新民市实验中学2018-2019学年高二上学期数学期末模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新民市实验中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 以过椭圆+
=1(a >b >0)的右焦点的弦为直径的圆与其右准线的位置关系是( )
A .相交
B .相切
C .相离
D .不能确定
2. 三个数a=0.52,b=log 20.5,c=20.5之间的大小关系是( )
A .b <a <c
B .a <c <b
C .a <b <c
D .b <c <a
3. 将函数f (x )=sin2x 的图象向右平移个单位,得到函数y=g (x )的图象,则它的一个对称中心是(
)A .
B .
C .
D .
4. 设向量,满足:||=3,||=4, =0.以,,﹣的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为( )
A .3
B .4
C .5
D .6
5. 已知集合,则下列式子表示正确的有(
)
{}
2
|10A x x =-=①;②;③;④.1A ∈{}1A -∈A ∅⊆{}1,1A -⊆A .1个
B .2个
C .3个
D .4个
6. 抛物线x=﹣4y 2的准线方程为( )
A .y=1
B .y=
C .x=1
D .x=
7. 函数f (x )=sin ωx+acos ωx (a >0,ω>0)在x=处取最小值﹣2,则ω的一个可能取值是(
)
A .2
B .3
C .7
D .98. 学校将5个参加知识竞赛的名额全部分配给高一年级的4个班级,其中甲班级至少分配2个名额,其它班级可以不分配或分配多个名额,则不同的分配方案共有( )
A .20种
B .24种
C .26种
D .30种 9. 在区域内任意取一点P (x ,y ),则x 2+y 2<1的概率是( )
A .0
B .
C .
D .
10.直线2x+y+7=0的倾斜角为( )A .锐角B .直角C .钝角D .不存在
11.已知a=log 20.3,b=20.1,c=0.21.3,则a ,b ,c 的大小关系是( )
A .a <b <c
B .c <a <b
C .a <c <b
D .b <c <a 12.在极坐标系中,圆
的圆心的极坐标系是( )。
A
B C D
二、填空题
13.在矩形ABCD 中,
=(1,﹣3),,则实数k= .14.若x 、y 满足约束条件,z =3x +y +m 的最小值为1,则m =________.
{x -2y +1≤0
2x -y +2≥0x +y -2≤0
)
15.如图,长方体ABCD ﹣A 1B 1C 1D 1中,AA 1=AB=2,AD=1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角的余弦值是 .
16.当时,函数的图象不在函数的下方,则实数的取值范围是
0,1x ∈()()e 1x
f x =-2
()g x x ax =-a ___________.
【命题意图】本题考查函数图象间的关系、利用导数研究函数的单调性,意在考查等价转化能力、逻辑思维能力、运算求解能力.
17.命题“(0,)2
x π
∀∈,sin 1x <”的否定是 ▲ .
18.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数的零点在区间
()ln 4f x x x =+-内,则正整数的值为________.()1k k +,k 三、解答题
19.(本题满分15分)
已知抛物线的方程为,点在抛物线上.
C 2
2(0)y px p =>(1,2)R C
(1)求抛物线的方程;
C (2)过点作直线交抛物线于不同于的两点,,若直线,分别交直线于
(1,1)Q C R A B AR BR :22l y x =+,两点,求最小时直线的方程.
M N MN AB 【命题意图】本题主要考查抛物线的标准方程及其性质以及直线与抛物线的位置关系等基础知识,意在考查运算求解能力.
20.在平面直角坐标系中,△ABC 各顶点的坐标分别为:A (0,4);B (﹣3,0),C (1,1)(1)求点C 到直线AB 的距离;(2)求AB 边的高所在直线的方程.
21.已知数列{a n }的前n 项和S n =2n 2﹣19n+1,记T n =|a 1|+|a 2|+…+|a n |.(1)求S n 的最小值及相应n 的值;(2)求T n .
22.已知斜率为1的直线l 经过抛物线y 2=2px (p >0)的焦点F ,且与抛物线相交于A ,B 两点,|AB|=4.(I )求p 的值;
(II )若经过点D (﹣2,﹣1),斜率为k 的直线m 与抛物线有两个不同的公共点,求k 的取值范围.
23.已知定义在的一次函数为单调增函数,且值域为.[]3,2-()f x []2,7(1)求的解析式;
()f x (2)求函数的解析式并确定其定义域.
[()]f f x 24.如图,四棱锥P ﹣ABCD 中,PD ⊥平面ABCD ,底面ABCD 为正方形,BC=PD=2,E 为PC 的中点,.
求证:PC ⊥BC ;
(Ⅱ)求三棱锥C ﹣DEG 的体积;
(Ⅲ)AD 边上是否存在一点M ,使得PA ∥平面MEG .若存在,求AM 的长;否则,说明理由.
新民市实验中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)
一、选择题
1.【答案】C
【解析】解:设过右焦点F的弦为AB,右准线为l,A、B在l上的射影分别为C、D
连接AC、BD,设AB的中点为M,作MN⊥l于N
根据圆锥曲线的统一定义,可得
==e,可得
∴|AF|+|BF|<|AC|+|BD|,即|AB|<|AC|+|BD|,
∵以AB为直径的圆半径为r=|AB|,|MN|=(|AC|+|BD|)
∴圆M到l的距离|MN|>r,可得直线l与以AB为直径的圆相离
故选:C
【点评】本题给出椭圆的右焦点F,求以经过F的弦AB为直径的圆与右准线的位置关系,着重考查了椭圆的简单几何性质、圆锥曲线的统一定义和直线与圆的位置关系等知识,属于中档题.
2.【答案】A
【解析】解:∵a=0.52=0.25,
b=log20.5<log21=0,
c=20.5>20=1,
∴b<a<c.
故选:A.
【点评】本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函数、对数函数的单调性的合理运用.
3.【答案】D
【解析】解:函数y=sin2x 的图象向右平移个单位,则函数变为y=sin[2(x ﹣)]=sin (2x ﹣);
考察选项不难发现:当x=时,sin (2×
﹣
)=0;
∴(
,0)就是函数的一个对称中心坐标.
故选:D .
【点评】本题是基础题,考查三角函数图象的平移变换,函数的对称中心坐标问题,考查计算能力,逻辑推理能力,常考题型.
4. 【答案】B
【解析】解:∵向量ab=0,∴此三角形为直角三角形,三边长分别为3,4,5,进而可知其内切圆半径为1,∵对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现.故选B
【点评】本题主要考查了直线与圆的位置关系.可采用数形结合结合的方法较为直观.
5. 【答案】C 【解析】
试题分析:,所以①③④正确.故选C.{}1,1A =-考点:元素与集合关系,集合与集合关系.6. 【答案】D
【解析】解:抛物线x=﹣4y 2即为y 2=﹣x ,
可得准线方程为x=.
故选:D .
7. 【答案】C
【解析】解:∵函数f (x )=sin ωx+acos ωx (a >0,ω>0)在x=处取最小值﹣2,
∴sin
+acos
=﹣
=﹣2,∴a=
,∴f (x )=sin ωx+
cos ωx=2sin (ωx+
).
再根据f()=2sin(+)=﹣2,可得+=2kπ+,k∈Z,∴ω=12k+7,∴k=0时,ω=7,
则ω的可能值为7,
故选:C.
【点评】本题主要考查三角恒等变换,正弦函数的图象的对称性,属于基础题.
8.【答案】A
【解析】解:甲班级分配2个名额,其它班级可以不分配名额或分配多个名额,有1+6+3=10种不同的分配方案;
甲班级分配3个名额,其它班级可以不分配名额或分配多个名额,有3+3=6种不同的分配方案;
甲班级分配4个名额,其它班级可以不分配名额或分配多个名额,有3种不同的分配方案;
甲班级分配5个名额,有1种不同的分配方案.
故共有10+6+3+1=20种不同的分配方案,
故选:A.
【点评】本题考查分类计数原理,注意分类时做到不重不漏,是一个中档题,解题时容易出错,本题应用分类讨论思想.
9.【答案】C
【解析】解:根据题意,如图,设O(0,0)、A(1,0)、B(1,1)、C(0,1),
分析可得区域表示的区域为以正方形OABC的内部及边界,其面积为1;
x2+y2<1表示圆心在原点,半径为1的圆,在正方形OABC的内部的面积为=,
由几何概型的计算公式,可得点P(x,y)满足x2+y2<1的概率是=;
故选C.
【点评】本题考查几何概型的计算,解题的关键是将不等式(组)转化为平面直角坐标系下的图形的面积,进而由其公式计算.
10.【答案】C
【解析】【分析】设直线2x+y+7=0的倾斜角为θ,则tanθ=﹣2,即可判断出结论.
【解答】解:设直线2x+y+7=0的倾斜角为θ,
则tanθ=﹣2,
则θ为钝角.
故选:C.
11.【答案】C
【解析】解:由对数和指数的性质可知,
∵a=log20.3<0
b=20.1>20=1
c=0.21.3 <0.20=1
∴a<c<b
故选C.
12.【答案】B
【解析】,圆心直角坐标为(0,-1),极坐标为,选B。
二、填空题
13.【答案】 4 .
【解析】解:如图所示,
在矩形ABCD中,=(1,﹣3),,
∴=﹣=(k﹣1,﹣2+3)=(k﹣1,1),
∴•=1×(k﹣1)+(﹣3)×1=0,
解得k=4.
故答案为:4.
【点评】本题考查了利用平面向量的数量积表示向量垂直的应用问题,是基础题目.
14.【答案】
【解析】解析:可行域如图,当直线y=-3x+z+m与直线y=-3x平行,且在y轴上的截距最小时,z才能取最小值,此时l经过直线2x-y+2=0与x-2y+1=0的交点A(-1,0),z min=3×(-1)+0+m=-3+m=1,
∴m=4.
答案:4
15.【答案】0
【解析】
【分析】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线A1E与GF所成的角的余弦值.
【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
∵AA1=AB=2,AD=1,点E、F、G分别是DD1、AB、CC1的中点,
∴A1(1,0,2),E(0,0,1),G(0,2,1),F(1,1,0),
=(﹣1,0,﹣1),=(1,﹣1,﹣1),
=﹣1+0+1=0,
∴A1E⊥GF,
∴异面直线A1E与GF所成的角的余弦值为0.
故答案为:0.
16.【答案】[2e,)
-+∞【解析】由题意,知当时,不等式,即恒成立.令
0,1x ∈()2
e 1x
x ax -≥-21e x
x a x
+-≥,.令,.∵,∴()21e x x h x x +-=()()()2
11e 'x x x h x x
-+-=()1e x k x x =+-()'1e x
k x =-()0,1x ∈∴在为递减,∴,∴,∴()'1e 0,x
k x =-<()k x ()0,1x ∈()()00k x k <=()()()
2
11e '0x x x h x x
-+-=
>()
h x 在为递增,∴,则.()0,1x ∈()()12e h x h <=-2e a ≥-17.【答案】()
0,2x π
∃∈,sin 1
≥【解析】
试题分析:“(0,)2x π
∀∈,sin 1x <”的否定是()
0,2
x π∃∈,sin 1
≥考点:命题否定
【方法点睛】(1)对全称(存在性)命题进行否定的两步操作:①找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;②对原命题的结论进行否定.(2)判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中的每个元素x ,证明p (x )成立;要判定一个全称命题是假命题,只要举出集合M 中的一个特殊值x 0,使p (x 0)不成立即可.要判断存在性命题是真命题,只要在限定集合内至少能找到一个x =x 0,使p (x 0)成立即可,否则就是假命题.18.【答案】2
【解析】
三、解答题
19.【答案】(1);(2).
2
4y x =20x y +-=【解析】(1)∵点在抛物线上,,…………2分
(1,2)R C 2
2212p p =⨯⇒=即抛物线的方程为;…………5分
C 2
4y x =
20.【答案】
【解析】解(1)∵,
∴根据直线的斜截式方程,直线AB:,化成一般式为:4x﹣3y+12=0,
∴根据点到直线的距离公式,点C到直线AB的距离为;(2)由(1)得直线AB的斜率为,∴AB边的高所在直线的斜率为,
由直线的点斜式方程为:,化成一般式方程为:3x+4y﹣7=0,
∴AB边的高所在直线的方程为3x+4y﹣7=0.
21.【答案】
【解析】解:(1)S n=2n2﹣19n+1=2﹣,
∴n=5时,S n取得最小值=﹣44.
(2)由S n=2n2﹣19n+1,
∴n=1时,a1=2﹣19+1=﹣16.
n≥2时,a n=S n﹣S n﹣1=2n2﹣19n+1﹣[2(n﹣1)2﹣19(n﹣1)+1]=4n﹣21.
由a n≤0,解得n≤5.n≥6时,a n>0.
∴n≤5时,T n=|a1|+|a2|+…+|a n|=﹣(a1+a2+…+a n)=﹣S n=﹣2n2+19n﹣1.
n≥6时,T n=﹣(a1+a2+…+a5)+a6+…+a n
=﹣2S5+S n
=2n2﹣19n+89.
∴T n=.
【点评】本题考查了等差数列的通项公式及其前n项和公式、不等式的解法、绝对值数列求和问题,考查了分类讨论方法推理能力与计算能力,属于中档题.
22.【答案】
【解析】解:(I)由题意可知,抛物线y2=2px(p>0)的焦点坐标为,准线方程为.
所以,直线l的方程为…
由消y并整理,得…
设A(x1,y1),B(x2,y2)
则x1+x2=3p,
又|AB|=|AF|+|BF|=x1+x2+p=4,
所以,3p+p=4,所以p=1…
(II)由(I)可知,抛物线的方程为y2=2x.
由题意,直线m的方程为y=kx+(2k﹣1).…
由方程组(1)
可得ky2﹣2y+4k﹣2=0(2)…
当k=0时,由方程(2),得y=﹣1.
把y=﹣1代入y2=2x,得.
这时.直线m与抛物线只有一个公共点.…
当k≠0时,方程(2)得判别式为△=4﹣4k(4k﹣2).
由△>0,即4﹣4k(4k﹣2)>0,亦即4k2﹣2k﹣1<0.
解得.
于是,当
且k ≠0时,方程(2)有两个不同的实根,从而方程组(1)有两组不同的解,这
时,直线m 与抛物线有两个不同的公共点,…因此,所求m 的取值范围是
.…
【点评】本题考查抛物线的方程与性质,考查直线与抛物线的位置关系,考查学生分析解决问题的能力,属于中档题.
23.【答案】(1),;(2),.()5f x x =+[]3,2x ∈-[]()10f f x x =+{}3x ∈-【
解
析
】
试
题解析:
(1)设,111]()(0)f x kx b k =+>由题意有:解得32,27,k b k b -+=⎧⎨
+=⎩1,
5,
k b =⎧⎨
=⎩∴,.()5f x x =+[]3,2x ∈-(2),.
(())(5)10f f x f x x =+=+{}3x ∈-考点:待定系数法.24.【答案】
【解析】解:(I )证明:∵PD ⊥平面ABCD ,∴PD ⊥BC ,又∵ABCD 是正方形,∴BC ⊥CD ,∵PDICE=D ,∴BC ⊥平面PCD ,又∵PC ⊂面PBC ,∴PC ⊥BC .(II )解:∵BC ⊥平面PCD ,∴GC 是三棱锥G ﹣DEC 的高.
∵E是PC的中点,∴.
∴.
(III)连接AC,取AC中点O,连接EO、GO,延长GO交AD于点M,则PA∥平面MEG.
下面证明之:
∵E为PC的中点,O是AC的中点,∴EO∥平面PA,
又∵EO⊂平面MEG,PA⊄平面MEG,∴PA∥平面MEG,
在正方形ABCD中,∵O是AC中点,∴△OCG≌△OAM,
∴,∴所求AM的长为.
【点评】本题主要考查线面平行与垂直关系、多面体体积计算等基础知识,考查空间想象能、逻辑思维能力、运算求解能力和探究能力、考查数形结合思想、化归与转化思想.。