湖南省长沙市雅礼中学高中物理带电粒子在复合场中的运动压轴题易错题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南省长沙市雅礼中学高中物理带电粒子在复合场中的运动压轴题易错题
一、带电粒子在复合场中的运动压轴题
1.如图所示,直径分别为D 和2D 的同心圆处于同一竖直面内,O 为圆心,GH 为大圆的水平直径。
两圆之间的环形区域(Ⅰ区)和小圆内部(Ⅱ区)均存在垂直圆面向里的匀强磁场.间距为d 的两平行金属极板间有一匀强电场,上极板开有一小孔.一质量为m 、电量为+q 的粒子由小孔下方
2
d
处静止释放,加速后粒子以竖直向上的速度v 射出电场,由H 点紧靠大圆内侧射入磁场。
不计粒子的重力。
(1)求极板间电场强度的大小;
(2)若粒子运动轨迹与小圆相切,求Ⅰ区磁感应强度的大小; (3)若Ⅰ区、Ⅱ区磁感应强度的大小分别为2mv qD 、
4mv
qD
,粒子运动一段时间后再次经过H 点,求这段时间粒子运动的路程.
【来源】2015年全国普通高等学校招生统一考试物理(山东卷带解析)
【答案】(1)2
mv qd
(2)4mv qD 或43mv qD (3)5.5πD
【解析】 【分析】 【详解】
(1)粒子在电场中,根据动能定理2122d Eq mv ⋅=,解得2
mv E qd
=
(2)若粒子的运动轨迹与小圆相切,则当内切时,半径为
/2
E
R 由2
11
v qvB m r =,解得4mv B qD =
则当外切时,半径为
e R
由2
12
v qvB m r =,解得43mv B qD =
(2)若Ⅰ区域的磁感应强度为220
932qB L m U =,则粒子运动的半径为00
10016819U U U ≤≤;Ⅱ
区域的磁感应强度为2012qU mv =,则粒子运动的半径为2
v qvB m r
=;
设粒子在Ⅰ区和Ⅱ区做圆周运动的周期分别为T 1、T 2,由运动公式可得:
1112R T v π=
;03
4
r L =
据题意分析,粒子两次与大圆相切的时间间隔内,运动轨迹如图所示,根据对称性可知,Ⅰ区两段圆弧所对的圆心角相同,设为1θ,Ⅱ区内圆弧所对圆心角为2θ,圆弧和大圆的两个切点与圆心O 连线间的夹角设为α,由几何关系可得:1120θ=;2180θ=;
60α=
粒子重复上述交替运动回到H 点,轨迹如图所示,设粒子在Ⅰ区和Ⅱ区做圆周运动的时间
分别为t 1、t 2,可得:r U ∝;1056
U L
U L =
设粒子运动的路程为s ,由运动公式可知:s=v(t 1+t 2) 联立上述各式可得:s=5.5πD
2.如图甲所示,空间存在一范围足够大的垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B .让质量为m ,电荷量为q (q >0)的粒子从坐标原点O 沿xOy 平面以不同的初速度大小和方向入射到磁场中.不计重力和粒子间的影响.
(1)若粒子以初速度v 1沿y 轴正向入射,恰好能经过x 轴上的A (a ,0)点,求v 1的大小;
(2)已知一粒子的初速度大小为v (v >v 1),为使该粒子能经过A (a ,0)点,其入射角θ(粒子初速度与x 轴正向的夹角)有几个?并求出对应的sin θ值;
(3)如图乙,若在此空间再加入沿y 轴正向、大小为E 的匀强电场,一粒子从O 点以初速度v 0沿y 轴正向发射.研究表明:粒子在xOy 平面内做周期性运动,且在任一时刻,粒子速度的x 分量v x 与其所在位置的y 坐标成正比,比例系数与场强大小E 无关.求该粒子运动过程中的最大速度值v m .
【来源】2013年全国普通高等学校招生统一考试理科综合能力测试物理(福建卷带解析) 【答案】⑴;⑵两个 sin θ=
;⑶
+
.
【解析】
试题分析:(1)当粒子沿y 轴正向入射,转过半个圆周至A 点,半径R 1=a/2
由运动定律有2
111
v Bqv m R =
解得12Bqa
v m
=
(2)如右图所示,O 、A 两点处于同一圆周上,且圆心在 x =
2
a
的直线上,半径为R ,当给定一个初速率v 时, 有2个入射角,分别在第1、2象限. 即 sinθ′=sinθ=
2a R
另有2
v Bqv m R
=
解得 sinθ′=sinθ=
2aqB
mv
(3)粒子在运动过程中仅电场力做功,因而在轨道的最高点处速率最大,用y m 表示其y 坐标,由动能定理有 qEy m =12mv 2
m -12
mv 20 由题知 v m =ky m
若E =0时,粒子以初速度v 0沿y 轴正向入射,有 qv 0B =m 20
v R
在最高处有 v 0=kR 0
联立解得22
()m E E v v B B
=
++
考点:带电粒子在符合场中的运动;动能定理.
3.如图所示,在坐标系xoy 中,过原点的直线OC 与x 轴正向的夹角φ=120°,在OC 右侧有一匀强电场;在第二、三象限内有一匀强磁场,其上边界与电场边界重叠、右边界为y 轴、左边界为图中平行于y 轴的虚线,磁场的磁感应强度大小为B ,方向垂直抵面向里。
一带正电荷q 、质量为m 的粒子以某一速度自磁场左边界上的A 点射入磁场区域,并从O 点射出,粒子射出磁场的速度方向与x 轴的夹角θ=30°,大小为v ,粒子在磁场中的运动轨迹为纸面内的一段圆弧,且弧的半径为磁场左右边界间距的两倍。
粒子进入电场后,在电场力的作用下又由O 点返回磁场区域,经过一段时间后再次离开磁场。
已知粒子从A 点射入到第二次离开磁场所用的时间恰好等于粒子在磁场中做圆周运动的周期。
忽略重力的影响。
求
(1)粒子经过A 点时速度的方向和A 点到x 轴的距离; (2)匀强电场的大小和方向;
(3)粒子从第二次离开磁场到再次进入电场时所用的时间。
【来源】2008年高考全国卷Ⅰ理综试题物理部分
【答案】(1(2)127Bv
E π
=,方向跟y 轴成120°角,斜向下指向左边。
(3)4t Bq
= 【解析】 【分析】
本题考查带电粒子在磁场中的运动。
【详解】
(1)设磁场左边界与x 轴相交于D 点,过O 点作速度v 垂线OO 1,与MN 相交于O 1点.由几何关系可知,在直角三角形OO 1D 中∠OO 1D =45º。
设磁场左右边界间距为d ,则
OO 1。
故粒子第一次进入磁场的运动轨迹的圆心即为O 1点,圆孤轨迹所对的圆心角为45º,且O 1A 为圆弧的半径R 。
由此可知,粒子自A 点射入磁场的速度与左边界垂直。
A 点到x 轴的距离:
()
1cos 45AD R ︒=-①
由洛仑兹力公式、牛顿第二定律及圆周运动的规律,得
2
q mv vB R
=② 联立①②式得
12mv AD qB ⎛=- ⎝⎭
③ (2)
依题意:匀强电场的方向与x 轴正向夹角应为135º。
设粒子在磁场中做圆周运动的周期为T ,第一次在磁场中飞行的时间为t 1,有
18T t =
④ 2m T qB π=⑤
由几何关系可知,粒子再次从O 点进入磁场的速度方向与磁场右边夹角为45º。
设粒子第二次在磁场中飞行的圆弧的圆心为O 2,O 2必定在直线OO 1上。
设粒子射出磁场时与磁场右边界交于P 点,则∠OO 2P =90º。
设粒子第二次进入磁场在磁场中运动的时间为t 2,有
21
4
t T =⑥
设带电粒子在电场中运动的时间为t 3,依题意得
()312t T t t =-+⑦
由匀变速运动的规律和牛顿定律可知
3v v at -=-⑧
qE a m
=
⑨ 联立④⑤⑥⑦⑧⑨可得
8
5E Bv π
=
⑩ (3)由几何关系可得:245OPO ︒
∠= 故粒子自P 点射出后将做类平抛运动。
则沿电场方向做匀加速运动:
2
112
S at =
⑪ 垂直电场方向做匀速直线运动:
2S vt =⑫
1
2
tan 45S S ︒=
⑬ 联立得
54m
t qB
π=。
4.如图所示,待测区域中存在匀强电场和匀强磁场,根据带电粒子射入时的受力情况可推测其电场和磁场. 图中装置由加速器和平移器组成,平移器由两对水平放置、相距为l 的相同平行金属板构成,极板长度为l 、间距为d,两对极板间偏转电压大小相等、电场方向相反. 质量为m 、电荷量为+q 的粒子经加速电压U0 加速后,水平射入偏转电压为U1 的平移器,最终从A 点水平射入待测区域. 不考虑粒子受到的重力.
(1)求粒子射出平移器时的速度大小v1;
(2)当加速电压变为4U0 时,欲使粒子仍从A 点射入待测区域,求此时的偏转电压U; (3)已知粒子以不同速度水平向右射入待测区域,刚进入时的受力大小均为F. 现取水平向右为x 轴正方向,建立如图所示的直角坐标系Oxyz. 保持加速电压为U0 不变,移动装置使粒子沿不同的坐标轴方向射入待测区域,粒子刚射入时的受力大小如下表所示.
请推测该区域中电场强度和磁感应强度的大小及可能的方向. 【来源】2012年普通高等学校招生全国统一考试理综物理(江苏卷) 【答案】(1)0
12qU v m
=
1U?
4U = (3)E 与Oxy 平面平行且与x 轴方向的夹角为30°或150°,
若B 沿-x 轴方向,E 与Oxy 平面平行且与x 轴方向的夹角为-30°或-150°. 【解析】
(1)设粒子射出加速器的速度为0v 动能定理2001
2
qU mv =
由题意得10v v =,即0
12qU v m
=
(2)在第一个偏转电场中,设粒子的运动时间为t 加速度的大小1
qU a md
=
在离开时,竖直分速度y
v at = 竖直位移2
112
y at =
水平位移1l vt =
粒子在两偏转电场间做匀速直线运动,经历时间也为t 竖直位移2y y v t =
由题意知,粒子竖直总位移12
y?2y y =+ 解得2
10U l y U d
=
则当加速电压为04U 时,1U?
4U = (3)(a)由沿x 轴方向射入时的受力情况可知:B 平行于x 轴. 且F
E q
= (b)由沿y +
-轴方向射入时的受力情况可知:E 与Oxy 平面平行.
222F f (5F)+=,则f?2F =且1f?qv B =
解得0
2F m
B B
qU =
(c)设电场方向与x 轴方向夹角为
.
若B 沿x 轴方向,由沿z 轴方向射入时的受力情况得222sin )(cos )(7)f F F F αα++=( 解得
=30°,或
=150°
即E 与Oxy 平面平行且与x 轴方向的夹角为30°或150°. 同理,若B 沿-x 轴方向
E 与Oxy 平面平行且与x 轴方向的夹角为-30°或-150°.
5.扭摆器是同步辐射装置中的插入件,能使粒子的运动轨迹发生扭摆.其简化模型如图:Ⅰ、Ⅱ两处的条形匀强磁场区边界竖直,相距为L ,磁场方向相反且垂直纸面.一质量为m ,电量为-q ,重力不计的粒子,从靠近平行板电容器MN 板处由静止释放,极板间电压为U ,粒子经电场加速后平行于纸面射入Ⅰ区,射入时速度与水平和方向夹角30θ=︒
(1)当Ⅰ区宽度1L L =、磁感应强度大小10B B =时,粒子从Ⅰ区右边界射出时速度与水平方向夹角也为30︒,求B 0及粒子在Ⅰ区运动的时间t 0
(2)若Ⅱ区宽度21L L L ==磁感应强度大小210B B B ==,求粒子在Ⅰ区的最高点与Ⅱ区的最低点之间的高度差h
(3)若21L L L ==、10B B =,为使粒子能返回Ⅰ区,求B 2应满足的条件
(4)若12B B ≠,12L L ≠,且已保证了粒子能从Ⅱ区右边界射出.为使粒子从Ⅱ区右边界射出的方向与从Ⅰ区左边界射出的方向总相同,求B 1、B 2、L 1、、L 2、之间应满足的关系式.
【来源】2011年普通高等学校招生全国统一考试物理卷(山东) 【答案】(1)32l
m t qU π=
(2)2233h L ⎛⎫
=- ⎪⎝⎭
(3)232mU B L q >(或232mU
B L q
≥
)(4)1122B L B L =
【解析】
图1
(1)如图1所示,设粒子射入磁场Ⅰ区的速度为v ,在磁场Ⅰ区中做圆周运动的半径为
1R ,由动能定理和牛顿第二定律得
2
12
qU mv =
① 2
11
v qvB m R = ②
由几何知识得
12sin L R θ= ③
联立①②③,带入数据得
012mU
B L q
=
④
设粒子在磁场Ⅰ区中做圆周运动的周期为T ,运动的时间为t
1
2R T v
π= ⑤ 22t T θ
π
=
⑥ 联立②④⑤⑥式,带入数据得
32L
m
t qU
π=
⑦ (2)设粒子在磁场Ⅱ区做圆周运动的半径为2R ,有牛顿第二定律得
2
22
v qvB m R = ⑧
由几何知识得
()()121cos tan h R R L θθ=+-+ ⑨
联立②③⑧⑨式,带入数据得
2233h L ⎛⎫
=- ⎪⎝⎭
⑩
图2
(3)如图2所示,为时粒子能再次回到Ⅰ区,应满足
()21sin R L θ+<[或()21sin R L θ+≤] ⑾
联立①⑧⑾式,带入数据得
232mU B L q >
232mU
B L q
≥
⑿
图3
图4
(4)如图3(或图4)所示,设粒子射出磁场Ⅰ区时速度与水平方向得夹角为α,有几何知识得()11sin sin L R θα=+ ⒀ [或()11sin sin L R θα=-]
()22sin sin L R θα=+ ⒁
[或]()22sin sin L R θα=- 联立②⑧式得
1122B R B R = ⒂
联立⒀⒁⒂式得
1122B L B L = ⒃
【点睛】(1)加速电场中,由动能定理求出粒子获得的速度.画出轨迹,由几何知识求出半径,根据牛顿定律求出B 0.找出轨迹的圆心角,求出时间;(2)由几何知识求出高度
差;(3)当粒子在区域Ⅱ中轨迹恰好与右侧边界相切时,粒子恰能返回Ⅰ区,由几何知识求出半径,由牛顿定律求出B 2满足的条件;(4)由几何知识分析L 1、L 2与半径的关系,再牛顿定律研究关系式.
6.如图所示,在xOy 平面直角坐标系中,直角三角形ACD 内存在垂直平面向里磁感应强度为B 的匀强磁场,线段CO=OD=L ,CD 边在x 轴上,∠ADC=30°。
电子束沿y 轴方向以相同的速度v 0从CD 边上的各点射入磁场,已知这些电子在磁场中做圆周运动的半径均为
3
L
,在第四象限正方形ODQP 内存在沿x 轴正方向、大小为E=Bv 0的匀强电场,在y=-L 处垂直于y 轴放置一足够大的平面荧光屏,屏与y 轴交点为P 。
忽略电子间的相互作用,不计电子的重力。
(1)电子的比荷;
(2)从x 轴最右端射入电场中的电子打到荧光屏上的点与P 点间的距离: (3)射入电场中的电子打到荧光屏上的点距P 的最远距离。
【来源】【市级联考】河北省唐山市2019届高三下学期第一次模拟考试理科综合物理试题 【答案】(1) 03v e m BL = (2) 23
L (3) 3
4L 【解析】 【分析】
根据电子束沿速度v 0射入磁场,然后进入电场可知,本题考查带电粒子在磁场和电场中的运动,根据在磁场中做圆周运动,在电场中做类平抛运动,运用牛顿第二定律结合几何知识并且精确作图进行分析求解; 【详解】
(1)由题意可知电子在磁场中的轨迹半径3
L
r = 由牛顿第二定律得2
00Bev m r
v =
电子的比荷
3e m BL
v =; (2)若电子能进入电场中,且离O 点右侧最远,则电子在磁场中运动圆轨迹应恰好与边
AD 相切,即粒子从F 点离开磁场进入电场时,离O 点最远:
设电子运动轨迹的圆心为O '点。
则23
L OF x ==
从F 点射出的电子,做类平抛运动,有2
232L Ee x m
t ==,0y t v = 代入得23
L y =
电子射出电场时与水平方向的夹角为θ有1
22
y tan x θ=
= 所以,从x 轴最右端射入电场中的电子打到荧光屏上的点为G ,则它与P 点的距离 ()
2tan 3
L y L GP θ
-=
=
; (3)设打到屏上离P 点最远的电子是从(x,0)点射入电场,则射出电场时
00
223
xm
xL
y t Ee
v v == 设该电子打到荧光屏上的点与P 点的距离为X ,由平抛运动特点得2X L y
y x -=
所以2
332222838xL xL
L X x x y L x ⎡
⎤⎫⎢⎥⎛⎫
=-==-+⎪ ⎪⎢⎥⎪⎝⎭⎭⎢⎥⎣
⎦
所以当38x L =,有3
4
m L X =。
【点睛】
本题属于带电粒子在组合场中的运动,粒子在磁场中做匀速圆周运动,要求能正确的画出运动轨迹,并根据几何关系确定某些物理量之间的关系,粒子在电场中的偏转经常用化曲为直的方法,求极值的问题一定要先找出临界的轨迹,注重数学方法在物理中的应用。
7.平面直角坐标系的第一象限和第四象限内均存在垂直纸面向里的匀强磁场,磁感应强度大小分别为2B 和B (B 的大小未知),第二象限和第三象限内存在沿﹣y 方向的匀强电场,x 轴上有一点P ,其坐标为(L ,0)。
现使一个电量大小为q 、质量为m 的带正电粒子从坐标(﹣2a ,a )处以沿+x 方向的初速度v 0出发,该粒子恰好能经原点进入y 轴右侧并在随后经过了点P ,不计粒子的重力。
(1)求粒子经过原点时的速度; (2)求磁感应强度B 的所有可能取值
(3)求粒子从出发直至到达P 点经历时间的所有可能取值。
【来源】2019年东北三省四市高考二模物理试题
【答案】(120,方向:与x 轴正方向夹45°斜向下; (2)磁感应强度B 的所有可能取值:0
nmv B qL
=
n =1、2、3……; (3)粒子从出发直至到达P 点经历时间的所有可能取值:023(1)24a m m t k k v qB qB
ππ=++- k =1、2、3……或02324a m m
t n n v qB qB
ππ=++ n =1、2、3……。
【解析】 【详解】
(1)粒子在电场中做类平抛运动,水平方向:2a =v 0t , 竖直方向:2
y v a t =
,
解得:v y =v 0,tan θ=
y v v =1,θ=45°,
粒子穿过O 点时的速度:2
2002v v v v =
+=;
(2)粒子在第四象限内做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得:
2
v qvB m r
= ,
粒子能过P 点,由几何知识得:L =nr cos45° n =1、2、3……, 解得:0
nmv B qL
=
n =1、2、3……; (3)设粒子在第二象限运动时间为t 1,则:t 1=
2a v ; 粒子在第四、第一象限内做圆周运动的周期:12m T qB π=
,2m
T qB
π=, 粒子在下方磁场区域的运动轨迹为1/4圆弧,在上方磁场区域的运动轨迹为3/4圆弧,
若粒子经下方磁场直接到达P 点,则粒子在磁场中的运动时间:t 2=
1
4
T 1, 若粒子经过下方磁场与上方磁场到达P 点,粒子在磁场中的运动时间:t 2=1
4T 1+34
T 2, 若粒子两次经过下方磁场一次经过上方磁场到达P 点:t 2=2×
1
4T 1+34T 2, 若粒子两次经过下方磁场、两次经过上方磁场到达P 点:t 2=2×1
4T 1+2×34
T 2, ………… 则23(1)24m
m
t k k qB
qB
ππ=+- k =1、2、3 (2324)
m
t n
n
qB qB
ππ=+ n =1、2、3…… 粒子从出发到P 点经过的时间:t =t 1+t 2, 解得:023(1)24a m m t k k v qB qB
ππ=++- k =1、2、3…… 或02324a m m t n n v qB qB
ππ=
++ n =1、2、3……;
8.如图所示,在平面直角坐标系xOy 平面内,直角三角形abc 的直角边ab 长为6d ,与y 轴重合,∠bac=30°,中位线OM 与x 轴重合,三角形内有垂直纸面向里的匀强磁场.在笫一象限内,有方向沿y 轴正向的匀强电场,场强大小E 与匀强磁场磁感应强度B 的大小间满足E=v 0B .在x=3d 的N 点处,垂直于x 轴放置一平面荧光屏.电子束以相同的初速度v 0从y 轴上-3d≤y≤0的范围内垂直于y 轴向左射入磁场,其中从y 轴上y=-2d 处射入的电子,经磁场偏转后,恰好经过O 点.电子质量为m,电量为e,电子间的相互作用及重力不计.求 (1)匀强磁杨的磁感应强度B
(2)电子束从y 轴正半轴上射入电场时的纵坐标y 的范围; (3)荧光屏上发光点距N 点的最远距离L
【来源】四川省乐山市2018届高三第二次调查研究考试理综物理试题 【答案】(1)0mv ed ; (2)02y d ≤≤;(3)9
4
d ; 【解析】
(1)设电子在磁场中做圆周运动的半径为r ; 由几何关系可得r =d
电子在磁场中做匀速圆周运动洛伦兹力提供向心力,由牛顿第二定律得:20
0v ev B m r
=
解得:0
mv B ed
=
(2)当电子在磁场中运动的圆轨迹与ac 边相切时,电子从+ y 轴射入电场的位置距O 点最远,如图甲所示.
设此时的圆心位置为O ',有:sin 30r
O a '=
︒
3OO d O a ='-'
解得OO d '=
即从O 点进入磁场的电子射出磁场时的位置距O 点最远 所以22m y r d ==
电子束从y 轴正半轴上射入电场时的纵坐标y 的范围为02y d ≤≤
设电子从02y d ≤≤范围内某一位置射入电场时的纵坐标为y ,从ON 间射出电场时的位置横坐标为x ,速度方向与x 轴间夹角为θ,在电场中运动的时间为t ,电子打到荧光屏上产生的发光点距N 点的距离为L ,如图乙所示:
根据运动学公式有:0x v t =
212eE y t m
=
⋅ y eE v t m
=
tan y v v θ=
tan 3L
d x
θ=
- 解得:(32)2L d y y =即9
8
y d =
时,L 有最大值 解得:94
L d =
当322d y y
【点睛】本题属于带电粒子在组合场中的运动,粒子在磁场中做匀速圆周运动,要求能正确的画出运动轨迹,并根据几何关系确定某些物理量之间的关系;粒子在电场中的偏转经常用化曲为直的方法,求极值的问题一定要先找出临界的轨迹,注重数学方法在物理中的应用.
9.如图,为一除尘装置的截面图,塑料平板M .N 的长度及它们间距离均为d .大量均匀分布的带电尘埃以相同的速度v o 进入两板间,速度方向与板平行,每颗尘埃的质量均为m ,带电量均为-q .当两板间同时存在垂直纸面向外的匀强磁场和垂直板向上的匀强电场时,尘埃恰好匀速穿过两板间;若撤去板间电场,并保持板间磁场不变,尘埃恰好全部被平板吸附,即除尘效率为100%;若撤去两板间电场和磁场,建立如图所示的平面直角坐标系xoy ,y 轴垂直于板并紧靠板右端,x 轴与两板中轴线共线,要把尘埃全部收集到位于P (2d ,-1.5d)处的条状容器中,需在y 轴右侧加一垂直于纸面向里的圆形匀强磁场区域.尘埃颗粒重力、颗粒间作用及对板间电场磁场的影响均不计,求: (1)两板间磁场磁感应强度B i 的大小;
(2)若撤去板间磁场,保持板间匀强电场不变,除尘效率为多少;
(3)y 轴右侧所加圆形匀强磁场区域磁感应强度B 2大小的取值范围.
【来源】【市级联考】山东省青岛市2019届高三下学期5月第二次模考理综物理试题 【答案】(1)0i mv B qd =;(2)除尘效率为50%;(3)
0022mv mv
B qd qd
≤≤ 【解析】 【详解】
(1)沿N 极板射入的尘埃恰好不从极板射出时尘埃的运动轨迹如图所示,
由几何知识可知,尘埃在磁场中的半径:r =d , 尘埃在磁场中做匀速圆周运动,洛伦兹力提供向心力,
由牛顿第二定律得:20
mv qvB r
=
,解得:0i mv B qd =; (2)电场、磁场同时存在时,尘埃匀速直线,满足:0qE qv B =,
撤去磁场以后粒子在电场作用下平抛,假设距离N 极板y 的粒子恰好离开电场: 水平方向:0d v t = 竖直方向:2
12
y at = 加速度:qE a m
=
解得:0.5y d =
当0.5y d >时,时间更长,水平位移x d >,即0.5d 到d 这段距离的粒子会射出电场,则从平行金属板出射的尘埃占总数的百分比:
0.5100%50%d d
d
-⨯=;
(3)设圆形磁场区域的半径为R 0,尘埃颗粒在圆形磁场中做圆周运动的半径为R 2,要把尘埃全部收集到位于P 处的条状容器中,就必须满足20R R =
另20
022
v qv B m R =
如图,当圆形磁场区域过P 点且与M 板的延长线相切时,圆形磁场区域的半径R 0最小,磁感应强度B 2最大,有0R d =小
解得:0
2mv B qd
大=
如图,当圆形磁场区域过P 点且与y 轴在M 板的右端相切时,圆形磁场区域的半径R 0最大,磁感应强度B 2最小,有02R d =大
解得:0
22mv B qd
=
小 所以圆形磁场区域磁感应强度B 2的大小须满足的条件为
0022mv mv
B qd qd
≤≤.
10.在光滑绝缘水平桌面上建立直角坐标系,y 轴左侧有沿y 轴正方向的匀强电场E ,y
轴右侧有垂直水平桌面向上的匀强磁场B .在
处有一个带正电的小球A 以速度
沿x 轴正方向进入电场,运动一段时间后,从(0,8)处进入y 轴右侧的磁场
中,并且正好垂直于x 轴进入第4象限,已知A 球的质量为
,带电量为
,求:
(1)电场强度E的大小;
(2)磁感应强度B的大小;
(3)如果在第4象限内静止放置一个不带电的小球C,使小球A运动到第4象限内与C球发生碰撞,碰后A、C粘在一起运动,则小球C放在何位置时,小球A在第4象限内运动的时间最长(小球可以看成是质点,不考虑碰撞过程中的电量损失).
【来源】【市级联考】山东省临沂市2019届高三下学期高考模拟考试(二模)理综物理试题
【答案】(1)(2)1.5T(3)
【解析】
【详解】
(1)小球A在电场中沿x、y轴方向上的位移分别设为
x方向:,
y方向:,
加速度:
联立可得:
(2)小球进入磁场时y方向的速度:,
合速度:,方向:
,方向与y轴正方向成
小球A在磁场中做匀速圆周运动,垂直于x轴进入第4象限,做出小球A运动的轨迹如图,设轨道半径为,由几何关系可得:
根据:,解得:
(3)在第4象限内A与C球发生完全非弹性碰撞,碰撞后速度设为,在磁场中做圆周运动的轨道半径设为,
解得:
即:小球运动的轨道半径不变
由周期公式可得:碰撞后小球的速度小,故碰后的周期大,所以要使小球A在第4象限内运动的时间最长,小球C应放在小球A进入第4象限时的位置:
即坐标为。