高二数学上学期第二次月考试题理无答案word版本
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
云南省昆明市 2017-2018 学年高二数学上学期第二次月考试题理(无答
案)
1) . 某程序框图以下所示,若输出的S=41,则判断框内应填( )
A. i >3? B . i > 4?C.i>5?D.i>6?
第1题第3 题图
2).一个袋中装有2 个红球和 2 个白球,现从袋中拿出 1 球,而后放回袋中再拿出一球,则拿出
的两个球同色的概率是()
A.1
B.1
C.1
D.2 2345
3) . 对某班学生一次英语测试的成绩剖析,各分数段的散布以以下图(分数取整数),由此,预计此次测试的优异率(不小于80 分)为()
A.92%
B.24%
C.56%
D.76%
4)、以下语句中是命题的是()
A、周期函数的和是周期函数吗?
o
B 、 sin0 =0
C、 x2-2x+1 > 0
D、圆是平面图形吗?
5)、若命题“ P 且δ ”为假,且“┑P”为假,则()。
A、 P 或δ 为假 B 、δ真 C 、δ假 D 、不可以判断δ的真假
6)、“x> 1”是“ | x| > 1”的 ()
A.充足不用要条件B.必需不充足条件
C.充足必需条件D.既不充足又不用要条件
7) .以下各点中,与点(1, 2)位于直线 x+y- 1=0 的同一侧的是()
A.( 0, 0) B .(- 1, 1)
C.(- 1, 3) D.(2,- 3)
8).在某次体育活动中,统计甲、乙两组学生每分钟跳绳的成绩(单位:次)状况以下:
班级参加人数均匀次数中位数方差
甲班55135149190
乙班55135151110
下边有三个命题:①甲班学生的均匀成绩高于乙班学生的均匀成绩;②甲班学生的成绩颠簸比乙班学生的成绩颠簸大;③甲班学生成绩优异人数不会多于乙班学生的成绩优异的人数(跳绳次数≥ 150 次为优异).此中正确的选项是()
A.①B.②C.③D.②③
9) .任意地抛一粒豆子,恰巧落在图中的方格中(每个方格除颜外完整同样),
那么这粒豆子停在黑色方格中的概率是().
A .1
B.
1
C
1
D.
1 9632
10) 若x, y是正实数,则(x y)( 14
) 的最小值为x y
A. 6B. 9C. 12D. 15
x y- 2 0
11) 在平面直角坐标系中,不等式组x-y20 ,表示的平面地区的面积是()
x 2
A.42
B. 4
12_) 设命题p : x R, x2 10 ,则为()
(第 12 题)
A. x0R, x02 10
B. x0R, x02 1 0
C . x0R, x02 10
D . x0R, x02 1 0
一填空题
13).小张和小李去练习射击,第一轮10 发子弹打完后,两人的成绩以下图.依据图中的信息,小张和小李两人中成绩较稳固的是.
14)点 A 为周长等于 3 的圆周上的一个定点,若在该圆周上随机取一点B,则劣弧 AB 的长度小于 1的概率为 __________
2x 3 y6
15)
x - y0则 z x y 的最大值
3
y 0,
16)已知命题 p:彐 x∈ R,使得 tan x=1,命题 q:x2-3x+2<0 的解集是{ x | 1<x<2}. 以下结论:①命题“p∧q”是真命题;②命题“p∧┐q”是假命题;③命题“┐p∨q”是真命题;④命题“┐p∨┐ q”是假命题。
此中正确的选项是 . (填全部正确命题的序号)
三解答题( 12*5+10 )
17) 判断以下命题是不是全称命题或存在命题,假如,用符号表示,并判断其真假。
(一个3分)
2 2
(1)有一个实数α,使得 sin α +cos α≠ 1
(2)任何一条直线都存在斜率
(3)全部的实数 a, b,方程 ax+b=0 恰有独一解
(4) 存在实数 x,使得12
x 1
x2
18为了认识甲乙两名同学的数学学习状况,对他们的7 次数学测试成绩(满分100 分)进行统计,做出如右的茎叶图,此中x 处的数字模糊不清,已知甲同学成绩的中位数是83,乙同学成绩的均匀分是86.
(1)求 x 的值和乙同学成绩的方差
(2)现从成绩在 [90,100] 之间的试卷中随机抽取两份进行剖析,求恰抽到一份甲同学试卷的概率。
19 某校要建一个面积为
22m和 4 m的小
道
392 m的长方形游泳池,而且在周围要修筑出宽为
(以下图)。
问游泳池的长和宽分别为多少米时,占地面积最小?并求出占地面积的最小值。
2 m
4 m 4 m
2 m
20
一个盒子中装有 5 个编号挨次为1、2、3、4、5 的球,这 5 个球除号码外完整同样,有放回的连续抽取两次,每次任意地拿出一个球。
(1)一共有多少种可能的结果。
(2)求事件 A=“拿出球的号码之和不小于6”的概率.
( 3)设第一次拿出的球号码为x,第二次拿出的球号码为y,求事件B=“点( x, y)落在直线 y=x+1上方”的概率.
21 甲、乙两人商定在 6 点到 7点之间在某处见面,并商定先到者应等待另一人15 分钟,过时即可
离开。
求两人能见面的概率。
22 5名学生的数学和化学成绩见下表:
学生学科A B C D E
数学成绩 ( x)8876736663
化学成绩 ( y)7865716461
画出散点图,并判断它们之间能否有有关关系.。