圆周运动计算题复习专题
专题04 圆周运动(解析版)-高考物理计算题专项突破
专题04 圆周运动一、描述圆周运动的物理量及公式:①平均线速度:t s v ∆∆=;(平均速度)②平均角速度:t∆∆=θω;③转速、周期、频率关系:Tf n 1==;④r v ω=,n f T πππω222===,rn rf Trv πππ222===;二、匀速圆周运动的有关公式:①向心力:r mf r T m r m r v m ma F n n 22222244ππω=====;②向心加速度:ωππωv r f r Tr r v a n =====22222244;在解有关圆周运动的计算题时,首先要审清题目,确定研究对象,同时确定圆周运动的轨道平面,然后对题目中的几何关系、物体的运动情况和物体的受力情况(画示意图)进行分析,从而确定圆周运动的圆心、半径,物体运动的线速度、角速度,以及向心力的来源。
最后根据牛顿运动定律或者圆周运动的相关知识列出方程求解即可。
1.火车转弯问题 在转弯处,若向心力完全由重力G 和支持力N F 的合力F 合来提供,则铁轨不受轮缘的挤压,此时行车最安全。
R 为转弯半径,θ为斜面的倾角, 2=tan v F F mg mRθ==临向合, 所以v 临(1)当v v >临时,即2tan v m mg Rθ>,重力与支持力N F 的合力不足以提供向心力,则外轨对轮缘有侧向压力。
(2)当v v <临时,即2tan v m mg Rθ<,重力与支持力N F 的合力大于所需向心力,则内轨对轮缘有侧向压力。
(3)当v v =临时,2tan v m mg Rθ=,火车转弯时不受内、外轨对轮缘的侧向压力,火车行驶最安全。
2.汽车过拱桥如汽车过拱桥桥顶时向心力完全由重力提供(支持力为零),则据向心力公式2=v F mg m R=向得: v =(R 为圆周半径),故汽车是否受拱桥桥顶作用力的临界条件为:v =临,此时汽车与拱桥桥顶无作用力。
3.圆周运动中常考的临界问题(1)水平面内圆周运动的临界问题,例如圆锥摆、转盘上的物体、火车和汽车转弯等,首先应明确向心力的来源,然后分析临界状态,通过动力学方程r mv ma F 2==,r m ma F 2ω==,r T m ma F 224π==,mr n ma F 224π==来求解。
高一物理·圆周运动基础练习(含答案)
一、知识回顾:1. 圆周运动:运动轨迹为的质点的运动。
2. 匀速圆周运动:运动轨迹为且质点在相等时间内通过的相等的运动。
它是运动。
3. 线速度v: 在圆周运动中, 质点通过的跟通过这段所用的比值。
表达式: , 单位: 。
4.角速度ω: 在圆周运动中, 质点转过的跟转过这个所用的比值。
表达式: , 单位: 。
5. 周期T: 做匀速圆周运动的物体运动所用的时间。
T= = 。
6. 转速n:做匀速圆周运动的物体在时间内转过的。
n = , 单位;或n= , 单位。
7. 向心加速度: 做匀速圆周运动的物体所具有的指向圆心的加速度。
向心加速度与速度方向,总是指向, 只改变速度的, 不改变速度的。
a = = = 。
8. 向心力: 做圆周运动的物体受到的与速度方向, 总是指向, 用来改变物体运动的力。
F = = = 。
向心力是指向圆心的合力, 是按照__ ____命名的, 并不是物体另外受到的力, 向心力可以是重力、________、__________等各种力的合力, 也可以是其中某一种力或某一种力的。
9. 解题时常用的两个结论:①固定在一起共轴转动的物体上各点的相同;②不打滑的摩擦传动和皮带传动的两轮边缘上各点的大小相等。
二、针对训练:1. (单选)对于做匀速圆周运动的物体, 下列说法错误的是()A.线速度不变.... B.线速度的大小不....C.转速不......D.周期不变2. (单选)一质点做圆周运动, 速度处处不为零, 则其中正确的是()①任何时刻质点所受的合力一定不为零②任何时刻质点的加速度一定不为零③质点速度的大小一定不断变化④质点速度的方向一定不断变化A. ①②...B. ①②④....C. ①③...D. ②③④3. (单选)做匀速圆周运动的质点是处于()A.平衡状..... B.不平衡状态....C.速度不变的状.. D.加速度不变的状态4. (单选)匀速圆周运动是()A. 匀速运动B. 匀加速运动C. 匀减速运动D. 变加速运动.5. (单选)下列关于向心加速度的说法中, 正确的是( ) A. 向心加速度的方向始终与速度的方向垂直. B. 向心加速度的方向可能与速度方向不垂直 C. 向心加速度的方向保持不变D. 向心加速度的方向与速度的方向平行6. (单选)如图所示, 在皮带传动装置中, 主动轮A 和从动轮B 半径不等, 皮带与轮之间无相对滑动, 则下列说法中正确的是( )A. 两轮的角速度相等B. 两轮边缘的线速度大小相等.C. 两轮边缘的向心加速度大小相等D. 两轮转动的周期相同7. (单选)一个闹钟的秒针角速度为( ) A. πrad/s B. 2πrad/s C. rad/s D. rad/s.8. (单选)甲、乙、丙三个物体, 甲放在广州, 乙放在上海, 丙放在北京. 当它们随地球一起转动时, 则( ) A. 甲的角速度最大、乙的线速度最小 B. 丙的角速度最小、甲的线速度最大 C. 三个物体的角速度、周期和线速度都相等 D .三个物体的角速度、周期一样, 丙的线速度最小.9. 如图所示, 直径为d 的纸制圆筒以角速度ω绕垂直纸面的轴O 匀速转动(图示为截面). 从枪口发射的子弹沿直径穿过圆筒. 若子弹在圆筒旋转不到半周时, 在圆周上留下a 、b 两个弹孔, 已知aO 与bO 夹角为θ, 求子弹的速度。
第六章 圆周运动 章节复习题-2022-2023学年高一下学期物理人教版(2019)必修第二册
第六章圆周运动章节复习题一、单选题(下列各题均有4个选项,其中只有一个是正确的,请将正确选项的字母代号写在答题卷的相应位置,多选、错选或不选,该小题不得分,每小题3分,共24分)1、下列关于圆周运动的说法中正确的是()A.向心加速度的方向始终指向圆心B.匀速圆周运动是匀变速曲线运动C.在匀速圆周运动中,向心加速度是恒定的D.在匀速圆周运动中,线速度和角速度是不变的2、如图,A、B两点分别位于大、小轮的边缘上,C点位于大轮半径的中点,大轮的半径是小轮半径的2倍,它们之间靠摩擦传动,接触面不打滑。
下列说法正确的是()A.A与B线速度大小相等 B.B与C线速度大小相等C.A的角速度是C的2倍 D.A与B角速度大小相等3、如图所示,为一在水平面内做匀速圆周运动的圆锥摆,关于摆球A的受力情况,下列说法中正确的是()A.摆球A受重力、拉力和向心力的作用B.摆球A受拉力和向心力的作用C.摆球A受重力和向心力的作用D.摆球A受拉力和重力的作用4、如图四幅图中,做圆周运动的物体,描述正确的是()A.图甲中,汽车通过拱形桥最高点时,车速越大,车对桥面的压力越大B.图乙中,做圆锥摆运动的物体,转速越大,摆线与竖直方向的夹角越大C.图丙中,火车转弯速度较大时,火车内侧的车轮轮缘挤压内轨D.图丁中,洗衣机脱水时衣物附着在桶内壁上,转速越大,衣物所受筒壁的静摩擦力越大5、如图所示,半径为r的圆筒,绕竖直中心轴OO'转动,小物块a靠在圆筒的内壁上,它与圆筒的动摩擦因数为μ,现要使小物块a不下滑,则圆筒转动的角速度ω至少为()A.grμB.gμ C.grDgrμ6、如图,A、B两小球沿倒置的光滑圆锥内侧在水平面内做匀速圆周运动。
则()A.A球质量大于B球 B.A球线速度大于B球C.A球转动周期小于B球 D.A球向心加速度小于B球7、智能呼啦圈轻便美观,深受大众喜爱,如图甲,腰带外侧带有轨道,将带有滑轮的短杆(大小忽略不计)穿入轨道,短杆的另一端悬挂一根带有配重的轻绳,其简化模型如图乙所示,可视为质点的配重质量为0.5kg,绳长为0.5m,悬挂点P到腰带中心点O的距离为0.2m,水平固定好腰带,通过人体微小扭动,使配重随短杆做水平匀速圆周运动,绳子与竖直方向夹角为θ,运动过程中腰带可看成不动,重力加速度g取10m/s2,下列说法正确的是()A.若使用者觉得锻炼不够充分,决定增大转速,腰带受到的合力变大B.当使用者掌握好锻炼节奏后能够使θ稳定在37°,此时配重的角速度为5rad/s C.使用者使用一段时间后成功减肥,再次使用时将腰带调小,若仍保持转速不变则θ变小D.当用力转动使θ从37°增加到53°时,配重运动的周期变大8、如图,叠放在水平转台上的物体A、B、C都能随转台一起以角速度ω匀速转动,A、B、C 的质量分别为3m、2m、m,A与B、B与转台间的动摩擦因数为μ,C与转台间的动摩擦因数为2μ,A和B、C离转台中心的距离分别为r、1.5r。
高考物理计算题复习《圆周运动》(解析版)
《圆周运动》一、计算题1.如图,小球做匀速圆周运动,细线与竖直方向夹角为,线长为L,小球质量为m,重力加速度为求:绳子对小球的拉力的大小小球运动的向心加速度大小小球运动的角速度.2.如图,小球A在倒立的圆锥的水平面内做匀速圆周运动,小球圆周运动的半径r,圆锥倾角,重力加速度g。
求小球运动的线速度v角速度3.儿童乐园中,一个质量为的小孩骑在木马上随木马一起在水平面内匀速转动。
已知转轴距木马远,每转1圈,把小孩的转动看作匀速圆周运动,求:小孩转动的角速度。
小孩转动的线速度。
小孩转动的向心加速度。
4.有一种叫“飞椅”的游乐项目,示意图如图,长为L的钢绳一端系着质量为m的座椅,另一端固定在半径为r的水平转盘边缘.转盘可绕穿过其中心的竖直轴转动.当转盘匀速转动时,钢绳与转轴在同一竖直平面内,且与竖直方向的夹角为,重力加速度不计钢绳的重力,求:钢绳对座椅的拉力T;转盘匀速转动时的角速度.5.如图,水平桌面中心O处有一个小孔,用细绳穿过光滑小孔,绳两端各系质量的物体A和的物体的中心与圆孔的距离为取如果水平桌面光滑且固定,求A物体做匀速圆周运动的角速度应是多大?如果水平桌面粗糙,且与A之间的最大摩擦力为1N,现使此平面绕中心轴线水平转动,角速度在什么范围内,A可与平面处于相对静止状态?6.如图所示,在匀速转动的圆盘上,沿半径方向放置以细线相连的质量均为m的A、B两个小物块,A离轴心,B离轴心,A、B与盘面间相互作用的最大静摩擦力为其重力的倍.求:若细线上没有张力,圆盘转动的角速度应满足什么条件?欲使A、B与盘面间不发生相对滑动,则盘转动的最大角速度多大?当圆盘转速达到A、B刚好不滑动时,烧断细绳,则A、B将怎样运动?取7.如图所示,在绕竖直轴匀速转动的水平圆盘盘面上,离轴心处放置一小物块,其质量为,物块与圆盘间的动摩擦因数当圆盘转动的角速度时,物块随圆盘一起转动,设最大静摩擦力等于滑动摩擦力,取重力加速度求:物块的线速度大小;物块的向心加速度大小;欲使物块与盘面间不发生相对滑动,则圆盘转动的角速度不能超过多大?8.如图所示,一根长为3l,可绕O轴在竖直平面内无摩擦转动的细杆AB,已知,,质量相等的两个球分别固定在杆的A、B端,由水平位置自由释放,求轻杆转到竖直位置时两球的速度分别为多大?9.一物体沿半径为10m的圆形轨道在水平面内做匀速圆周运动,线速度为,在A点运动方向为正北,经周期运动至B点,在B点运动方向为正东,如图所示,求:物体从A到B过程通过的路程和位移物体运动的角速度和向心加速度的大小.10.如图所示,用内壁光滑的薄壁细圆管弯成的由半圆形圆半径比细管的内径大得多和直线BC组成的轨道固定在水平桌面上,已知APB部分的半径,BC段长弹射装置将一个质量为的小球可视为质点以的水平初速度从A点射入轨道,小球从C点离开轨道随即水平抛出,桌子的高度,不计空气阻力,g取求:小球在半圆轨道上运动时的角速度、向心加速度a的大小及圆管在水平方向上对小球的作用力大小;小球从A点运动到B点的时间t;小球在空中做平抛运动的时间及落到地面D点时的速度大小.11.如图所示,水平放置的正方形光滑玻璃板abcd,边长L,距地面的高度为H,玻璃板正中间有一个光滑的小孔O,一根细线穿过小孔,两端分别系着小球A和小物块B,当小球A以速度v在玻璃板上绕O点做匀速圆周运动时,AO间的距离为已知A的质量为,重力加速度g.求小球的角速度;求小物块B的质量;当小球速度方向平行于玻璃板ad边时,剪断细线,则小球落地前瞬间的速度多大?12.如图所示,用一根长为的细线,一端系一质量为的小球可视为质点,另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为时,细线的张力为取,结果可用根式表示求:若要小球离开锥面,则小球的角速度至少为多大?若细线与竖直方向的夹角为,则小球的角速度为多大?13.如图所示,轻杆长为3L,在杆的A、B两端分别固定质量为m的球A和质量为2m的球、B球均可视为质点,杆上距球A为L处的点O装在光滑的水平转动轴上,杆和球在竖直面内按如图方向转动,已知球B运动到最高点时如图甲,球B 对杆恰好无作用力.求:图甲图乙球B在最高点时,杆的角速度大小;球B在最低点时如图乙,杆的角速度大小.14.如图所示装置可绕竖直轴转动,可视为质点的小球A与两细线连接后分别系于B、C两点,当细线AB沿水平方向绷直时,细线AC与竖直方向的夹角已知小球的质量,细线AC长重力加速度g取,,若装置匀速转动,细线AB刚好被拉直成水平状态,求此时的角速度的大小;若装置匀速转动的角速度,求细线AB和AC上的张力大小、.15.一汽车发动机的曲轴的转速,求:曲轴转动的周期与角速度大小;距转轴处的线速度大小。
高中物理抛体圆周运动计算题专题训练含答案
高中物理抛体圆周运动计算题专题训练含答案姓名:__________ 班级:__________考号:__________一、计算题(共11题)1、一根原长为20cm的轻质弹簧,劲度系数k=20 N/m,一端拴着一个质量为1 kg的小球,在光滑的水平面上绕另一端做匀速圆周运动,此时弹簧的实际长度为25 cm,如图所示.求:(1)小球运动的线速度为多大?(2)小球运动的周期为多大?2、如图12所示,一个人用一根长1m,只能承受74N拉力的绳子,拴着一个质量为1的小球,在竖直平面内作圆周运动,已知圆心O离地面h=6m。
转动中小球在最底点时绳子断了,(1)绳子断时小球运动的角速度多大?(2)绳断后,小球落地点与抛出点间的水平距离。
3、如图14所示,是双人花样滑冰运动中男运员拉着女运动员做圆锥摆运动的精彩场面,若女运动员做圆锥摆时和竖直方向的夹角约为θ,女运动员的质量为m,转动过程中女运动员的重心做匀速圆周运动的半径为r,求:(1)男运动员对女运动员的拉力大小(2)两人转动的角速度。
(3)如果男、女运动员手拉手均作匀速圆周运动,已知两人质量比为2 : 1,求他们作匀速圆周运动的半径比。
4、 1849年,法国科学家斐索用如图所示的方法在地面上测出了光的速度.他采用的方法是:让光束从高速旋转的齿轮的齿缝正中央穿过,经镜面反射回来,调节齿轮的转速,使反射光束恰好通过相邻的另一个齿缝的正中央,由此可测出光的传播速度.若齿轮每秒转动n周,齿轮半径为r,齿数为P,齿轮与镜子间距离为d.求:(1)齿轮的转动周期;(2)每转动一齿的时间为;(3)光速c的表达式.5、要求摩托车由静止开始在尽量短的时间内走完一段直道,然后驶入一段半圆形的弯道,但在弯道上行驶时车速不能太快,以免因离心作用而偏出车道.有关数据见表格.取g=10m/s2,设最大静摩擦力等于滑动摩擦力.直道启动加速度a1 4 m/s2直道制动加速度a28 m/s2直道最大速v40m/s弯道半径R80 m弯道路面动摩擦因素μ0.5直道长度s218m求摩托车在直道上行驶所用的最短时间.6、有一个圆盘能够在水平面内绕其圆心O匀速旋转,盘的边缘为粗糙平面(用斜线表示)其余为光滑平面.现用很轻的长L=5 cm的细杆连接A、B两个物体,A、B的质量分别为=0.1 kg和 =0.5 kg.B放在圆盘的粗糙部分,A放在圆盘的光滑部分.并且细杆指向圆心,A离圆心O 为10cm,如图所示,当盘以n=2转/秒的转速转动时,A和B能跟着一起作匀速圆周运动.求(1)B受到的摩擦力.(2)细杆所受的作用力.7、如图9所示,一种向自行车车灯供电的小发电机的上端有一半径r0=1.0cm的摩擦小轮,小轮与自行车车轮的边缘接触。
匀速圆周运动复习专题(含答案)
匀速圆周运动复习专题一、匀速圆周运动的描述1.下列说法正确的是( )A.匀速圆周运动是一种匀速运动B.匀速圆周运动是一种匀变速运动C.匀速圆周运动是一种变加速运动D.物体做圆周运动时其向心力垂直于速度方向,不改变线速度的大小2.由于地球自转,比较位于赤道上的物体1与位于北纬60°的物体2.则( )A.它们的角速度之比ω1∶ω2=2∶1B.它们的线速度之比v 1∶v 2=2∶1C.它们的向心加速度之比A 1∶A 2=2∶1D.它们的向心加速度之比A 1∶A 2=4∶13、四个物体做匀速圆周运动,其线速度之比v 1:v 2:v 3:v 4=1:2:3:4,其角速度之比ω1:ω2:ω3:ω4=4:3:2:1,求其半径之比( )A 、r 1:r 2:r 3:r 4=1:1:1:1;B 、r 1:r 2:r 3:r 4=1:6:8:12;C 、r 1:r 2:r 3:r 4=3:8:18:48;D 、r 1:r 2:r 3:r 4=1:6:9:45;4.如图所示,一个大轮通过皮带拉着一个小轮转动,假设皮带和两轮之间没有打滑,而且212R R =,C 为1R 的中点,那么:①=B A v v :________ ,②=B A ωω:__________,③=C B v v :_________。
5.两个小球固定在一根长L 的杆的两端,绕杆的O 点做圆周运动,如图所示。
当小球1的速度为1v 时,小球2的速度为2v ,则转轴O 到小球2的距离是( )A .211v v Lv + B .212v v Lv + C .121)(v v v L + D .221)(v v v L +6、机械手表中的分针与秒针可视为匀速转动,分针与秒针从重合至第二次重合,中间经历的时间为( )A.1 minB.min 6059 C.min 5960 D.min 6061 7.如图所示,在同一竖直平面内有A 、B 两物体,A 物体从a 点起以角速度ω做半径为R 的匀速圆周运动,同时B 物体从圆心O 处自由下落,若要A 、B 两物体在d 点相遇,求角速度ω须满足的条件。
物理(圆周运动)复习要点及例题解答
物理(圆周运动)复习要点及例题解答Ⅰ基础知识:一.向心力1.概念:做匀速圆周运动的物体受到一个指向圆心的合力的作用,这个力叫向心力。
2.方向:向心力指向圆心,方向不断变化。
3.作用:向心力的作用效果——只改变运动物体的速度方向,不改变速度大小4.大小:r a 2ω=; r v a 2=二.向心加速度1.概念:做圆周运动的物体,在向心力F 的作用下必然要产生一个加速度,据牛顿运动定律得到:这个加速度的方向与向心力的方向相同,叫做向心加速度。
2.向心加:速度的方向同于向心力的方向,时刻指向圆心,由于a 向的方向时刻在变,所以匀速圆周运动是瞬时加速度的方向不断改变的变加速运动。
3大小:结合牛顿运动定律推导得到r a 2ω= r v a 2=三.描述匀速圆周运动快慢的物理量1.线速度:线速度是物体做匀速圆周运动的瞬时速度;线速度的大小t s v =,线速度是矢量,它既有大小,也有方向。
2.角速度:角速度是物体做圆周运动单位时间转过的角度;匀速圆周的角速度ω 是恒定的;单位的写法rad/s3.周期(T )、频率(f )和转速(n )4.线速度、角速度、周期之间的关系wr v T r w t rr v =⇒⎪⎪⎭⎪⎪⎬⎫==ππ22 Ⅱ.例题分析例题1.如图1所示,一圆盘可绕一通过圆心O 且垂直盘面的竖直轴转动。
在圆盘上放置一木块,木块圆盘一起作匀速运动,则 [ ]A.木块受到圆盘对它的摩擦力,方向与木块运动方向相反B.木块受到圆盘对它的摩擦力,方向与木块运动方向相同C.木块受到圆盘对它的摩擦力,方向指向圆心D.木块受到圆盘对它的摩擦力,方向背离圆心例题2.如图3所示的皮带传动装置中,轮A和B同轴,A、B、C分别是三个轮边缘的质点,且R A=R C=2R B,则三质点的向心加速度之比a A:a B:a C等于 [ ]A.4:2:1B.2:1:2C.1:2:4D.4:1:4例题3.如图2所示,在匀速转动的圆筒内壁上紧靠着一个物体一起运动,物体所受向心力是 [ ]A.重力B.弹力C.静摩擦力D.滑动摩擦力例题4.一可转动的圆盘半径为R,甲、乙两物体的质量分别为M与m(M>m),它们与圆盘之间的动摩擦因数为μ,两物体用一根长为L的轻绳连在一起,若将甲物体放在转轴的位置上,甲、乙之间接线刚好沿半径方向拉直,要使两物体与转盘之间不发生相对滑动,则转盘旋转的角速度最大值不得超过多少例题5.如图,一质量为0.5kg的小球,用0.4m长的细线拴住在竖直面内作圆周运动,求:(1)当小球在圆上最高点速度为4m/s时,细线的拉力是多少?(2)当小球在圆下最低点速度为6m/s时,绳拉力是多少?(g=10m/s2)例题6.如图所示,飞机在半径为R的竖直平面内翻斤斗,已知飞行员质量为m,飞机飞至最高点时,对座位压力为N,此时飞机的速度多大?例题7.如图MN为水平放置的光滑圆盘,半径为1.0m,其中心O处有一个小孔,穿过小孔的细绳两端各系一小球A和B,A、B两球的质量相等。
圆周运动专题汇编(必须掌握经典题目)有答案
r m 高一期末考试题目 圆周运动专题汇编一、选择题[共53题]1、如图所示,用长为L 的细绳拴着质量为m 的小球在竖直平面内做圆周运动,则( )A .小球在最高点时所受向心力一定为重力B .小球在最高点时绳子的拉力不可能为零C .若小球刚好能在竖直面内做圆周运动,则其在最高点速率是gLD .小球在圆周最低点时拉力可能等于重力C2、在质量为M 的电动机的飞轮上,固定着一个质量为m 的重物,重物到转轴的距离为r ,如图所示,为了使放在地面上的电动机不会跳起,电动机飞轮的角速度不能超过( )A .g mrm M + B .g mr m M + C .g mr m M - D .mr Mg A3.关于匀速圆周运动的向心加速度,下列说法正确的是:A .大小不变,方向变化B .大小变化,方向不变C .大小、方向都变化D .大小、方向都不变A4.同一辆汽车以同样大小的速度先后开上平直的桥和凸形桥,在桥的中央处有:A .车对两种桥面的压力一样大B .车对平直桥面的压力大C .车对凸形桥面的压力大D .无法判断B5、洗衣机的脱水筒在转动时有一衣物附在筒壁上,如图所示,则此时:A .衣物受到重力、筒壁的弹力和摩擦力的作用B .衣物随筒壁做圆周运动的向心力是由摩擦力提供的C .筒壁对衣物的摩擦力随转速增大而减小D .筒壁对衣物的摩擦力随转速增大而增大A6、关于物体做匀速圆周运动的正确说法是A .速度大小和方向都改变B .速度的大小和方向都不变C .速度的大小改变,方向不变D .速度的大小不变,方向改变B7、如图所示,一光滑的圆锥内壁上,一个小球在水平面内做匀速圆周运动,如果要让小球的运动轨迹离锥顶远些,则下列各物理量中,不会引起变化的是( )A .小球运动的线速度B .小球运动的角速度C .小球的向心加速度D .小球运动的周期C8、如图所示,汽车以速度v通过一圆弧式的拱桥顶端时,则汽车 ( )A.的向心力由它的重力提供B.的向心力由它的重力和支持力的合力提供,方向指向圆心C.受重力、支持力、牵引力、摩擦力和向心力的作用D.以上均不正确B9、如图,质量为M的物体内有光滑圆形轨道,现有一质量为m的小滑块沿该圆形轨道在竖直面内作圆周运动。
物理生活中的圆周运动题20套(带答案)
物理生活中的圆周运动题20套(带答案)一、高中物理精讲专题测试生活中的圆周运动1.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==2.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为m 2的物块在D 点的速度;(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功. 【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:v y 22100.45gR =⨯⨯m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 32gR ==m/s 物块到达P 的速度:22223 2.25P D y v v v =+=+=3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .3.如图所示,水平转盘可绕竖直中心轴转动,盘上放着A 、B 两个物块,转盘中心O 处固定一力传感器,它们之间用细线连接.已知1kg A B m m ==两组线长均为0.25m L =.细线能承受的最大拉力均为8m F N =.A 与转盘间的动摩擦因数为10.5μ=,B 与转盘间的动摩擦因数为20.1μ=,且可认为最大静摩擦力等于滑动摩擦力,两物块和力传感器均视为质点,转盘静止时细线刚好伸直,传感器的读数为零.当转盘以不同的角速度勾速转动时,传感器上就会显示相应的读数F ,g 取210m/s .求:(1)当AB 间细线的拉力为零时,物块B 能随转盘做匀速转动的最大角速度; (2)随着转盘角速度增加,OA 间细线刚好产生张力时转盘的角速度;(3)试通过计算写出传感器读数F 随转盘角速度ω变化的函数关系式,并在图乙的坐标系中作出2F ω-图象.【答案】(1)12/rad s ω= (2)222/rad s ω= (3)2252/m rad s ω=【解析】对于B ,由B 与转盘表面间最大静摩擦力提供向心力,由向心力公式有:2212B B m g m L μω=代入数据计算得出:12/rad s ω=(2)随着转盘角速度增加,OA 间细线中刚好产生张力时,设AB 间细线产生的张力为T ,有:212A A m g T m L μω-=2222B B T m g m L μω+=代入数据计算得出:222/rad s ω= (3)①当2228/rad s ω≤时,0F =②当2228/rad s ω≥,且AB 细线未拉断时,有:21A A F m g T m L μω+-=222B B T m g m L μω+=8T N ≤所以:2364F ω=-;222228/18/rad s rad s ω≤≤ ③当218ω>时,细线AB 断了,此时A 受到的静摩擦力提供A 所需的向心力,则有:21A A m g m w L μ≥所以:2222218/20/rad s rad s ω<≤时,0F =当22220/rad s ω>时,有21A A F m g m L μω+=8F N ≤所以:2154F ω=-;2222220/52/rad s rad s ω<≤若8m F F N ==时,角速度为:22252/m rad s ω=做出2F ω-的图象如图所示;点睛:此题是水平转盘的圆周运动问题,解决本题的关键正确地确定研究对象,搞清向心力的来源,结合临界条件,通过牛顿第二定律进行求解.4.如图所示,光滑水平面AB 与竖直面内的半圆形导轨在B 点相接,导轨半径为R .一个质量为m 的物体将弹簧压缩至A 点后由静止释放,在弹力作用下物体获得某一向右速度后脱离弹簧,当它经过B 点进入导轨瞬间对导轨的压力为其重力的7倍,之后向上运动恰能完成半个圆周运动到达C 点.试求:(1)弹簧开始时的弹性势能.(2)物体从B 点运动至C 点克服阻力做的功. (3)物体离开C 点后落回水平面时的速度大小. 【答案】(1)3mgR (2)0.5mgR (3)52mgR 【解析】试题分析:(1)物块到达B 点瞬间,根据向心力公式有:解得:弹簧对物块的弹力做的功等于物块获得的动能,所以有(2)物块恰能到达C 点,重力提供向心力,根据向心力公式有:所以:物块从B运动到C,根据动能定理有:解得:(3)从C点落回水平面,机械能守恒,则:考点:本题考查向心力,动能定理,机械能守恒定律点评:本题学生会分析物块在B点的向心力,能熟练运用动能定理,机械能守恒定律解相关问题.5.如图所示,一质量为m的小球C用轻绳悬挂在O点,小球下方有一质量为2m的平板车B静止在光滑水平地面上,小球的位置比车板略高,一质量为m的物块A以大小为v0的初速度向左滑上平板车,此时A、C间的距离为d,一段时间后,物块A与小球C发生碰撞,碰撞时两者的速度互换,且碰撞时间极短,已知物块与平板车间的动摩擦因数为μ,重力加速度为g,若A碰C之前物块与平板车已达共同速度,求:(1)A、C间的距离d与v0之间满足的关系式;(2)要使碰后小球C能绕O点做完整的圆周运动,轻绳的长度l应满足什么条件?【答案】(1);(2)【解析】(1)A碰C前与平板车速度达到相等,设整个过程A的位移是x,由动量守恒定律得由动能定理得:解得满足的条件是(2)物块A与小球C发生碰撞,碰撞时两者的速度互换,C以速度v开始做完整的圆周运动,由机械能守恒定律得小球经过最高点时,有解得【名师点睛】A 碰C 前与平板车速度达到相等,由动量守恒定律列出等式;A 减速的最大距离为d ,由动能定理列出等式,联立求解。
圆周运动经典题型归纳
圆周运动经典题型归纳一、圆周运动基本物理量与传动装置1.共轴传动一个圆环以竖直直径AB为轴匀速转动,环上M、N两点的角速度之比为MN/MA=1/2,周期之比为2/1,线速度之比为1/2.2.皮带传动在某一皮带传动装置中,主动轮的半径为r1,从动轮的半径为r2.已知主动轮做顺时针转动,转速为n,转动过程中皮带不打滑。
从动轮的转速为n,因为皮带传动中,主动轮和从动轮的线速度相等。
3.齿轮传动如图所示,A、B两个齿轮的齿数分别是z1、z2,各自固定在过O1、O2的轴上,其中过O1的轴与电动机相连接,此轴每分钟转速为n1.求B齿轮的转速n2,A、B两齿轮的半径之比,以及在时间t内,A、B两齿轮转过的角度之比。
4.混合题型在图示的传动装置中,B、C两轮固定在一起绕同一轴转动,A、B两轮用皮带传动,三轮半径关系是rA=rC=2rB。
若皮带不打滑,则A、B、C轮边缘的a、b、c三点的角速度之比ωa:ωb:ωc=1:2:1,线速度之比va:vb:vc=1:2:2.二、向心力来源1.由重力、弹力或摩擦力中某一个力提供洗衣机的甩干桶竖直放置,桶的内径为20厘米,工作被甩的衣物贴在桶壁上,衣物与桶壁的动摩擦因数为μ。
若不使衣物滑落下去,甩干桶的转速至少为sqrt(5gμR),其中g为重力加速度,R为桶的半径。
2.在匀速转动的水平盘上,沿半径方向放着三个物体A、B、C,Ma=Mc=2Mb,他们与盘间的摩擦因数相等。
他们到转轴的距离的关系为Ra<Rb<Rc。
当转盘的转速逐渐增大时,先开始滑动的物体是B,沿半径向外滑动。
3.一质量为m的小球,用长的细线拴住在竖直面内作圆周运动。
当小球恰好能通过最高点时的速度为sqrt(2gh),细线的拉力为mg+mv^2/R,其中g为重力加速度,h为最高点的高度,v为小球在最高点的速度,R为圆周运动的半径。
4.向心力由几个力的合力提供1)由重力和弹力的合力提供半径为R的半球型碗底的光滑内表面,质量为m的小球正以角速度ω,在一水平面内作匀速圆周运动。
高中圆周运动试题及答案
高中圆周运动试题及答案
一、选择题
1. 一个质点在圆周运动中,其速度大小保持不变,那么该质点的加速度方向()
A. 始终指向圆心
B. 始终与速度方向垂直
C. 始终与速度方向相反
D. 始终与速度方向相同
答案:A
2. 圆周运动中,线速度与角速度的关系是()
A. 线速度是角速度的两倍
B. 线速度是角速度的一半
C. 线速度等于角速度乘以半径
D. 线速度与角速度无关
答案:C
3. 一个物体做匀速圆周运动,下列说法正确的是()
A. 物体所受的合力提供向心力
B. 物体所受的合力提供向心力和切向力
C. 物体所受的合力提供切向力
D. 物体不受任何力
答案:A
二、填空题
4. 一个质点绕圆心做匀速圆周运动,其周期为T,半径为r,则其角速度ω=______。
答案:\( \frac{2\pi}{T} \)
5. 一个质点在圆周运动中,其线速度大小为v,半径为r,则其向心加速度a=______。
答案:\( \frac{v^2}{r} \)
三、计算题
6. 一辆汽车在半径为50米的圆形轨道上以10米/秒的速度做匀速圆周运动,求汽车的向心加速度。
答案:汽车的向心加速度为\( \frac{v^2}{r} = \frac{10^2}{50} = 2 \)米/秒\( ^2 \)。
7. 一个质点绕圆心做匀速圆周运动,其线速度大小为20米/秒,半径为30米,求质点的角速度。
答案:质点的角速度为\( \frac{v}{r} = \frac{20}{30} =
\frac{2}{3} \)弧度/秒。
圆周运动计算题复习
圆周运动计算题复习1.如图所示,质量M=2kg的物体置于可绕竖直轴匀速转动的平台上,m用细绳通过光滑的定滑轮与质量为m=1.6kg的物体相连,m悬于空中与M都处于静止状态,假定M与轴O 的距离r=0.5m,与平台的最大静摩擦力为其重力的0.6倍,试问:(1)M受到的静摩擦力最小时,平台转动的角速度ω0为多大?(2)要保持M与平台相对静止,M的线速度的范围?2.如图,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动。
现测得转台半径R=5m,离水平地面的高度H=0.8m,物块平抛落地时速度与水平方向的夹角为53°.设物块所受的最大静摩擦力等于滑动摩擦力,取重力加速度g=10m/s2.求:(1)物块做平抛运动的初速度大小v0与平抛过程水平位移S;(2)物块与转台间的动摩擦因数μ。
3.如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B点脱离后做平抛运动,经过t=1s后又恰好与倾角为45°的斜面垂直相碰。
已知圆轨道半径为R=5m,小球的质量为m=5kg。
求(1)小球在斜面上的相碰点C与B点的水平距离;(2)小球经过圆弧轨道的B点时,对轨道作用力的大小和方向。
4.如图甲所示,竖直平面内的光滑轨道由倾斜直轨道AB和圆轨道BCD组成,AB和BCD相切于B点,OB与OC夹角为37°,CD连线是圆轨道竖直方向的直径(C、D分别为圆轨道的最低点和最高点),可视为质点的小滑块从轨道AB上高H处的某点由静止滑下,用力传感器测出滑块经过圆轨道最低点C时对轨道的压力为F,并得到如图乙所示的压力F与高度H的关系图象,该图线截距为2N,且过(0.5m,4N)点,取g=10m/s2,求:(1)滑块的质量和圆轨道的半径;(2)若要求滑块不脱离圆轨道,则静止滑下的高度为多少;参考答案与试题解析1.【解答】解:(1)物体A与圆盘保持相对静止且不受摩擦力时,绳子的拉力提供向心力,由牛顿第二定律得:mg=代入数据得:ω0=4rad/s(2)设此平面角速度ω的最小值为ω1,此时M所受的静摩擦力达到最大,方向沿半径向外,则由牛顿第二定律得:,又T=mg 联立得:mg﹣fmax=M r,代入数据解得:ω1=2rad/s设此平面角速度ω的最大值为ω2,此时M所受的静摩擦力达到最大,方向沿半径向里,则由牛顿第二定律得:T+fmax=M r,又T=mg代入解得:ω2=rad/s根据v=ωr,故为使m处于静止状态,线速度的取值范围为:1m/s≤v≤m/s。
圆周运动典型例题50道
圆周运动典型例题50道1. 一质点绕一个定半径圆轨道做匀速圆周运动,已知质点每秒的线速度为8 m/s,求质点的角速度。
答案:2 rad/s2. 一个自行车轮子的半径为0.5 m,自行车轮子的角速度为5 rad/s,求自行车轮子的线速度。
答案:2.5 m/s3. 一个半径为2 m的圆盘以每分钟180转的角速度旋转,求圆盘上一点的线速度。
答案:376.99 m/min4. 一个转速为1200 rpm的转盘半径为0.1 m,求转盘上一点的线速度。
答案:125.66 m/s5. 一个半径为3 m的汽车轮胎正在行驶,已知轮胎转速为100 rpm,求汽车轮胎的线速度。
答案:31.42 m/s6. 一个质点以半径为4 m的圆轨道做匀速圆周运动,已知质点的线速度为10 m/s,求质点的角速度。
答案:2.5 rad/s7. 一个自行车轮子的半径为0.2 m,自行车轮子的线速度为3 m/s,求自行车轮子的角速度。
答案:15 rad/s8. 一个半径为5 m的圆盘上一点的线速度为20 m/s,求圆盘的角速度。
答案:4 rad/s9. 一个转盘上一点的线速度为10 m/s,转盘的半径为2 m,求转盘的角速度。
答案:5 rad/s10. 一个汽车轮胎的线速度为20 m/s,轮胎半径为2 m,求汽车轮胎的角速度。
答案:10 rad/s11. 一个半径为3 m的旋转半球的角速度为2 rad/s,求旋转半球上一点的线速度。
答案:6 m/s12. 一个旋转圆环的半径为1 m,旋转圆环的线速度为10 m/s,求旋转圆环的角速度。
答案:10 rad/s13. 一个直径为10 cm的转盘上一点的线速度为5 m/s,求转盘的角速度。
答案:10 rad/s14. 一个转速为500 rpm的圆盘上一点的线速度为4 m/s,求圆盘的半径。
答案:0.51 m15. 一个半径为2 m的转盘上一点的线速度为8 m/s,求转盘的转速。
答案:60 rpm16. 一个转速为1000 rpm的汽车轮胎的线速度为5 m/s,求汽车轮胎的半径。
圆周运动单元复习练习(Word版 含答案)
一、第六章 圆周运动易错题培优(难)1.两个质量分别为2m 和m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ’的距离为L ,b 与转轴的距离为2L ,a 、b 之间用强度足够大的轻绳相连,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,开始时轻绳刚好伸直但无张力,用ω表示圆盘转动的角速度,下列说法正确的是( )A .a 、b 所受的摩擦力始终相等B .b 比a 先达到最大静摩擦力C .当2kgLω=a 刚要开始滑动 D .当23kgLω=b 所受摩擦力的大小为kmg 【答案】BD 【解析】 【分析】 【详解】AB .木块随圆盘一起转动,静摩擦力提供向心力,由牛顿第二定律可知,木块受到的静摩擦力f =mω2r ,则当圆盘从静止开始绕转轴缓慢地加速转动时,木块b 的最大静摩擦力先达到最大值;在木块b 的摩擦力没有达到最大值前,静摩擦力提供向心力,由牛顿第二定律可知,f=mω2r ,a 和b 的质量分别是2m 和m ,而a 与转轴OO ′为L ,b 与转轴OO ′为2L ,所以结果a 和b 受到的摩擦力是相等的;当b 受到的静摩擦力达到最大后,b 受到的摩擦力与绳子的拉力合力提供向心力,即kmg +F =mω2•2L ①而a 受力为f′-F =2mω2L ②联立①②得f′=4mω2L -kmg综合得出,a 、b 受到的摩擦力不是始终相等,故A 错误,B 正确; C .当a 刚要滑动时,有2kmg+kmg =2mω2L +mω2•2L解得34kgLω=选项C 错误;D. 当b 恰好达到最大静摩擦时202kmg m r ω=⋅解得02kgLω=因为32432kg kg kgL L L >>,则23kgLω=时,b 所受摩擦力达到最大值,大小为kmg ,选项D 正确。
故选BD 。
2.如图所示,有一可绕竖直中心轴转动的水平足够大圆盘,上面放置劲度系数为k 的弹簧,弹簧的一端固定于轴O 上,另一端连接质量为m 的小物块A (可视为质点),物块与圆盘间的动摩擦因数为μ,开始时弹簧未发生形变,长度为L ,若最大静摩擦力与滑动摩擦力大小相等,重力加速度为g ,物块A 始终与圆盘一起转动。
2022届高三物理一轮复习:圆周运动计算题专题
圆周运动基础计算题1.长为L =0.2m 的细线,拴一质量为m =1kg 的小球(看作质点),一端固定于O 点,让其在水平面内做匀速圆周运动(这种运动通常称为圆锥摆运动),如图所示,当摆线L 与竖直方向的夹角为θ=60︒时,g 取10m/s 2;求: (1)线的拉力F ;(2)小球运动的线速度的大小; (3)小球运动的角速度。
2.一辆质量为800kg 的汽车行驶在圆弧半径为50米的拱桥上,取重力加速度210m/s g =,求:(1)汽车到达桥顶时速度为5m/s ,桥顶对汽车的支持力; (2)汽车以多大速度经过桥顶时恰好对桥顶没有压力。
3.如图所示,质量为0.5 kg 的小杯里盛有1.5 kg 的水,用绳子系住小杯在竖直平面内做“水流星”表演,转动半径为1 m ,小杯通过最高点的速度为4 m/s ,g 取10 m/s 2,求: (1)在最高点时,绳的拉力; (2)在最高点时水对小杯底的压力;(3)为使小杯经过最高点时水不流出, 在最高点时最小速率是多少?4.如图一辆质量为500kg 的汽车静止在一座半径为50m 的圆弧形拱桥顶部则(取g =10m/s 2):(1)汽车以多大速度通过拱桥的顶部时,汽车对圆弧形拱桥的压力恰好为零? (2)如果汽车以6m/s 的速度经过拱桥的顶部,则汽车对圆弧形拱桥的压力是多大?5.如图所示,一个可以视为质点的小球以某一初速度冲上光滑半圆形轨道,轨道半径为0.9m R =,直径BC 与水平面垂直,小球恰能到达最高点C ,重力加速度210m/s g =,忽略空气阻力,求: (1)小球通过C 点的速度大小; (2)小球落地点距B 点的距离。
6.一质量为0.5kg 的小球,用长为0.4m 细绳拴住,在竖直平面内做圆周运动(g 取10m/s 2).求(1)若过最高点时绳的拉力刚好为零,此时小球速度大小? (2)若过最高点时的速度为4m/s ,此时绳的拉力大小F 1? (3)若过最低点时的速度为6m/s ,此时绳的拉力大小F 2?7.如图所示,一个圆盘在水平面内匀速转动,角速度是4rad/s。
(完整版)圆周运动及其应用专题复习(答案解析版)
圆周运动及其应用专题复习(答案版)课前复习1.描述圆周运动的物理量主要有线速度、角速度、周期、转速、向心加速度、向心力等,现物理量 意义、方向 公式、单位 线速度① 描述做圆周运动的物体运动快慢的物理量(v )② 方向与半径垂直,和圆周相切 ① v =Δl Δt =2πrT② 单位:m/s角速度① 描述物体绕圆心转动快慢的物理量(ω) ②中学不研究其方向① ω=ΔθΔt =2πT②单位:rad/s周期和转速① 周期是物体沿圆周运动一圈的时间(T )② 转速是物体在单位时间内转过的圈数((n ),也叫频率(f ) ③ 周期与频率的关系为T =1f① T =2πrv ;单位:s ② n 的单位r/s 、r/min ③ f 的单位:Hz 向心加速度 ① 描述速度方向变化快慢的物理量(a n ) ②方向指向圆心① a n =v 2r =ω2r② 单位:m/s 2 向心力① 作用效果是产生向心加速度,只改变线速度的方向,不改变线速度的大小 ② 方向指向圆心.① F n=mω2r =mv 2r =m 4π2T2r ②单位:N2.匀速圆周运动相关性质:(1)定义:物体沿圆周运动,并且线速度大小处处相等的运动. (2)匀速圆周运动的特点速度大小不变而速度方向时刻变化的变速曲线运动. 只存在向心加速度,不存在切向加速度. 合外力即产生向心加速度的力,充当向心力(3)条件:合外力大小不变,方向始终与速度方向垂直且指向圆心.课前练习1.某型石英表中的分针与时针可视为做匀速转动,分针的长度是时针长度的1.5倍,则下列说法中正确的是( )A .分针的角速度与时针的角速度相等B .分针的角速度是时针的角速度的60倍C .分针端点的线速度是时针端点的线速度的18倍D .分针端点的向心加速度是时针端点的向心加速度的1.5倍【解析】 分针的角速度ω1=2πT 1=π30 rad/min ,时针的角速度ω2=2πT 2=π360 rad/min.ω1∶ω2=12∶1,v 1∶v 2=ω1r 1∶ω2r 2=18∶1,a 1∶a 2=ω1v 1∶ω2v 2=216∶1,故只有C 正确.【答案】 C2.摆式列车是集电脑、自动控制等高新技术于一体的新型高速列车,如图所示.当列车转弯时,在电脑控制下,车厢会自动倾斜,抵消离心力的作用;行走在直线上时,车厢又恢复原状,就像玩具“不倒翁”一样.假设有一超高速列车在水平面内行驶,以360 km/h 的速度拐弯,拐弯半径为1 km ,则质量为50 kg 的乘客,在拐弯过程中所受到的火车给他的作用力为(g 取10 m/s 2)( )A .500 NB .1 000 NC .500 2 ND .0【解析】 乘客所需的向心力:F =m v 2R =500 N ,而乘客的重力为500 N ,故火车对乘客的作用力大小为N =F 2+G 2=500 2 N ,C 正确. 【答案】 C课堂复习:考点1: 圆周运动的运动学分析1.对公式v =ωr 和a =v 2r=ω2r 的理解(1)由v =ωr 知,r 一定时,v 与ω成正比;ω一定时,v 与r 成正比;v 一定时,ω与r 成反比.(2)由a =v 2r=ω2r 知,在v 一定时,a 与r 成反比;在ω一定时,a 与r 成正比.2.传动装置特点(1)同轴传动:固定在一起共轴转动的物体上各点角速度相同.(2)皮带传动:不打滑的摩擦传动和皮带(或齿轮)传动的两轮边缘上各点线速度大小相等.例1:(2013届连云港高三模拟)如图所示,半径为r =20 cm 的两圆柱体A 和B ,靠电动机带动按相同方向均以角速度ω=8 rad/s 转动,两圆柱体的转动轴互相平行且在同一平面内,转动方向已在图中标出,质量均匀的木棒水平放置其上,重心在刚开始运动时恰在B 的正上方,棒和圆柱间动摩擦因数μ=0.16,两圆柱体中心间的距离s =1.6 m ,棒长l >3.2 m ,重力加速度取10 m/s 2,求从棒开始运动到重心恰在A 的正上方需多长时间?【审题视点】 (1)开始时,棒与A 、B 有相对滑动先求出棒加速的时间和位移.(2)棒匀速时与圆柱边缘线速度相等,求出棒重心匀速运动到A 正上方的时间. 【解析】 棒开始与A 、B 两轮有相对滑动,棒受向左摩擦力作用,做匀加速运动,末速度v =ωr =8×0.2 m/s =1.6 m/s ,加速度a =μg =1.6 m/s 2,时间t 1=va=1 s ,t 1时间内棒运动位移s 1=12at 21=0.8 m.此后棒与A 、B 无相对运动,棒以v =ωr 做匀速运动,再运动s 2=s -s 1=0.8 m ,重心到A 的正上方需要的时间t 2=s 2v =0.5 s ,故所求时间t =t 1+t 2=1.5 s. 【答案】 1.5 s例2.小明同学在学习了圆周运动的知识后,设计了一个课题,名称为:快速测量自行车的骑行速度.他的设想是:通过计算脚踏板转动的角速度,推算自行车的骑行速度.经过骑行,他得到如下的数据:在时间t 内脚踏板转动的圈数为N ,那么脚踏板转动的角速度ω=________;要推算自行车的骑行速度,还需要测量的物理量有____________________;自行车骑行速度的计算公式v =________.【解析】 依据角速度的定义式ω=θt=2N πt;要推算自行车的骑行速度,由于v =ω后R ,还要知道自行车后轮的半径R ,又因后轮的角速度ω后=ω飞轮,而ω飞轮r 2=ω牙盘r 1,ω牙盘=ω,联立以上各式解得v =r 1r 2Rω=2πR Nr 1tr 2.故还需知道后轮半径R ,牙盘半径r 1,飞轮半径r 2.【答案】 2N πt自行车后轮半径R ,牙盘半径r 1,飞轮半径r 2r 1r 2Rω或2πR Nr 1tr 2考点2:圆周运动的动力学分析 1.向心力的来源向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力. 2.向心力的确定(1)确定圆周运动的轨道所在的平面,确定圆心的位置.(2)分析物体的受力情况,找出所有的力沿半径方向指向圆心的合力就是向心力. 3.解决圆周运动问题的主要步骤 (1)审清题意,确定研究对象.(2)分析物体的运动情况,即物体的线速度、角速度、周期、轨道平面、圆心、半径等. (3)分析物体的受力情况,画出受力示意图,确定向心力的来源. (4)据牛顿运动定律及向心力公式列方程. (5)求解、讨论.例3:(2012·福建高考)如图所示,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动.现测得转台半径R =0.5 m ,离水平地面的高度H =0.8 m ,物块平抛落地过程水平位移的大小s =0.4 m .设物块所受的最大静摩擦力等于滑动摩擦力,取重力加速度g =10 m/s 2.求: (1)物块做平抛运动的初速度大小v 0; (2)物块与转台间的动摩擦因数μ.【审题视点】 (1)应理解把握好“转台边缘”与“恰好滑离”的含义.(2)临界问题是静摩擦力达到最大值.【解析】 (1)物块做平抛运动,在竖直方向上有H =12gt 2①在水平方向上有s =v 0t ②由①②式解得v 0=s g 2H③ 代入数据得v 0=1 m/s.(2)物块离开转台时,最大静摩擦力提供向心力,有f m =m v 20R ④f m =μN =μmg ⑤由④⑤式得μ=v 20gR代入数据得μ=0.2.【答案】 (1)1 m/s (2)0.2规律总结:(1)无论是匀速圆周运动还是非匀速圆周运动,沿半径方向指向圆心的合力均为向心力. (2)当采用正交分解法分析向心力的来源时,做圆周运动的物体在坐标原点,一定有一个坐标轴沿半径方向指向圆心.例4.(2013届淮州中学四月调研)如图所示,用一根长为l =1 m 的细线,一端系一质量为m =1 kg 的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为T .(g 取10 m/s 2,结果可用根式表示)求:(1)若要小球离开锥面,则小球的角速度ω0至少为多大? (2)若细线与竖直方向的夹角为60°,则小球的角速度ω′为多大?【解析】 (1)若要小球刚好离开锥面,则小球受到重力和细线拉力如图示.小球做匀速圆周运动的轨迹圆在水平面上,故向心力水平,在水平方向运用牛顿第二定律及向心力公式得:mg tan θ=mω20l sin θ解得:ω20=g l cos θ,即ω0= gl cos θ=12.5 rad/s.(2)同理,当细线与竖直方向成60°角时,由牛顿第二定律及向心力公式:mg tan α= mω′2l sin α解得:ω′2=g l cos α,即ω′= g l cos α= 20 rad/s.【答案】 (1)12.5 rad/s (2)20 rad/s考点3:“轻绳模型”与“轻杆模型”轻绳模型轻杆模型常见类型均是没有支撑的小球均是有支撑的小球过最高点的临界条件由mg=mv2r得v临=grv临=0讨论分析(1)过最高点时,v≥gr,F N+mg=mv2r,绳、轨道对球产生弹力F N(2)当v<gr时,不能过最高点,在到达最高点前小球已经脱离了圆轨道(1)当v=0时,F N=mg,F N为支持力,沿半径背离圆心(2)当0<v<gr时,mg-F N=mv2r,F N背离圆心,随v的增大而减小(3)当v=gr时,F N=0(4)当v>gr时,F N+mg=mv2r,F N指向圆心并随v的增大而增大例5:长L=0.5 m质量可忽略的轻杆,其一端可绕O点在竖直平面内无摩擦地转动,另一端固定着一个小球A.A的质量为m=2 kg,当A通过最高点时,如图所示,求在下列几种情况下杆对小球的作用力:(1)A在最高点的速率为1m/s(2)A在最高点的速率为4m/s(3)如果将原题中的轻杆换成轻绳,则结果如何?【解析】(1)向上的支持力16N(2)向下的压力44N(3)换成细绳最小速度为根号5,故只能是向下压力44N课后思考:(4)A在最低点的速率为21m/s;(5)A在最低点的速率为6 m/s.(1)动能定理求出最高点速度1m/s, 向上的支持力16N(2) 动能定理求出最高点速度4m/s,向下压力44N.圆周运动及其应用课后练习:●考查圆周运动中的运动规律1.(2010·大纲全国高考)如图是利用激光测转速的原理示意图,图中圆盘可绕固定轴转动,盘边缘侧面上有一小段涂有很薄的反光材料.当盘转到某一位置时,接收器可以接收到反光涂层所反射的激光束,并将所收到的光信号转变成电信号,在示波器显示屏上显示出来(如图).(1)若图中示波器显示屏横向的每大格(5小格)对应的时间为5.00×10-2 s ,则圆盘的转速为______转/s.(保留3位有效数字)(2)若测得圆盘直径为10.20 cm ,则可求得圆盘侧面反光涂层的长度为______ cm.(保留3位有效数字)【解析】 (1)从图可知圆盘转一圈的时间在横坐标上显示22格,由题意知图中横坐标上每小格表示 1.00×10-2 s ,所以圆盘转动的周期是0.22 s ,则转速为4.55 转/s.(2)反射光引起的电流图象在图中的横坐标上每次一小格,说明反光涂层的长度占圆盘周长的122,则涂层长度L =2πr 22=3.14×10.2022 cm =1.46 cm. 【答案】 (1)4.55 (2)1.46●利用圆周运动测分子速率分布 2.(多选)(2012·上海高考)图为测量分子速率分布的装置示意图.圆筒绕其中心匀速转动,侧面开有狭缝N ,内侧贴有记录薄膜,M 为正对狭缝的位置.从原子炉R 中射出的银原子蒸汽穿过屏上S 缝后进入狭缝N ,在圆筒转动半个周期的时间内相继到达并沉积在薄膜上.展开的薄膜如图b 所示,NP ,PQ 间距相等.则( ) A .到达M 附近的银原子速率较大 B .到达Q 附近的银原子速率较大C .位于PQ 区间的分子百分率大于位于NP 区间的分子百分率D .位于PQ 区间的分子百分率小于位于NP 区间的分子百分率【解析】 分子在圆筒中运动的时间t =dv ,可见速率越大,运动的时间越短,圆筒转过的角度越小,到达位置离M 越近,所以A 正确,B 错误;根据题图b 可知位于PQ 区间的分子百分率大于位于NP 区间的分子百分率,即C 正确,D 错误. 【答案】 AC●圆周运动的动力学问题 3.(多选)(2012·绍兴一中月考)如图所示,放于竖直面内的光滑金属圆环半径为R ,质量为m 的带孔小球穿于环上同时有一长为R 的细绳一端系于球上,另一端系于圆环最低点.当圆环以角速度ω绕竖直直径转动时,发现小球受三个力作用.则ω可能是( ) A.32 g R B. 3g RC. g RD.12 g R【解析】 如图所示,若绳上恰好无拉力,则有mg tan 60°=mRω2sin 60°,ω= 2g R,所以当ω>2gR时,物体受三个力的作用A 、B 选项正确. 【答案】 AB●圆周、平抛相结合4.(多选)(2012·浙江高考)由光滑细管组成的轨道如图所示,其中AB 段和BC 段是半径为R 的四分之一圆弧,轨道固定在竖直平面内.一质量为m 的小球,从距离水平地面高为H 的管口D 处静止释放,最后能够从A 端水平抛出落到地面上.下列说法正确的是( ) A .小球落到地面时相对于A 点的水平位移值为2RH -2R 2B .小球落到地面时相对于A 点的水平位移值为22RH -4R 2C .小球能从细管A 端水平抛出的条件是H >2RD .小球能从细管A 端水平抛出的最小高度H min =52R【解析】 要使小球从A 点水平抛出,则小球到达A 点时的速度v >0,根据机械能守恒定律,有mgH -mg ·2R =12m v 2,所以H >2R ,故选项C 正确,选项D 错误;小球从A 点水平抛出时的速度v =2gH -4gR ,小球离开A 点后做平抛运动,则有2R =12gt 2,水平位移x=v t ,联立以上各式可得水平位移x =22RH -4R 2,选项A 错误,选项B 正确. 【答案】 BC●竖直面内圆周运动问题 5.(2011·北京高考)如图所示,长度为l 的轻绳上端固定在O 点,下端系一质量为m 的小球(小球的大小可以忽略).(1)在水平拉力F 的作用下,轻绳与竖直方向的夹角为α,小球保持静止.画出此时小球的受力图,并求力F 的大小;(2)由图示位置无初速释放小球,求当小球通过最低点时的速度大小及轻绳对小球的拉力.(不计空气阻力).【解析】 (1)受力分析如图根据平衡条件,应满足T cos α=mg , T sin α=F则拉力大小F =mg tan α.(2)运动中只有重力做功,系统机械能守恒mgl (1-cos α)=12m v 2则通过最低点时,小球的速度大小 v =2gl (1-cos α)根据牛顿第二定律T ′-mg =m v 2l解得轻绳对小球的拉力T ′=mg +m v 2l=mg (3-2 cos α),方向竖直向上.【答案】 (1)见解析(2)2gl (1-cos α) mg (3-2 cos α),方向竖直向上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆周运动复习专题
1.(2004年高一物理同步测试(12)—曲线运动二)如图9所示,小球A 在光滑的半径为R 的圆形槽内作匀速圆周运动,当它运动
到图中的a 点时,在圆形槽中心O 点正上方h 处,有一小球B 沿0a 方向以某一初速水
平抛出,结果恰好在a 点与A 球相碰,求 (1)B 球抛出时的水平初速多大? (2)A 球运动的线速度最小值为多大?
(3)若考虑到匀速圆周运动是周期性运动,A 球速度满足什么 条件,两球就能在a 点相碰?
2.(03-04年高考物理仿真试题一)如图所示,滑块在恒定外力作用下从水平轨道上的A 点由静止出发到B 点时撤去外力,又沿竖直面内的光滑半圆形轨道运动,且恰好通过轨道最高点C ,滑块脱离半圆形轨道后又刚好落到原出发点A ,试求滑块在AB 段运动过程中的加速度.
3.用一根线的一端悬着一小球,另一端悬在天花板上,线长为
L ,把小球拉至水平释放,运动到线与竖直方向夹角为300时,计算此时小球受到线的拉力?小球的加速度?(10分)
4.(03-04年高考物理仿真试题四)如图所示,位于竖直平面上的1/4圆弧光滑轨道,半径为R ,OB 沿竖直方向,上端A 距地面高度为H ,质量为m 的小球从A 点由静止释放,最后落在水平地面上C 点处,不计空气阻力,求:
(1)小球运动到轨道上的B 点时,对轨道的压力多大? (2)小球落地点C 与B 点水平距离s 是多少?
图9
5.(2004年潍坊市高三统一考试物理试题)如图所示,竖直平面内半径为R 的光滑半圆形轨道,与水平光滑轨道AB 相连接,AB 的长度为s 。
一质量为m 的小球,在水平恒力F 的作用下由静止开始从A 向B 运动,到B 点时撤去F ,小球沿圆轨道运动到最高点C 时对轨道的压力为2mg 。
求:(1)小球在C 点的加速度大小。
(2)恒力F 的大小。
6.过山翻滚车是一种常见的游乐项目。
如图是螺旋形过山翻滚车的轨道,一质量为100kg 的小车从高为14m 处由静止滑下,当它通过半径为R=4m 的竖直平面内圆轨道的最高点A 时,对轨道的压力的大小恰等于车重,小车至少要从离地面多高处滑下,才能安全的通过A 点?(g 取10m/s 2)(15分)
7.如图所示, 在半径为R 的水平圆盘的正上方高h 处水平抛出一个小球, 圆盘做匀速转动,当圆盘半径OB 转到与小球水平初速度 方向平行时,小球开始抛出, 要使小球只与圆盘碰撞一次, 且落点为B, 求小球的初速度和圆盘转动的角速度.(14分)
8.(太原市2003—2004学年度第一学期高三年级物理第二次测评试题)如图所示示,质量为m 的小球被系在轻绳的一端,以O 为圆心在竖直平面内做半径为R 的圆周运动.运动过程中,小球受到空气阻力的作用.设某时刻小球通过圆周的最低点A ,此时绳子的张力为7mg ,此后小球继续做圆周运动,经过半个圆周恰能通过最高点B ,则在此过程中小球克服空气阻力所做的功是多少?
9.(2003—2004年山西省实验中学高三年级第一次阶段测试物理试卷)内壁光滑的导管弯成半径为R 的圆周轨道固定在底座上后放在水平地面上,其总质量为2m 。
一质量为m 的小球在管内运动,整个过程中底座一直处于静止状态。
当小球运动到轨道最高点时,底座对地面的压力恰好为零,求: (1)此时小球的速度多大?
(2)小球运动到轨道最低点时速度多大?
(3)小球运动到轨道最低点时地面对底座的支持力多大?
10. (江苏省溧阳中学2003-2004学年第一学期第一次阶段性测试高三物理试卷)如图所示,绳长L=0.5m ,能承担最大拉力为42N ,一端固定在O 点,另一端挂一质量为m=0.2kg 的小球,悬点O 到地面高H =5.5m ,若小球至最低点绳刚好断。
求小球落地点离O 点的水 平距离s 。
(g =10m/s 2)
A 11.(2003学年第二学期杭州二中高三年级第五次月考理科综合试卷)
长为L 不可伸长的轻绳,一端固定于O 点,另一端系一个质量为m 的小球,最初小球位于A 点,细绳伸直并且水平,如图所示,然后将小球由静止释放,它将在竖直平面内摆动。
若预先在该平面内O ′点处钉一只小钉,OO ′与竖直方向的夹角为θ,细绳被小钉挡住后,
小球将改变运动方向。
为了使小球能绕O ′点在同一竖直 平面内做圆周运动,OO ′的距离d 应满足什么条件?
12.(2004年普通高等学校春季招生考试理科综合能力测试)
l
1
设圆周的半径为R ,则在C
mg =m R
v
C 2
①
(2分) 离开C 点,滑块做平抛运动,则2R =gt 2/2 ② (2分) v C t =s AB ③ (2分) 由B 到C
mv C 2/2+2mgR =mv B 2/2 ④
(2分)
由A 到B
v B 2=2as AB ⑤ (2分)
a =5g /4
(3分)
3.参考答案:
解:小球运动机械能守恒mgl(1-cos300)=2
2
1mv v 2=2gl(1-cos300) -----3分 沿半径方向 F--mgcos θ=m L v 2 F=m L
v 2
+mgcos θ =2mg -mgcos300 ---------3分
解
小球C 点时,受到重力和轨道对球向下的弹力,由牛顿第二定律得 F N +mg=ma
解得a=3g 。
…………………………………(2分) (2)设小球在B 、C 两点的速度分别为v 1、v 2,在C 点由gR v R v a 3/22
2==得 ………………………………(2分) 从B 到C 过程中,由机械能守恒定律得
gR
v R
mg mv mv 72212112
221=⋅+=
从A 到B 过程中,由运动学公式得
g s
R
a s
a v 27221=
''= ………………………………(2分) 由牛顿第二定律:s
mgR
a m F 27='= ………………………………(1分)
由
高即:
7当转台转动时,球在空中的运动的时间内,转台可能转过了一周、二周、三周…… 。
所以设转台转过了n 周时小球落到A 点,此时转台的角速度为n ω
n ωt=n π2⨯ (n=1, 2, 3 …… ) ----------4分
………………………………(2分)
n ω= n π2⨯/t n ω=
h
g n
g
h n 2222ππ=------4分
由此可见当n 取1、2、3……时,角速度可取很多的值。
8参考答案:
解:小球在最低点A 时 R
v m mg T A A 2
=-……①
9解:
10⎪⎪⎩
⎪⎪⎨
⎧
-=≥d
L r gr v 2
2 解方程组得 θc o s 233+≥L d 12.参考答案:
解:(1)以v 1表示小球A 碰后的速度,v 2表示小球B 碰后的速度,1
v '表示小球A 在半圆最高点的速度,t 表示小球A 从离开半圆最高点到落在轨道上经过的时间,则有
R t v 241
=' ①
R gt 22
12
= ② 2121
2
1
21)2(mv v m R mg ='+ ③ 210Mv mv Mv += ④
由①②③④求得。