应用回归课程教学设计
高中数学教学设计方案(优秀7篇)
高中数学教学设计方案(优秀7篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、演讲发言、策划方案、合同协议、心得体会、计划规划、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, speeches, planning plans, contract agreements, insights, planning, emergency plans, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高中数学教学设计方案(优秀7篇)作为一名辛苦耕耘的教育工作者,就有可能用到教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。
新课程标准下小学数学教学设计
新课程标准下小学数学教学设计新课程标准下小学数学教学设计教师根据教学的需要,充分利用现实生活中的素材,把教材中有关圆柱的提积的应用所呈现的内容变为现实生活中的`问题,变书本知识为生活中的知识。
下面是整理的新课程标准下小学数学教学设计5篇,欢迎大家阅读分享借鉴,希望大家喜欢,也希望对大家有所帮助。
新课程标准下小学数学教学设计1本节课中教师没有过多地教学生,而让学生回归到生活原形中去,应用所学的知识解决了生活中的实际问题,使本来很枯燥的圆柱的体积应用的题材生活化,增加了学生的信息量,提高了学生体会数学奥秘的积极性。
学生体会到了生活中处处有数学,数学就在我们身边,知识才是我们解决实际问题的“金钥匙”。
通过寻找这些信息背后的信息,学生掌握了知识、形成了技能。
同时也感受到了数学应用的广泛性以及数学与生活的紧密联系。
但在本节课中也有不足的地方,如①由于中心问题空间较大,具有挑战性,中下等学生自主探索有一定的难度;②实践中,学生独立思考和小组讨论花时间太多,影响了后面的教学,这都是以后在教学中应注意的问题。
总之,随着数学的发展,数学的应用也越来越广泛。
作为教师的我们,应该提供给学生充分的机会,让学生运用已学过的数学知识解决问题,在问题的解决过程中,发展学生的思维能力,用数学的眼光去感知、去观察、去应用。
新课程标准下小学数学教学设计2一、让学生在现实情境中体验和理解数学《课程标准》指出:要创设与学生生活环境、知识背景密切相关的、又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。
在本节课中,我给学生创设了生活情景(装在杯子中的水的体积你会求吗?)学生听到教师提的问题训在身边的生活中,颇感兴趣。
学生经过思考、讨论、交流,找到了解决的方法。
而且此环节还自然渗透了圆柱体(新问题)和长方体(已知)的知识联系。
knn算法课程设计
knn算法课程设计一、课程目标知识目标:1. 理解KNN算法的基本原理和流程;2. 掌握KNN算法在分类和回归问题中的应用;3. 了解KNN算法的优缺点及适用场景;4. 掌握选择合适的K值的方法。
技能目标:1. 能够运用KNN算法解决实际问题;2. 能够运用编程语言(如Python)实现KNN算法;3. 能够对KNN算法的预测结果进行评估和优化;4. 能够运用KNN算法进行数据预处理和特征工程。
情感态度价值观目标:1. 培养学生对数据挖掘和机器学习领域的兴趣;2. 培养学生的团队合作意识和解决问题的能力;3. 培养学生对算法优化和模型调整的耐心和毅力;4. 培养学生严谨的科学态度和批判性思维。
本课程针对高年级学生,他们在前期课程中已具备一定的编程能力和数学基础。
课程性质为理论与实践相结合,旨在使学生通过本课程的学习,掌握KNN 算法的基本原理和实际应用,提高解决实际问题的能力。
在教学过程中,注重培养学生的动手实践能力和团队协作精神,使他们在探索和优化算法过程中,形成良好的学习习惯和价值观。
通过分解课程目标为具体的学习成果,便于后续教学设计和评估,确保课程目标的实现。
二、教学内容1. KNN算法基本原理:介绍KNN算法的定义、分类和回归任务中的应用,阐述邻近性度量方法及K值选择的重要性。
教材章节:第三章“分类与回归算法”第三节“KNN算法”。
2. KNN算法流程:讲解KNN算法的具体步骤,包括数据预处理、特征工程、模型训练和预测等。
教材章节:第三章“分类与回归算法”第四节“KNN算法流程”。
3. 编程实践:运用Python编程语言实现KNN算法,并进行实际案例分析与演示。
教材章节:第四章“编程实践”第一节“Python实现KNN算法”。
4. KNN算法评估与优化:介绍评估指标(如准确率、召回率等),探讨K值选择、距离权重和特征选择等优化方法。
教材章节:第四章“编程实践”第二节“KNN算法评估与优化”。
《回归分析课程教案》课件
《回归分析课程教案》课件第一章:引言1.1 课程目标让学生了解回归分析的基本概念和应用领域。
让学生掌握回归分析的基本原理和方法。
培养学生应用回归分析解决实际问题的能力。
1.2 教学内容回归分析的定义和分类回归分析的应用领域回归分析的基本原理和方法1.3 教学方法讲授法:讲解回归分析的基本概念和原理。
案例分析法:分析实际案例,让学生了解回归分析的应用。
1.4 教学资源课件:介绍回归分析的基本概念和原理。
案例:提供实际案例,让学生进行分析。
1.5 教学评估课堂讨论:学生参与课堂讨论,回答问题。
第二章:一元线性回归分析2.1 教学目标让学生了解一元线性回归分析的基本概念和原理。
让学生掌握一元线性回归模型的建立和估计方法。
培养学生应用一元线性回归分析解决实际问题的能力。
2.2 教学内容一元线性回归分析的定义和特点一元线性回归模型的建立和估计方法一元线性回归模型的检验和预测2.3 教学方法讲授法:讲解一元线性回归分析的基本概念和原理。
数据分析法:分析实际数据,让学生了解一元线性回归模型的建立和估计方法。
2.4 教学资源课件:介绍一元线性回归分析的基本概念和原理。
数据分析软件:用于一元线性回归模型的建立和估计。
2.5 教学评估课堂练习:学生进行课堂练习,应用一元线性回归分析解决实际问题。
第三章:多元线性回归分析3.1 教学目标让学生了解多元线性回归分析的基本概念和原理。
让学生掌握多元线性回归模型的建立和估计方法。
培养学生应用多元线性回归分析解决实际问题的能力。
3.2 教学内容多元线性回归分析的定义和特点多元线性回归模型的建立和估计方法多元线性回归模型的检验和预测3.3 教学方法讲授法:讲解多元线性回归分析的基本概念和原理。
数据分析法:分析实际数据,让学生了解多元线性回归模型的建立和估计方法。
3.4 教学资源课件:介绍多元线性回归分析的基本概念和原理。
数据分析软件:用于多元线性回归模型的建立和估计。
3.5 教学评估课堂练习:学生进行课堂练习,应用多元线性回归分析解决实际问题。
“最小二乘法求线性回归方程”教学设计
---------------------------------------------------------------最新资料推荐------------------------------------------------------ “最小二乘法求线性回归方程”教学设计最小二乘法求线性回归方程教学设计一.内容和内容解析本节课的主要内容为用最小二乘法求线性回归方程。
本节课内容作为上节课线性回归方程探究的知识发展,在知识上有很强的联系,所以,核心概念还是回归直线。
在经历用不同估算方法描述两个变量线性相关关系的过程后,解决好用数学方法刻画从整体上看,各点与此直线的距离最小,让学生在此基础上了解更为科学的数据处理方式最小二乘法,有助于更好的理解核心概念,并最终体现回归方法的应用价值。
就统计学科而言,对不同的数据处理方法进行优劣评价是假设检验的萌芽,而后者是统计学学科研究的另一重要领域。
了解最小二乘法思想,比较各种估算方法,体会它的相对科学性,既是统计学教学发展的需要,又在体会此思想的过程中促进了学生对核心概念的进一步理解。
最小二乘法思想作为本节课的核心思想,由此得以体现。
而回归思想和贯穿统计学科中的随机思想,也在本节课中需有所渗透。
所以,在内容重点的侧重上,本节课与上节课有较大的区别:上节课侧重于估算方法设计,在不同的数据处理过程中,体会回归直线作为变量相关关系代表这一概念特征;本节课侧重于估1 / 10算方法评价与实际应用,在评价中使学生体会核心思想,理解核心概念。
考虑到本节课的教学侧重点与新课程标准的要求,对线性回归方程系数的计算公式,可直接给出。
由于公式的复杂性,一方面,既要通过教学设计合理体现知识发生过程,不搞割裂;另一方面,要充分利用计算机或计算器,简化繁琐的求解系数过程,简化过于形式化的证明说理过程。
基于上述内容分析,确定本节课的教学重点为知道最小二乘法思想,并能根据给出的线性回归方程的系数公式建立线性回归方程。
应用回归分析第五版教学设计
应用回归分析第五版教学设计课程简介此课程为应用回归分析的第五版设计,主要包括回归分析基础知识、多元回归分析、模型拟合与评价、变量选择与建模等方面的内容。
课程旨在帮助学生掌握回归分析理论与实践技能,为其从事统计学和数据分析相关领域做好铺垫。
课程目标1.了解回归分析的基本理论与方法;2.掌握多元回归分析的步骤和技巧;3.熟悉模型拟合与评价的相关方法;4.能够独立进行变量选择和建模工作;5.能够运用所学知识解决实际问题。
教学大纲1.回归分析基础知识–简单回归分析–最小二乘法–拟合优度与拟合优度检验–回归系数的推断2.多元回归分析–多元线性回归–变量选择方法–模型诊断和改进3.模型拟合与评价–残差图和分析–拟合优度与调整拟合优度–模型比较4.变量选择与建模–逐步回归法–岭回归和lasso回归–多项式回归5.实践案例讲解–通过实例介绍如何使用回归分析解决实际问题教学方法1.理论讲解:讲解回归分析的相关理论知识;2.实践演示:通过R、Python等统计软件进行实际操作;3.案例教学:引导学生进行实际问题的分析和解决;4.课堂互动:鼓励学生提问和讨论,促进学生的理解和思考。
评分标准1.课堂表现(30%):包括课堂参与度、发言表现、思维逻辑及问题意识等方面;2.作业质量(30%):包括选题合理性、思路完整性、数据分析方法及模型选择等方面;3.期末考试(40%):包括理论知识掌握程度、实战能力及问题解决能力等方面。
参考教材1.桂红林等.《应用回归分析》(第五版). 中国人民大学出版社.2.Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M.(2016). Response surface methodology: process and productoptimization using designed experiments. John Wiley & Sons.3.Kutner, M.H, Nachtsheim, C.J., Neter, J. (2003). AppliedLinear Regression Models. McGraw-Hill.总结本课程旨在帮助学生掌握回归分析理论与实践技能,为其从事统计学和数据分析相关领域做好铺垫。
非线性回归问题教学设计
非线性回归问题教学设计引言:非线性回归是统计学和机器学习中的一个重要概念。
与线性回归不同,非线性回归模型的自变量和因变量之间的关系不是线性的,而是可以通过非线性函数来描述。
非线性回归问题具有很高的实际应用价值,例如在金融、经济学、生物学等领域中,非线性回归模型可以更好地拟合数据,进行预测和分析。
本文将介绍非线性回归问题的基本概念和方法,并设计一套教学方案,帮助学生理解和应用非线性回归模型。
一、非线性回归问题的基本概念1.1 非线性回归模型的定义非线性回归模型是指自变量和因变量之间的关系不能通过线性函数来描述的回归模型。
通常情况下,非线性回归模型可以表示为:y = f(x; θ) + ε,其中y表示因变量,x表示自变量,f(x; θ)表示非线性函数,θ表示待估计的参数,ε表示噪声项。
1.2 非线性回归模型的特点与线性回归模型相比,非线性回归模型具有以下特点:- 非线性回归模型的参数估计更加复杂,通常需要使用优化算法进行求解。
- 非线性回归模型的预测能力更强,可以更好地拟合复杂的数据。
- 非线性回归模型的解释性较差,因为非线性函数的形式通常比较复杂,难以直观地解释。
二、非线性回归问题的解决方法2.1 非线性回归模型的建立为了解决非线性回归问题,需要选择合适的非线性函数来描述自变量和因变量之间的关系。
一般情况下,非线性函数可以通过以下方式来选择:- 根据经验和领域知识选择合适的非线性函数形式。
- 根据拟合效果和模型评估指标选择最优的非线性函数形式。
2.2 参数估计和模型评估确定非线性函数形式之后,需要使用合适的方法来估计模型参数。
常用的参数估计方法包括最小二乘法、最大似然估计和梯度下降法等。
估计得到模型参数之后,还需要进行模型评估,评估模型的拟合效果和预测能力。
常用的模型评估指标包括均方误差、残差分析和决定系数等。
三、非线性回归问题的教学设计基于以上理论基础,我们设计了以下教学方案,帮助学生理解和应用非线性回归模型:3.1 理论讲解首先,我们将对非线性回归问题的基本概念和特点进行理论讲解。
一元线性回归模型教学设计
一元线性回归模型教学设计一、教学目标通过本次教学,学生应该能够:1. 了解一元线性回归模型的基本概念和原理;2. 掌握一元线性回归模型的建立和求解方法;3. 能够运用一元线性回归模型解决实际问题;4. 培养学生的数据分析和模型建立能力。
二、教学内容1. 介绍一元线性回归模型的基本概念- 线性回归模型的基本思想- 回归方程和回归线的含义- 最小二乘法的原理2. 一元线性回归模型的建立和求解方法- 数据收集和变量选择- 模型建立和参数估计- 残差分析和模型检验3. 运用一元线性回归模型解决实际问题- 实际问题的建模方法- 数据处理和分析方法- 结果解释和模型评价三、教学过程1. 导入引入案例通过一个实际案例来引入一元线性回归模型的概念和应用,例如预测房价与房屋面积的关系。
2. 概念讲解- 介绍线性回归模型的基本思想和原理,以及回归方程和回归线的含义;- 解释最小二乘法的原理及其在一元线性回归模型中的应用。
3. 模型建立和参数估计- 数据收集和变量选择:讲解数据收集的方法和重要性,以及对自变量的选择;- 模型建立和参数估计:讲解如何建立一元线性回归模型并通过最小二乘法来估计模型的参数。
4. 残差分析和模型检验- 残差分析:讲解残差的概念及其在回归模型中的含义;- 模型检验:讲解常用的模型检验方法,如回归系数的显著性检验、模型拟合优度检验等。
5. 实际问题的建模和解决- 介绍实际问题的建模方法和步骤,包括数据处理、模型选择和参数估计;- 使用实际数据进行模型的建立和求解,分析结果并给出合理解释。
6. 教学案例练习提供多个一元线性回归的教学案例,供学生进行实践操作和分析讨论。
7. 总结归纳小结一元线性回归模型的基本概念、建立方法和应用步骤,提醒学生需要注意的问题和要点。
四、教学手段教学手段可以采用多种形式,如讲解、示范、案例分析、课堂练习、小组讨论等,通过多种形式的互动与合作,达到知识的传授和能力的培养。
“一元线性回归模型”教学设计
一、内容和内容解析1.内容结合具体实例,了解一元线性回归模型的含义,了解模型参数的统计意义,了解最小二乘原理,掌握一元线性回归模型参数的最小二乘估计方法,会使用相关的统计软件.2.内容解析“一元线性回归模型”是北师大版《普通高中课程标准实验教科书·数学3(必修)》(以下统称“教材”)第一章“统计”第8节的内容,是统计思想方法在实际生活中的典型应用案例.在此之前学生学习了数据的统计特征,在实际中经常要研究变量之间的相关关系,以最基本的一元线性回归为载体,通过画散点图描述两个变量之间关系的统计特征,用样本的情况去估计总体的情况,启发学生理解拟合思想,尝试构造函数模型去近似刻画变量之间的相关关系,有利于进一步发展学生的统计观念,培养学生的统计应用意识和能力,也为后面进一步学习独立性检验奠定基础.本节课的教学重点为经历一次完整的统计应用活动,会画散点图直观表示两个变量之间的相关关系,理解直线拟合的思想,理解最小二乘原理,会利用计算器和Excel 软件进行数据处理,会根据最小二乘法建立一元线性回归模型解决实际问题.教材从身高与右手一拃长的相关关系研究出发,通过画散点图,观察发现所有点都在一条直线附近波动,进而判断两个变量之间线性相关,从而可以用一条直线近似刻画两个变量之间的相关关系.引入直线拟合的概念,然后思考如何确定这条直线能更合理地近似刻画这种关系.采取小组讨论的方式,引导学生从定性到定量,建立一种数学上的“理想”的拟合方式,即考虑如何使得所有样本点到一条直线的“整体距离”最小,从而引入最小二乘法,建立一元线性回归模型.会利用信息技术求出两个变量之间的线性回归方程,从而对实际问题进行预判和决策.为了创设有利于学习的实际问题情境,本节课选取中央电视台社会与法频道《见证》栏目《神眼追踪》中足迹鉴定专家神奇破案的真实案例片断导入课题,通过思考怎样根据足迹推断犯罪嫌疑人的身高引出身高与鞋码有相关关系,引导学生经历一个完整的统计活动过程,探究身高与鞋码之间的相关关系.通过从学生中现场收集数据、整理数据,利用散点图描述数据、分析数据(直线拟合,探索回归直线方程的求法),运用最小二乘法刻画数据特征求得回归直线方收稿日期:2021-01-15作者简介:黄润华(1982—),男,中学一级教师,主要从事高中数学教育教学研究.“一元线性回归模型”教学设计黄润华摘要:本节课是统计思想方法在实际生活中的典型应用案例.结合两个变量之间线性相关的具体实例,经历统计活动,理解最小二乘原理,利用计算器和Excel 软件进行数据处理,建立一元线性回归模型,从而进行实际预测,解决实际问题.了解利用回归直线刻画两个变量之间相关关系的代表性,理解回归直线必过样本点的中心,并能对统计活动结果进行反思.关键词:线性回归;统计应用;数学建模;数据处理··9程,对实际问题进行预测,对统计结果分析与反思等环节,理解统计应用的思路与过程.在由散点图得到两个变量之间线性相关的基础上,着力探讨如何确定一条直线来更好地近似刻画这种关系,进行直线拟合.通过小组讨论与交流,引导学生从定性分析到定量计算,建立一种数学上的“理想”的拟合方式,即考虑如何使得所有样本点到一条直线的“整体距离”最小,从而引入最小二乘法建立一元线性回归模型.引导学生理解任一样本点()x i ,y i 与直线上横坐标为x i 的点之间的距离是刻画点到直线的远近的一种新的形式,其平方同样可以近似刻画点到直线的远近,从便于运算的角度我们选择平方,最小二乘法的基本思想即使所有样本点到直线的“距离”的平方和最小.从而,如果能判断两个变量之间具有线性相关关系,就能利用最小二乘法求出两个变量之间的线性回归方程,从而进行预判决策.本节课旨在建立一种统计模型来近似刻画实际问题中两个变量之间的关系,在问题解决的过程中发展学生的统计观念,理解数据分析的新思路和新方法,理解方法中蕴涵的数学思想,理解方法的目的和本质,体会统计模型的必要性和合理性.引导学生陷入机械、烦琐的公式计算中,从数据处理的角度思考如何避免繁杂的运算,认识到根据最小二乘法的思想和公式研发程序是源于生产生活实际需要,有其必然性,把握数据处理的思路,注重与信息技术的融合,对于提高学生的信息素养、进一步发展学生的统计观念、培养学生数据分析和数学建模等核心素养都起着非常重要的作用.二、目标和目标解析1.目标以发展学生的统计观念为核心,践行“四基”、发展“四能”,在问题解决中着重培养学生数据分析和数学建模等素养,根据《普通高中数学课程标准(2017年版)》(以下简称《标准》)中“一元线性回归模型”的内容及要求,确定本节课的教学目标如下.(1)经历完整的统计活动过程,进一步体会应用统计的思想和方法解决实际问题.(2)会画散点图判断两个变量之间是否线性相关,理解数据分析的思路和方法.(3)掌握用最小二乘法建立一元线性回归模型刻画两个变量之间的线性相关关系的方法.(4)会用计算器和Excel 软件求线性回归方程,并能根据一元线性回归模型进行预测.(5)理解一元线性回归模型参数的含义和统计结果的意义,会进行反思.2.目标解析目标(1)解析:本节课是统计应用案例,通过对实际问题中两个变量之间相关关系的研究,经历对两个变量间呈现一个大致的整体集中趋势的近似刻画的过程,开拓统计应用的新天地,进一步培养学生的统计应用意识.目标(2)解析:通过画散点图,类比函数图象可以看出两个变量之间的大致关系,并判断它们之间是否线性相关,探索发现数据处理的新思路和新方法.目标(3)解析:通过分组讨论和思考交流,了解直线拟合的思想,理解最小二乘法是一种方便可行、直观美妙的方法,从而建立一元线性回归模型.目标(4)解析:理解运用信息技术进行数据处理的必要性,并学会利用计算器和Excel 软件求线性回归方程,理解程序背后的数学思想与方法.能根据一元线性回归模型完成计算预测,从而解决实际问题.目标(5)解析:数学源于生活,又服务于生活.结合实际理解一元线性回归模型的含义和统计结果的意义.通过对统计活动各环节的反思,逐渐理解问卷的设计、样本的选取、分析方法的运用都会对统计结果产生影响,引导学生理解对统计结果保持批判性态度的必要性和重要性.三、教学问题诊断在义务教育阶段,学生初步建立了统计观念,了解了统计活动的全过程,学习了数据收集、整理、描述和分析的基本方法.在高中阶段,学生通过统计的学习进一步发展了统计观念,能较好地把握数据分析的基本思路,对统计的基本思想与应用有了更加深刻的体会.学生不知道应该怎样刻画两个变量之间的相关关··10系.尽管经过初中的学习,学生已经具备了比较丰富的函数知识,知道了函数可以刻画两个变量之间的一种确定性关系,但是对不满足函数关系的两个变量要怎么处理会感到困难.要引导学生理解相关关系的本质是一个变量可能受到其他多个变量的影响,故它的值会呈现一定的随机性或者波动性,这种波动在大量数据中往往会呈现一定的规律性,这就是回归分析要解决的问题.对两个变量之间相关关系的刻画,本质上是利用函数模型进行近似刻画,蕴涵着转化与化归思想.在画出散点图后,引导学生观察、刻画两个变量之间关系的统计特征.在给出线性相关的基础上,到底用哪条直线近似刻画更好,学生感到很茫然.故而采取分组讨论的方式,先让学生自主尝试,彼此交流想法,体会回归的含义,画出直线,然后通过小组间的交流再去归纳共性,建立一定的“理想”标准——所有样本点和直线整体上最接近.怎么刻画所有样本点和直线整体上最接近呢?这是一个很关键的问题,要引导学生理解在横坐标一定的情况下,样本点可以理解为在平均水平上下波动,从而建立一种新的标准来刻画点到直线的远近,即用任意一点()x i ,y i 与这条直线上横坐标为x i 的点之间的距离来刻画,而不是用数学上的距离来刻画.不仅如此,绝对值还面临一个计算上的困难,而统计上在方差里已经用了平方和表示,这里的本质其实是一样的.教学中采用对话教学法,启发学生进行知识迁移.学生对系数计算公式的理解存在较大的困难.根据最小二乘法推导出来的系数计算公式比较复杂,还包括两种不同形式的表达,直接运用公式计算需要分若干步,比较麻烦.教学时引导学生逐步认识公式,分析公式结构的特点,帮助学生更好地了解公式,并逐步渗透研发程序计算的必要性,建立自然合理的教学逻辑,了解程序背后的思想方法.利用计算器和Excel 软件求线性回归方程属于新的技能,需要教师以适当的方式传授.虽然学生具备了一定的计算机操作与计算器使用技能,但涉及利用最小二乘原理求系数的值,这需要学会使用计算器有关的统计功能.为了使计算器操作程序直观化、效果有引领性,教师在课前录制“利用计算器求线性回归方程”的微课,课上播放微课传授新技能.而对于利用Excel 软件求线性回归方程,则根据其操作简单易学的特点,采取教师随堂操作演示的方式传授技能,并录制微视频供学生课后上机操作时使用,以调动学生的学习热情,辅助学生学习.本节课的教学难点是理解直线拟合的必要性与合理性,掌握建立一元线性回归模型的一般原理.为突破难点,设计了求线性回归方程的小组讨论活动和帮助小卖部决策等问题,在探究和交流中领会思想,提升统计应用的能力.四、教学媒体设计本节课思想性、整体性、应用性强,决定采用情境—启发式探究教学模式,创设有利于学生学习的环境,通过小组讨论与实践应用,引导学生理解拟合思想,培养学生的自主探究能力与合作交流能力,发展学生的统计观念,提高学生的数学应用意识.为创设情境,更好地突出重点,突破难点,本节课主要进行了如下设计.1.导入使用真实案例为了创设真实的问题情境,选取了中央电视台社会与法频道《见证》栏目的真实神探破案视频导入课题,围绕神探怎样由足迹推断出犯罪嫌疑人的身高这一核心问题,根据足迹提供的有关信息,导入身高与鞋码这两个变量之间的相关关系的研究.2.设计了画散点图的课堂活页为了让学生亲自体会描点画图描述身高与鞋码之间的相关关系的过程,专门设计了一份课堂活页,内容为平面直角坐标系,横轴表示鞋码,纵轴表示身高,标示了相应的数值,便于学生描点.展示学生作图成果,并在后面的小组讨论中继续使用,在黑板上张贴画回归直线的成果,表述作法,有效揭示了学生的思维过程.3.Excel 表格一表多用,无缝衔接在现场收集数据时,由学生负责将样本数据逐一输入Excel 表格中,运用信息技术将表格数据同步到描述数据环节和学生利用计算器根据现场数据计算线性回归方程、教师操作演示利用Excel 软件求线性回归方程等环节,实现了数据的同步无缝应用,体现了信息··11技术的实用性.4.自主录制微课,传授技能经过反复研究,为了便于学生学习如何利用计算器求线性回归方程,采取了自主录制微课的形式;为了辅助学生课后上机利用Excel软件求线性回归方程,也录制了一个微课,供学生自主学习使用,课堂上不播放.5.课件简洁优美整节课共六个环节,仅使用10张幻灯片,节奏明快,界面简洁优美,既呈现了主要思路和内容,又做到了不同环节之间必要的无缝对接,信息技术融合应用恰当.6.板书简洁有条理板书呈现了统计活动的主要过程和一元线性回归模型的基本原理,通过学生活动和小组活动成果的展示,能够引导学生更好地理解直线拟合的背景和一元线性回归模型的含义,便于学生从整体上把握整节课的学习.五、教学过程设计1.创设情境,提出问题(1)俗话说,三百六十行,行行出状元.各行各业都有许多楷模.他们是公安楷模,是人民的守护神.下面我们来看一段公安神探破案的视频.播放《见证》栏目《神眼追踪》中神探足迹鉴定专家神奇破案的真实案例片断.(2)思考:神探根据足迹推断出了犯罪嫌疑人的身高,足迹能给我们提供什么信息呢?(3)提出问题:它们之间的相关关系具体是怎样的?神探又是怎样推断的呢?(4)导入课题:一元线性回归模型.【设计意图】以真实案件视频片断导入课题,关注社会、设置悬念,从研究身高与鞋码之间的相关关系入手,也为后面反思身高与足迹之间的相关关系埋下伏笔.2.统计分析,探究交流要研究两个变量之间的相关关系,根据统计学知识,我们首先应该做什么呢?收集数据:现场收集8对鞋码与身高的数据,用Excel软件同步导入如表1所示的电子表格中.表1鞋码身高通过观察表中数据,大体上可以发现,随着鞋码的增加,身高也在增加.【设计意图】从在座学生中现场随机收集鞋码与身高的数据,使样本数据源自学生,让学生体验样本的随机性,理解样本的代表性.描述数据:观察表中数据,大体上看,随着鞋码的增加,身高也在增加.你会怎样来直观表示身高与鞋码之间的这种关系呢?类比函数图象,描点画图.不妨设鞋码为x,身高为y,得到8个数对()x1,y1,()x2,y2,…,()x8,y8,将它们对应的点描出来,所得到的图称为散点图.学生在活页上的平面直角坐标系中画出散点图.教师展示学生作图成果,张贴到黑板上,随即分析图形特点.【设计意图】引导学生类比函数去认识身高与鞋码两个变量之间的相关关系,并亲自画散点图直观表示它们之间的相关关系,为数据分析作准备,了解拟合的背景.分析数据:观察散点图,你有什么发现呢?所有点看上去都在一条直线附近波动.线性相关:如果散点图中所有点看上去都在一条直线附近波动,称变量间线性相关.此时,可以用一条直线来近似刻画它们之间的关系,这样近似的过程称为直线拟合.探究:怎样确定这条直线呢?你是怎么想的?在小组内交流,并画出这条直线.教师展示小组讨论成果,汇报各自想法,分析不同想法的共同点.【设计意图】设计确定回归直线的小组讨论活动,自主探究、交流讨论,加深对回归含义的感知,并尝试得出确定这条直线的方法.3.建立模型,理解原理各小组做法虽然不同,但其实想法是一致的,都是希望所有点和这条直线尽可能接近,也就是整体距离最小,如何用数学的方法刻画呢?··12建立模型:假设我们已经得到两个具有线性相关关系的变量的一组数据()x 1,y 1,()x 2,y 2,…,()x n ,y n ,所求回归直线方程为y =bx +a ,那么如何刻画这些点和直线y =bx +a 整体上最接近呢?思考交流:不妨先刻画任意一点P i ()x i ,y i 和直线y =bx +a 的远近,说说你的想法!①用点到直线的距离来刻画.②用点()x i ,y i 与这条直线上横坐标为x i 的点之间的距离来刻画点()x i ,y i 到直线y =bx +a 的远近,即用||y i -()bx i +a ()i =1,2,3,…,n 来刻画点()x i ,y i 到直线y =bx +a 的远近.哪一种想法更合适呢?【设计意图】设置问题串启发学生分析如何刻画一个点到回归直线的远近,从实际意义的角度创造性地定义新的标准来刻画点到直线的远近,进一步理解波动和回归的意义,渗透创新思维的培养,理解数学的应用价值.所有点()x i ,y i 到直线y =bx +a 的“整体距离”表示为Q =||y 1-()bx 1+a +||y 2-()bx 2+a +…+||y n -()bx n +a =∑i =1n||y i-()bx i+a .要求回归方程,就是要确定a ,b 的值,使Q 的值最小.绝对值方便计算吗?【设计意图】通过对绝对值运算的分析,理解图中点与直线位置关系的不确定性,即点的波动性与直线的待定性.类比方差的知识,用∑i =1n[]y i -()bx i +a 2表示所有点到直线的“整体距离”,发挥知识的正迁移作用.理解原理:由于绝对值计算不方便,在实际应用中,我们常使用Q =[]y 1-()bx 1+a 2+[]y 2-()bx 2+a 2+…+[]y n-()bxn+a 2=∑i =1n[]y i -()bx i +a 2进行计算.线性回归方程:经过推导,确定回归方程y =bx +a 中b ,a 的计算公式如下.ìíîïïïïb =∑i =1n ()x i -xˉ()y i -y ˉ∑i =1n()x i -x ˉ2=∑i =1nx i y i -nx ˉy ˉ∑i =1n x i 2-nx ˉ2,a =yˉ-bx ˉ.意义分析:第一个表达式是x i 减x ˉ乘以对应的y i减y ˉ求和,去除以x i 减x ˉ的平方和;第二个表达式是x i 乘以对应的y i 求和减x ˉyˉ积的n 倍,去除以x i 的平方和减x ˉ的平方的n 倍.公式看似复杂,但是结构优美,都是分式形式.先看第一个公式,分子分母结构相同,如果把分子中的y i 变成x i ,y ˉ变成x ˉ,则分子与分母就完全一样了;第二个公式也具有一样的结构.公式的具体推导过程大家可以在课后进行思考.使∑i =1n[]y i -()bx i +a 2最小从而求得线性回归方程的方法叫做最小二乘法.思考:由a =y ˉ-bx ˉ,得y ˉ=bx ˉ+a.你发现了什么?回归直线y =bx +a 经过点()x ˉ,y ˉ,即样本点的中心.【设计意图】根据《标准》的要求和课程安排,着重把握方法背后的数学思想方法,引导学生课后探讨使Q 最小的系数b ,a 公式的推导过程,课堂上对公式进行详实分析,充分认识公式的结构,引导学生欣赏数学美.同时,还分析得到回归直线过样本点的中心,了解回归直线的代表性.4.运行程序,计算预测设置递进式问题串:(1)有了公式,下面是否可以动手计算系数b ,a 呢?(2)是否可以用计算器?(3)用计算器肯定可以轻松很多,但是如果有成千上万个数据呢?随着信息技术的发展,根据最小二乘法的思想和公式研发程序进行数据处理成为必然.【设计意图】从公式的理解到引导学生认识运用公式计算系数b ,a 的困难,感受使用计算器的必要性,再考虑到统计往往面对的是大量的数据处理工作,用计算器替代公式计算也是非常繁杂且易出错的,从而认识到研发程序的必要性,培养学生优化运算的思维.利用计算器求回归方程(播放微课),先开启计算器,然后分如下三个步骤.①选择模式:按MODE 键,进入模式选择,按3,选择Reg 回归,再按1,选择Lin 线性.②输入数据:按SHIFT 键+CLR +1=,清空统计存储器,再逐一输入收集的数据.··13③计算统计变量,按SHIFT键,按数字键2,就切换到了S-VAR功能,按两次方向键,选择1,计算a,同样操作,选择2,计算b.具体参考操作步骤如下图所示.学生两人一组,根据刚才的数据计算a,b的值.学生报告操作结果.【设计意图】为了便于传授利用计算器求值的技能,经过反复研究,确定由教师录制微课;为了突出程序思维,将利用计算器求值的技能分为三个步骤,易懂易学、方便操作.利用Excel软件求回归方程.如果有很多数据,怎么导入呢?需要一个个输入吗?教师操作演示,顺便验证大家刚才的操作结果.具体步骤如下.①在Excel表格中选定表示鞋码与身高关系的散点图,在菜单中选定“图表”中的“添加趋势线”选项,弹出“添加趋势线”对话框.②单击“类型”标签,选定“趋势预测/回归分析类型”中的“线性”选项,单击“确定”按钮,得到回归直线.③双击回归直线,弹出“趋势线格式”对话框.单击“选项”标签,选定“显示公式”,最后单击“确定”按钮,得到回归直线的方程.计算结果为什么是一样的呢?用计算器和用Excel软件求回归方程本质上没有区别,都是根据最小二乘法的思想和公式计算.不仅如此,标准统计软件SAS和SPSS也是根据最小二乘法的思想和公式求线性回归方程.课后,教师让学生参考视频教程在计算机上操作实践.有了回归方程,我们就知道了身高与鞋码的具体相关关系,并且可以根据鞋码预测身高.例如,根据42码的鞋印预测身高大概是多少?即当x=42时,y≈175.5.【设计意图】从计算器到Excel软件,从微课传授技能到当堂操作演示,都是以教与学的需要为出发点和落脚点,引导学生分析计算器和计算机软件求线性回归方程的区别与联系,并介绍了标准的统计软件.加强信息技术与统计内容的融合,启发学生思考如何从机械、烦琐的数据处理中解脱出来,培养程序化思维,发展学生的统计观念和信息素养.配套使用Excel 软件求回归方程的微视频教程,供学生上机操作时参考.分析不同软件求回归方程的本质,渗透程序思想.5.分析反思,实际预测下面我们利用全国统计数据预测一下鞋码为42码的人对应的身高.比较两个预测的样本与结果,你有什么发现呢?反思1:预测结果差异大吗?哪个结果会相对可靠呢?为什么?反思2:事实上,视频中足迹专家的推断与实际非常吻合,他怎么能推断得这么准呢?如果只根据鞋码推断可靠吗?鞋码是一元的,足迹是多元的,专家一般都是研究多元变量的影响进行推断的.怎么进行多元回归分析呢?教师让感兴趣的学生课后思考.【设计意图】统计是根据样本的情况估计总体情况,回归分析是通过函数模型近似刻画相关变量关系的统计方法.设计分析反思活动,引导学生对统计结果的合理性进行必要的批判与质疑,从数学问题的结论再回归到生活实际,呼应本节课引入的真实问题情境,身高与鞋码之间是一元线性相关,而身高与足迹之间却是多元回归分析问题,将相关关系的思考延伸到课外,重视培养学生的统计思维和应用意识.实际预测:线性回归能够帮助我们进行实际的预判决策.学校旁边有个小卖部卖奶茶,根据表2中收集的数据,你能帮小卖部进行决策吗?看看气温是6℃时大概要准备多少杯奶茶.表2气温x/°C奶茶杯数y/杯150413271281511619104238931763654(下转第21页)··14。
八年级数学《勾股定理》的教学设计
八年级数学第十八章《勾股定理》的教学设计一、教材分析勾股定理是数学中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。
它是建立在三角形、全等三角形、等腰三角形等有关知识的基础之上。
同时,也是初三几何中解直角三角形及圆中有关计算的必备知识。
它在数学理论体系中的地位举足轻重,在日常生活、工农业生产中,应用极为广泛。
从学生的角度来看,对勾股定理学习的好坏直接影响他们的后续数学学习。
二、学情分析八年级学生思维比较活跃,在平时自主学习、合作探究能力训练的基础上,具有了一定的归纳、总结能力及合作意识,学生对几何图形的观察,几何图形的分析能力已初步形成。
部分学生解题思维能力比较高,能够正确归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路。
现在的学生已经厌倦教师单独的说教方式,希望教师设计便于他们进行观察的几何环境,给他们自己探索、发表自己见解和展示自己才华的机会;更希望教师满足他们的创造愿望。
三、教学目标(1)知识与技能:使学生在探索勾股定理的过程中掌握直角三角形三边之间的数量关系,学会初步运用勾股定理进行简单的计算,解决实际问题。
(2)过程与方法:让学生经历用面积法探索勾股定理的过程,体会数形结合的思想,渗透观察、归纳、猜想、验证的数学思想,体验从特殊到一般的逻辑推理过程。
(3)情感态度和价值观:通过对勾股定理历史的了解,感受数学文化,激发学习热情;在探究活动中,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神。
四、教学重点:探索和验证勾股定理,会利用两边求直角三角形第三边。
五、教学难点:用拼图法验证勾股定理,勾股定理的证明方法。
六、教学策略:本节课采用探究发现式教学,由浅入深,由特殊到一般地提出问题,鼓励学生采用观察分析、自主探索、合作交流的学习方法,让学生经历数学知识的形成与应用过程。
七、教学手段:多媒体辅助教学。
八、教学准备:用硬纸板剪制2个不等边的正方形、双面胶带、剪刀、方格纸、多媒体课件等。
回归分析教案高中数学
回归分析教案高中数学
教学目标:通过本节课的学习,学生能够掌握回归分析的基本概念、原理和应用方法,具备运用回归分析解决实际问题的能力。
教学重点:回归分析的基本概念、原理和应用方法。
教学难点:如何运用回归分析方法解决实际问题。
教学准备:
1. 教师准备课件、教材、笔记等教学资源;
2. 学生准备纸笔、计算器等学习工具。
教学过程:
一、导入
教师通过引入生活实例,引发学生的思考,如“某家电公司想要了解销售额与广告投入的关系,该如何进行分析?”引导学生思考回归分析的重要性。
二、讲解回归分析的基本概念
1. 简要介绍回归分析的定义和应用背景;
2. 讲解简单线性回归和多元线性回归的基本原理;
3. 分析回归方程、残差、相关系数等重要概念;
4. 演示如何通过回归分析来确定自变量与因变量之间的关系。
三、案例分析
教师给出一个实际案例,让学生在小组中进行讨论和分析,探讨如何利用回归分析方法解决问题,并展示实际操作过程。
四、练习与提问
1. 给学生一些练习题,让他们独立思考并解答;
2. 提问学生对回归分析的理解和掌握程度,并解答学生提出的问题。
五、总结与展望
1. 总结本节课的重点内容和要点;
2. 展望回归分析的应用领域及未来发展。
3. 帮助学生理清知识点,回答问题,加深印象。
教学反思:本节课主要围绕回归分析的基本概念展开讲解,并通过案例分析和练习加深学生对知识的理解,但在未来的教学中,可以加强实践操作环节,提高学生的应用能力和解决问题的能力。
应用回归分析教学设计
应用回归分析教学设计简介回归分析是一种经常用于探究自变量与因变量之间关系的统计方法。
应用回归分析教学,能够使学生更好地理解相关概念和知识点,并且帮助其提升分析和解决实际问题的能力。
本文将介绍如何应用回归分析进行教学设计,以及如何帮助学生更好地理解和应用该方法。
目标本教学设计的目标是让学生:1.理解回归分析的基本原理和应用场景;2.掌握回归分析的基本步骤和方法;3.能够应用回归分析解决实际问题。
教学设计教学方法通过板书、讲解、案例演示和讨论等多种方法来进行教学。
教学内容1.回归分析的基本概念–自变量、因变量、线性关系等。
2.单变量线性回归分析–参数估计、模型诊断、应用等。
3.多元线性回归分析–参数估计、模型诊断、应用等。
4.非线性回归分析–模型拟合、参数估计、模型诊断等。
5.实际案例演示与讨论教学进程阶段一:介绍回归分析的基本概念1.首先,引导学生了解回归分析的基本概念,如自变量、因变量、线性关系等。
2.接着,通过案例演示加深学生对回归分析的理解,例如使用 Excel进行数据分析。
阶段二:单变量线性回归分析1.介绍单变量线性回归分析的基本思想,并带领学生一步步掌握其基本步骤和方法。
重点讲解参数估计和模型诊断。
2.使用实际数据进行案例演示,并引导学生讨论如何将该方法应用到其他问题。
阶段三:多元线性回归分析1.介绍多元线性回归分析的概念和基本步骤,以及参数估计和模型诊断的方法。
2.使用实际数据进行案例演示,并引导学生讨论如何将该方法应用到其他问题。
阶段四:非线性回归分析1.介绍非线性回归分析的基本思想和基本步骤,以及模型拟合和参数估计的方法。
2.使用实际数据进行案例演示,并引导学生讨论如何将该方法应用到其他问题。
阶段五:实际案例演示与讨论1.引导学生根据所学知识,自行分析和解决实际问题,例如房价预测、股价预测等。
2.对于分析结果进行讨论和总结,提高学生对回归分析的理解和应用能力。
总结应用回归分析教学设计能够帮助学生更好地理解和应用该方法,从而提高学生分析和解决实际问题的能力。
应用回归分析第四版教学设计
应用回归分析第四版教学设计一、教学目标本门课程旨在掌握回归分析的基本原理和实际应用,提高学生的数据分析能力和实际应用能力。
通过本课程的学习,可以使学生掌握回归分析的基本原理、熟练运用主流统计软件进行数据分析,了解回归在实际中的应用和局限性。
二、教学内容2.1 回归分析基础1.回归分析的基本概念2.简单线性回归模型及其应用3.多元回归分析及其应用2.2 假设检验与模型诊断1.参数估计与检验2.模型拟合度检验3.异常值诊断4.共线性诊断2.3 应用实践1.回归分析在生产和营销中的应用2.使用回归分析处理实际业务问题3.使用R或SPSS对实际数据进行回归分析三、教学方法本课程采用理论讲授、实验模拟、案例研究等多种教学方法。
其中理论讲授为主,辅以应用实践,注重理论和实际结合,培养学生的实际应用能力和解决问题的能力。
四、教学媒介本门课程使用多种教学媒介,包括PPT、黑板、教材、案例、SPSS 和R等主流统计软件。
其中PPT和黑板为主要的教学媒介,案例和教材为辅助,SPSS和R为学生进行实践的工具。
五、评价方式本课程采用多元化的评价方式,包括平时成绩、案例分析报告、期末论文和实验成绩等。
其中,平时成绩主要体现学生的出勤情况和参与度;案例分析报告旨在训练学生的数据分析和解决问题的能力;期末论文主要考查学生对回归分析原理和实际应用的掌握程度;实验成绩是反映学生对回归分析实践操作技能的掌握程度。
六、实施计划本课程总共授课16周,每周2次课,每次2个小时。
具体实施计划如下:周次内容周次内容1-2 回归分析基础3-4 假设检验与模型诊断5-6 简单线性回归分析及应用7-8 多元回归分析及应用9-10 回归分析在生产和营销中的应用11-12 使用回归分析处理实际业务问题13-15 使用R或SPSS对实际数据进行回归分析16 期末评价和总结,结合实践案例进行回顾和总结以上为本门课程的教学设计,旨在培养学生对回归分析的掌握和实际应用能力,提高学生的数据分析能力及解决问题的能力。
高中数学对数回归模型教案
高中数学对数回归模型教案
一、教学目标:
1. 了解对数回归模型的基本概念和原理;
2. 掌握对数回归模型的应用和求解方法;
3. 能够运用对数回归模型解决实际问题。
二、教学重点:
1. 对数回归模型的概念和原理;
2. 对数回归模型的应用和求解。
三、教学内容:
1. 对数回归模型的定义和特点;
2. 对数回归模型的一般形式;
3. 对数回归模型的应用案例。
四、教学过程:
1. 引入:通过一个实际问题引入对数回归模型,引起学生的兴趣和思考;
2. 概念讲解:介绍对数回归模型的基本概念和原理;
3. 求解方法:讲解对数回归模型的求解方法和步骤;
4. 应用案例:通过实际案例演示对数回归模型的应用过程;
5. 练习题:提供一些相关的练习题让学生进行巩固和练习;
6. 总结:对本节课的内容进行总结和回顾,强调对数回归模型在实际中的应用。
五、教学工具:
1. 讲义:对数回归模型的概念和原理;
2. 演示软件:用于演示对数回归模型的应用案例;
3. 实验器材:用于进行实际案例的演示。
六、教学评估:
1.课堂练习:对学生在课堂上的练习情况进行评估;
2.作业:布置相关的作业让学生进行巩固和练习;
3.课后反馈:鼓励学生在课后主动反馈对数回归模型的理解和应用情况。
教学设计方案和课件介绍
教学设计方案和课件介绍朋友!今天咱就聊聊那教学设计方案和课件。
哇,一提到这个,我脑海里就闪现出那一幕幕课堂上的激动场景。
我记得我第一次真正设计自己的课件,那时是在学校的一个小教室里。
我们那儿有个老李老师,他的课件设计那叫一个绝。
我当时就想,这课件咋就做得这么吸引人呢?嗯…就像那艺术作品一样,每一页都充满了灵动的创意,色彩搭配得让人眼前一亮。
你知道吗?一个好的教学设计方案,就像一份精美的食谱,既要有清晰的步骤,又得有抓人眼球的亮点,那手感啊,就像摸着一份艺术品,细致且诱人。
我有次忍不住,在老李老师的课堂上偷偷记下他的设计思路。
老李一眼就看出来了,笑着说:“年轻人,有啥不懂就来问,不用不好意思。
”我当时那个脸红啊,简直无地自容。
不过呢,等我真正掌握了教学设计的要领,那感觉,啧啧啧。
我觉得那是一种从创意到实现的满足。
每当看到学生们眼里的亮光,我会想,这设计方案就是教育的魔法。
让知识像清泉般流淌,滋润每一个好奇的心灵。
我有时候在想,如果课件能说话,它肯定会说:“快来看我呀,我可是满满的干货!”哈哈,我这想法是不是有点傻?在我们这行啊,有个传说。
说是有个大教育家,就靠着巧妙的教学设计,培养了一代又一代的优秀学生。
我也想啊,可我这水平,嗯…我自己心里有数。
我设计的课件总是色彩斑斓的,就像我写这篇文章,一会儿想到老李老师,一会儿又想到那些传奇。
我这又扯远啦。
我刚开始设计教学方案那会啊,可纠结了。
就像面对一片空白的幻灯片,不知道哪儿开始。
我老是想把所有知识点都一股脑儿塞进去,什么原理啦,应用啦。
后来才明白,有时候简单点才好,就像那简洁而精确的教学目标,直击学生的心中所需,不用想太多复杂的理论。
现在市场上的课件啊,花样可多了。
有些复杂得像谜题,我就寻思,这能让学生理解吗?唉,现在的课件制作有时过于追求视觉效果,忘了初心。
不过也有那种真正回归教育本质的,就像老李老师的设计,那才是真正的好课件。
我还听说啊,在一些高端的教学研讨会上,有人能把一个简单的课件做成互动的、有声有色的体验。
回归直线方程教学设计
回归直线方程教学设计教学设计:回归直线方程一、教学目标:1.了解回归直线的概念与性质;2.能够根据给定的数据,求解回归直线的方程;3.能够灵活运用回归直线方程解决实际问题。
二、教学准备:1.教师:准备教学课件,包括回归直线的定义与性质,求解回归直线方程的方法等;2.学生:提前学习相关知识,带上计算器和作业本。
三、教学过程:1.引入(10分钟)在开始正式讲解回归直线方程之前,首先通过提问和回顾的方式引起学生的兴趣,并对回归直线的概念进行复习。
如:回顾一次函数的概念及其性质,提问:对于给定的一组数据,我们如何找到一条最接近这些数据的直线?2.讲解回归直线的概念与性质(15分钟)通过PPT或板书,给出回归直线的定义与性质。
如:回归直线是最能代表一组数据的直线;回归直线使得数据到直线的距离之和最小;回归直线可以用来预测未知数据等。
3.求解回归直线的方程(30分钟)1)介绍最小二乘法的原理与步骤;2)通过实际例子,演示如何使用最小二乘法求解回归直线方程;3)分组练习:将学生分成小组,让他们运用最小二乘法求解给定数据的回归直线方程,教师巡回指导。
4.课堂讨论与总结(15分钟)将学生分为不同小组,让他们分享并展示自己的求解结果,带领学生讨论归纳回归直线方程的求解方法,总结归纳关键点。
5.解决实际问题(20分钟)1)教师出示几个实际生活中的问题,要求学生运用回归直线方程来解决;2)小组合作讨论并给出答案;3)学生展示结果并进行讨论。
6.作业布置(5分钟)1)求解回归直线方程的习题,要求学生独立完成并思考;2)预习下一节课内容,了解多元回归的概念与方法。
四、教学反思:本节课通过先引入再讲解的方式,使学生对回归直线方程产生兴趣,并通过实际练习、课堂讨论和解决实际问题,使学生理解回归直线方程的求解方法与应用。
在教学过程中,特别注意了学生的参与与合作,通过小组合作讨论,不仅提高了学生的积极性,也激发了学生的思维能力和创新精神。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用回归分析课程设计报告课程:应用回归分析题目:人均可支配收入的分析年级:11金统专业:金融统计学号:姓名:指导教师:徐州师范大学数学科学学院基于多元线性回归模型对我国城镇居民家庭人均可支配收入的分析摘要:收入分配和消费结构都是国民经济的重要课题居民消费的主要来源是居民收入而消费又是拉动经济增长的重要因素。
本文将通过多远统计分析方法对我国各地区城镇居民收入的现状进行分析。
通过分析找出我国城镇居民收入特点及其中存在的不足。
城镇居民可支配收入是检验我国社会主义现代化进程的一个标准。
本文根据我国城镇居民家庭人均可支配收入为研究对象,选取可能影响我国城镇居民家庭人均可支配收入的城乡居民储蓄存款年底余额、城乡居民储蓄存款年增加额、国民总收入、职工基本就业情况、城镇居民家庭恩格尔系数(%)5个因素,运用多元线性回归分析建立模型,先运用普通最小二乘估计求回归系数再对方程进行异方差、自相关、和多重共线性诊断,用迭代法消除了自变量之间的自相关。
对于多重共线性问题,先是用逐步回归和剔除变量的方法,最终转变为用方差扩大因子法城乡居民储蓄存款年增加额剔除城镇居民家庭恩格尔系数(%)解决多重共线性,建立最终回归方程432108.0039.0012.0470.5305x x x y +++-=∧标准化回归方程**3*24108.0863.0031.0x x x y ++=∧以其探究最后进入回归方程的几个变量在影响城镇居民收入孰轻孰重,达到学习与生活结合的效果。
分析出影响城镇居民收入的主要原因,并对模型联系实际进行分析,以供国家进行决策做参考。
关键词:多元线性回归 异方差 自相关 多重共线性 逐步回归 方差扩大因子(一)引言:改革开放以来我国的国民经济增长迅速居民的收入水平也大幅提高但居民收入分配差距也在不断扩大。
2008年的金融危机为我国带来的后遗症还在继续影响着居民正常生活物价上涨和通货膨胀的压力仍然困扰着老百姓收入和消费支出体系的健康发展至关重要。
消费是拉动国民经济增长的一架重要马车收入又是决定居民消费的最主要因素。
我国人口基数大消费群体众多但由于居民收入分配差距大直接影响到居民消费需求的降低从而影响经济增长。
而且随着中国特色的市场经济体制的建立各种收入分配问题也愈发明显。
因此鉴于篇幅限制本文就只针对城镇居民的收入进行分析。
中国网北京7月13日讯 国家统计局今日发布数据显示,我国城乡居民收入稳定增长,农村居民收入增长较快。
上半年,城镇居民家庭人均总收入12076元。
其中,城镇居民人均可支配收入11041元,同比增长13.2%,扣除价格因素,实际增长7.6%。
在城镇居民家庭人均总收入中,工资性收入同比名义增长11.5%,转移性收入增长9.9%,经营净收入增长31.2%,财产性收入增长20.4%。
农村居民人均现金收入3706元,同比增长20.4%,扣除价格因素,实际增长13.7%。
其中,工资性收入同比名义增长20.1%,家庭经营收入增长21.0%,财产性收入增长7.5%,转移性收入增长23.2%。
财政部副部眨楼继伟就调整城镇中低收入居民收 入政策符记者问中说:“由于城乡居民收入增长趋缓,居民对未来支出增加的预期增强, 消费意愿减弱,导致消费需求不旺。
针对有效需求不足这一突出问题,党中央利国务院 决定, 积极调整收入分配政策,通过提高国有企业下岗职工等低收入者的生活保障水平 和增加机关事业单位职工工资等措施,逐步改变居民收入预期下降、支出预期I:列、高 收入者消费意愿不强、低收入者消费能力不足的状况,旨在刺激消费需求,健进国民经 济持续快速健康发展。
”下面通过统计数据对我国城镇居民家庭人均可支配收入的总体现状和发展态势进行分析了解我国居民收入分配情况。
(二)问题重述以1991年-2011年的城镇居民家庭人均可支配收入y 为因变量,选取城乡居民储蓄存款年底余额x1、城乡居民储蓄存款年增加额x2、国民总收入x3、职工基本就业情况x4、城镇居民家庭恩格尔系数(%)x5为自变量。
(三)模型分析与建立①多元线性回归模型1.多元线性回归模型的一般形式设随机变量y 与一般变量p x x x ,,,21Λ 的线性回归模型为εββββ+++++=p p x x x y Λ22110 (4.1)其中,p βββ,,,10Λ是1+p 个未知参数,0β称为回归常数,p ββ,,1Λ称为回归系数。
y 称为被解释变量(因变量),p x x x ,,,21Λ是p 个可以精确测量并控制的一般变量,称为解释变量(自变量)。
ε是随机误差,与一元线性回归一样,对随机误差项我们常假定⎩⎨⎧==2)var(0)(σεεE (4.2)称εββββ+++++=p p x x x y E Λ22110)( (4.3) 为理论回归方程。
对一个实际问题,如果我们获得n 组观测数据),,2,1(),,,(;21n i y x x x i ip i i ΛΛ=,则线性回归模型(4.1)式可表示为⎪⎪⎩⎪⎪⎨⎧+++++=+++++=+++++=nnp p n n n p p p p x x x y x x x y x x x y εββββεββββεββββΛΛΛΛ2211022222211021112211101 (4.4) 写成矩阵形式为εβ+=X y (4.5)其中⎪⎪⎪⎪⎪⎭⎫⎝⎛=n y y y y M21 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=np n n p p x x x x x x x x x X ΛΛΛΛΛΛΛΛ212222111211111 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=p βββββM 210 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=n εεεεεM 210 (4.6)X 是一个)1(+⨯p n 阶矩阵,称为回归设计矩阵或资料矩阵。
2.多元线性回归模型的基本假定为了方便地进行模型的参数估计,对回归方程(4.4)式有如下一些基本假定:(1)解释变量p x x x ,,,21Λ是确定性变量,不是随机变量,且要求n p X rank <+=1)(。
这里的n p X rank <+=1)(,表明设计矩阵X 中的自变量列之间不相关,样本量的个数应大于解释变量的个数,X 是一满秩矩阵。
(2)随机误差项具有零均值和等方差,即⎪⎩⎪⎨⎧=⎩⎨⎧≠====n j i j i j i n i E j i i ,,2,1,,,0,),cov(,,2,1,0)(2ΛΛσεεε (4.7) 这个假定常称为高斯—马尔柯夫条件。
0)(=i E ε,假设观测值没有系统错误,随机误差项i ε的平均值为0。
随机误差项i ε的协方差为0,表明随机误差项在不同的样本点之间是不相关的(在正态假定下即为独立的),不存在序列相关,并且有相同的精度。
(3)正态分布的假定条件为⎩⎨⎧=相互独立n i ni N εεεσε,,,,,2,1),,0(~212ΛΛ (4.8) 对于多元线性回归的矩阵模型(4.5)式, 这个条件便可表示为),0(~2n I N σε (4.9)由上述假定和多元正态分布的性质可知,随机变量y 服从n 维正态分布,回归模型(4.5)式的期望向量βX y E =)( (4.10)n I y 2)var(σ= (4.11)因此 ),(~2n I X N y σβ (4.12) ②回归参数的普通最小二乘估计线性回归方程确定后的任务是利用已经收集到的样本数据,根据一定的统计拟合准则,对方程中的各个参数进行估计。
普通最小二乘就是一种最为常见的统计拟合准则,在该准则下得到的回归参数的估计称为回归参数的普通最小二乘估计。
对于(4.5)式表示的回归模型εβ+=X y ,所谓最小二乘法,就是寻找参数p ββββ,,,,210Λ的估计值pββββˆ,,ˆ,ˆ,ˆ210Λ,使离差平方和2221101210)(),,,,(ip p i i ni i p x x x y Q ββββββββ-----=∑=ΛΛ达到极小,即寻找pββββˆ,,ˆ,ˆ,ˆ210Λ满足 2221101210)(),,,,(ip p i i ni i p x x x y Q ββββββββ-----=∑=ΛΛ2122110,,,)(min 210∑=-----=ni ip p i i ix x x y pββββββββΛΛ(4.13)依照(4.13)式求出的p ββββˆ,,ˆ,ˆ,ˆ210Λ就称为回归参数pββββ,,,,210Λ的最小二乘估计。
pp x x x y ββββˆˆˆˆˆ22110++++=Λ (4.14) 为经验回归方程。
(四)问题分析①数据说明以1991年-2011年的城镇居民家庭人均可支配收入y 为因变量,选取城乡居民储蓄存款年底余额x1、城乡居民储蓄存款年增加额x2、国民总收入x3、职工基本就业情况x 4、城镇居民家庭恩格尔系数(%)x 5为自变量。
数据来源国家统计局网站统计年鉴。
②求解分析直接进入法模型汇总模型 R R 方调整 R 方 标准 估计的误差1.999a.999.999212.39403a. 预测变量: (常量), 家庭恩格尔系数, 年增加额, 就业情况, 国民总收入, 年底余额。
可以看出调整后的决定系数999.02 R ,说明回归方程的拟合优度比较好。
方差分析表可以看出,F 检验的检验值F=2990.552非常大,再看F 检验的P 值≈0.000,可知此回归方程高度显著,即做出5个自变量整体对因变量y 产生显著线性影响的判断所犯错误的概率仅为0.000。
此时得到的回归方程为:43221248.7102.0036.0011.0004.0278.4471x x x x x y -++++-=∧复决定系数为0.999,F-检验高度显著(F=2990.552,P=0.000),说明模型整体拟合效果不错。
首先看t 检验结果, j β的t 统计量)5,,2,1(Λ=j t j 及其相应的p 值就是上表第五列(Sig.)的结果。
我们可以发现显著性水平05.0=α时只有国民总收入(3x )和就业情况(4x )通过了显著性检验。
尽管回归方程的显著性检验高度显著,但也会出现有某些自变量j x (甚至每个j x )对y 无显著影响的情况。
接着看看回归系数的置信区间除了有国民总收入(3x )系数95%置信区间[0.025,0.047]和就业情况(4x )系数95%置信区间[0.057,0.147]不包含0,这也反映了回归系数的不合理。
那么究竟是什么原因导致回归方程出现上述结果呢,我们猜想可能是下列原因导致的。
(1)异方差和自相关在回归模型的基本假设中,假定随机误差性n εεε,,,Λ21具有相同的方差,独立或不相关,即对于所有样本点,有⎪⎩⎪⎨⎧⎩⎨⎧=≠====n j i j i j i n i E j i i ,,2,1,,0,),cov(,,2,1,0)(2ΛΛσεεε但在建立实际问题的回归模型时,经常存在于此假设相违背的情况,一种是计量经济建模中常说的异方差性,即)var()var(j i εε≠,当j i ≠时另一种是自相关性,即0)(cov ≠j i εε,,当j i ≠时,异方差带来的问题:当一个回归问题存在异方差时,如果仍用普通最小二乘发估计位置参数,将引起不良后果,特别是最小二乘估计量不再具有最小方差的优良性,即最小二乘估计的有效性被破坏了。