递减,在[2,+∞)递增,
故最小值为f(2)=2;…(4分)
(2)f(x)=,…(6分)
要使函数f(x)有最小值,需,
∴﹣2≤a≤2,…(8分)
故a的取值范围为[﹣2,2].…(9分)
(3)∵sinx∈[﹣1,1],∴f(sinx)=(a﹣2)sinx+4,
“h(x)=f(sinx)﹣2=(a﹣2)sinx+2存在零点”等价于“方程(a﹣2)sinx+2=0有解”,
亦即有解,
∴,…(11分)
解得a≤0或a≥4,…(13分)
∴a的取值范围为(﹣∞,0]∪[4,+∞)…(14分)
【点评】本题主要考查分段函数的应用,利用分段函数的表达式结合一元二次函数的性质,是解决本题的关键.
21.【答案】
【解析】解:(Ⅰ)设点P(x,y)在矩阵M对应的变换作用下所得的点为P′(x′,y′),
则即=,
∴M=.
又det(M)=﹣3,
∴M﹣1=;
(Ⅱ)设点A(x,y)在矩阵M对应的变换作用下所得的点为A′(x′,y′),
则=M﹣1=,
即,
∴代入4x+y﹣1=0,得,
即变换后的曲线方程为x+2y+1=0.
【点评】本题主要考查矩阵与变换等基础知识,考查运算求解能力及化归与转化思想,属于中档题.22.【答案】
【解析】解:(Ⅰ)由题意知,tanA=,
则=,即有sinA﹣sinAcosC=cosAsinC,
所以sinA=sinAcosC+cosAsinC=sin(A+C)=sinB,
由正弦定理,a=b,则=1;…
(Ⅱ)因为三角形△ABC 的面积为
,a=b 、c=,
所以S=absinC=a 2
sinC=
,则
,①
由余弦定理得, =
,②
由①②得,cosC+sinC=1,则2sin (C+)=1,sin (C+)=,
又0<C <π,则C+
<
,即C+
=
,
解得C= ….
【点评】本题考查正弦定理,三角形的面积公式,以及商的关系、两角和的正弦公式等,注意内角的范围,属
于中档题.
23.【答案】 【解析】解:(1)∵=
,
∴数列{b n }是以为首项,3为公差的等差数列.
(2)由(1)可知,
∴
①
②
①﹣②得:
,
∴
.
【点评】本题主要考查数列通项公式和前n 项和的求解,利用定义法和错位相减法是解决本题的关键.
24.【答案】
【解析】解:(1)设x <0,则﹣x >0, ∵x >0时,f (x )=x 2
﹣2x .
∴f (﹣x )=(﹣x )2﹣2(﹣x )=x 2
+2x
∵y=f (x )是R 上的偶函数
∴f(x)=f(﹣x)=x2+2x
(2)单增区间(﹣1,0)和(1,+∞);
单减区间(﹣∞,﹣1)和(0,1).
【点评】本题主要考查利用函数的奇偶性来求对称区间上的解析式,然后作出分段函数的图象,进而研究相关性质,本题看似简单,但考查全面,具体,检测性很强.。