高等数学上复旦大学出版习题1答案
高等数学上复旦第三版 课后习题答案
283高等数学上(修订版)(复旦出版社)习题六 无穷数级 答案详解1.写出下列级数的一般项: (1)1111357++++ ;(2)22242462468x x x x x ++++⋅⋅⋅⋅⋅⋅ ;(3)35793579a a a a -+-+ ;解:(1)121n U n =-; (2)()2!!2n n xU n =;(3)()211121n n n a U n ++=-+; 2.求下列级数的和: (1)()()()1111n x n x n x n ∞=+-+++∑;(2)()1221n n n n ∞=+-++∑;(3)23111555+++ ; 解:(1)()()()()()()()111111211n u x n x n x n x n x n x n x n =+-+++⎛⎫-=⎪+-++++⎝⎭284从而()()()()()()()()()()()()()()11111211212231111111211n S x x x x x x x x x n x n x n x n x x x n x n ⎛-+-= +++++++⎝⎫++-⎪+-++++⎭⎛⎫-=⎪++++⎝⎭因此()1lim 21n n S x x →∞=+,故级数的和为()121x x +(2)因为()()211n U n n n n =-+-++- 从而()()()()()()()()324332215443211211211221n S n n n n n n n n =-+-----+-++---+-++-=+-++-=+-+++所以lim 12n n S →∞=-,即级数的和为12-. (3)因为21115551115511511145n nn n S =+++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎣⎦=-⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎣⎦ 从而1lim 4n n S →∞=,即级数的和为14. 3.判定下列级数的敛散性: (1) ()11n n n ∞=+-∑;(2)()()11111661111165451n n +++++⋅⋅⋅-+ ; (3) ()23133222213333n n n --+-++- ;285(4)311115555n +++++ ; 解:(1) ()()()3212111n S n n n =+++-+--=+-从而lim n n S →∞=+∞,故级数发散. (2) 1111111115661111165451111551n S n n n ⎛⎫=-+-+-++-⎪-+⎝⎭⎛⎫=- ⎪+⎝⎭从而1lim 5n n S →∞=,故原级数收敛,其和为15. (3)此级数为23q =-的等比级数,且|q |<1,故级数收敛. (4)∵15n n U =,而lim 10n n U →∞=≠,故级数发散. 4.利用柯西审敛原理判别下列级数的敛散性:(1) ()111n n n +∞=-∑;(2)1cos 2nn nx∞=∑; (3)1111313233n n n n ∞=⎛⎫+- ⎪+++⎝⎭∑. 解:(1)当P 为偶数时,()()()()122341111112311111231111112112311n n n pn n n n p U U U n n n n pn n n n pn p n p n n p n n n +++++++++++----=++++++++-+--=++++⎛⎫⎛⎫-=----- ⎪ ⎪+-+-++++⎝⎭⎝⎭<+当P 为奇数时,286()()()()1223411111123111112311111112311n n n pn n n n p U U U n n n n pn n n n pn p n p n n n n +++++++++++----=++++++++-+-+=++++⎛⎫⎛⎫-=---- ⎪ ⎪+-++++⎝⎭⎝⎭<+因而,对于任何自然数P ,都有12111n n n p U U U n n++++++<<+ , ∀ε>0,取11N ε⎡⎤=+⎢⎥⎣⎦,则当n >N 时,对任何自然数P 恒有12n n n pU U U ε++++++< 成立,由柯西审敛原理知,级数()111n n n +∞=-∑收敛. (2)对于任意自然数P ,都有()()()1212121cos cos cos 12222111222111221121112212n n n p n n n p n n n p n p n p nU U U x n p x xn n ++++++++++++++++=+++≤+++⎛⎫- ⎪⎝⎭=-⎛⎫=- ⎪⎝⎭<于是, ∀ε>0(0<ε<1),∃N =21log ε⎡⎤⎢⎥⎣⎦,当n >N 时,对任意的自然数P都有12n n n p U U U ε++++++< 成立,由柯西审敛原理知,该级数收敛. (3)取P =n ,则287()()()()()121111113113123133213223231131132161112n n n pU U U n n n n n n n n n n ++++++⎛⎫=+-+++- ⎪++++++⋅+⋅+⋅+⎝⎭≥++++⋅+≥+> 从而取0112ε=,则对任意的n ∈N ,都存在P =n 所得120n n n p U U U ε++++++> ,由柯西审敛原理知,原级数发散.5.用比较审敛法判别下列级数的敛散性. (1)()()111465735n n ++++⋅⋅++ ;(2)22212131112131nn +++++++++++ (3)1πsin 3n n ∞=∑;(4) 3112n n∞=+∑;(5)()1101nn a a∞=>+∑;(6)()1121nn ∞=-∑.解:(1)∵ ()()21135n U nn n =<++而211n n ∞=∑收敛,由比较审敛法知1n n U ∞=∑收敛. (2)∵221111n n n U n n n n++=≥=++ 而11n n∞=∑发散,由比较审敛法知,原级数发散.(3)∵ππsinsin 33lim lim ππ1π33n nn n n n→∞→∞=⋅=288而1π3n n ∞=∑收敛,故1πsin 3n n ∞=∑也收敛.(4)∵33321112n U nnn=<=+ 而3121n n∞=∑收敛,故3112n n∞=+∑收敛.(5)当a >1时,111n n n U a a =<+,而11n n a ∞=∑收敛,故111nn a∞=+∑也收敛. 当a =1时,11lim lim 022n n n U →∞→∞==≠,级数发散. 当0<a <1时,1lim lim 101n n n n U a →∞→∞==≠+,级数发散. 综上所述,当a >1时,原级数收敛,当0<a ≤1时,原级数发散.(6)由021limln 2xx x →-=知121lim ln 211nx n→∞-=<而11n n∞=∑发散,由比较审敛法知()1121nn ∞=-∑发散.6.用比值判别法判别下列级数的敛散性:(1) 213n n n ∞=∑;(2)1!31nn n ∞=+∑; (3)232333*********nn n +++++⋅⋅⋅⋅ ; (1) 12!n n n n n ∞=⋅∑解:(1) 23n n n U =,()2112311lim lim 133n n n n n n U n U n ++→∞→∞+=⋅=<, 由比值审敛法知,级数收敛.289(2) ()()111!311lim lim 31!31lim 131n n n n n nn n n U n U n n ++→∞→∞+→∞++=⋅++=⋅++=+∞所以原级数发散.(3) ()()11132lim lim 2313lim 21312n nn n n n n nn U n U n n n +++→∞→∞→∞⋅=⋅⋅+=+=> 所以原级数发散.(4) ()()1112!1lim lim 2!1lim 21122lim 1e 11n nn n n n n nnn n n U n n U n n n n n +++→∞→∞→∞→∞⋅+=⋅⋅+⎛⎫= ⎪+⎝⎭==<⎛⎫+ ⎪⎝⎭故原级数收敛.7.用根值判别法判别下列级数的敛散性:(1) 1531nn n n ∞=⎛⎫⎪+⎝⎭∑;(2)()[]11ln 1nn n ∞=+∑;(3) 21131n n n n -∞=⎛⎫⎪-⎝⎭∑;(4) 1nn n b a ∞=⎛⎫⎪⎝⎭∑,其中a n →a (n →∞),a n ,b ,a 均为正数.解:(1)55lim lim 1313n n n n n U n →∞→∞==>+, 故原级数发散.(2) ()1lim lim 01ln 1n n n n U n →∞→∞==<+,290故原级数收敛.(3)121lim lim 1931nn nn n n U n -→∞→∞⎛⎫==< ⎪-⎝⎭, 故原级数收敛.(4) limlim nn n n n nb b b a a a →∞→∞⎛⎫== ⎪⎝⎭, 当b <a 时,ba <1,原级数收敛;当b >a 时,b a>1,原级数发散;当b =a 时,b a=1,无法判定其敛散性.8.判定下列级数是否收敛?若收敛,是绝对收敛还是条件收敛?(1)1111234-+-+ ;(2)()()1111ln 1n n n ∞-=-+∑;(3) 2341111111153535353⋅-⋅+⋅-⋅+ ;(4)()21121!n n n n ∞-=-∑; (5)()()1111n n R n αα∞-=∈-∑;(6) ()11111123nn n n ∞=⎛⎫-++++ ⎪⎝⎭∑ . 解:(1)()111n n U n -=-,级数1n n U ∞=∑是交错级数,且满足111n n >+,1lim 0n n →∞=,由莱布尼茨判别法级数收敛,又11121n n n U n∞∞===∑∑是P <1的P级数,所以1n n U ∞=∑发散,故原级数条件收敛.(2)()()111ln 1n n U n -=-+,()()1111ln 1n n n ∞---+∑为交错级数,且()()11ln ln 12n n >++,()1lim 0ln 1n n →∞=+,由莱布尼茨判别法知原级数收敛,但由于()11ln 11n U n n =≥++291所以,1n n U ∞=∑发散,所以原级数条件收敛.(3)()11153n n n U -=-⋅民,显然1111115353n n n n n n U ∞∞∞=====⋅∑∑∑,而113nn ∞=∑是收敛的等比级数,故1n n U ∞=∑收敛,所以原级数绝对收敛.(4)因为2112lim lim 1n n n n nU U n ++→∞→∞==+∞+. 故可得1n n U U +>,得lim0n n U →∞≠, ∴lim 0n n U →∞≠,原级数发散. (5)当α>1时,由级数11n nα∞=∑收敛得原级数绝对收敛. 当0<α≤1时,交错级数()1111n n n α∞-=-∑满足条件:()111n n αα>+;1lim 0n n α→∞=,由莱布尼茨判别法知级数收敛,但这时()111111n n n nn αα∞∞-===-∑∑发散,所以原级数条件收敛.当α≤0时,lim0n n U →∞≠,所以原级数发散. (6)由于11111123n nn ⎛⎫⋅>++++ ⎪⎝⎭而11n n∞=∑发散,由此较审敛法知级数()11111123nn n n ∞=⎛⎫-⋅++++ ⎪⎝⎭∑ 发散. 记1111123n U nn ⎛⎫=⋅++++ ⎪⎝⎭ ,则292()()()()()()1222111111123111111112311111111231110n n U U n n n n n n n n n n n n n n +⎛⎫⎛⎫-=-++++- ⎪⎪+⎝⎭⎝⎭+⎛⎫=-++++ ⎪⎝⎭++⎛⎫⎛⎫-=++++ ⎪ ⎪⎝⎭+++⎝⎭>即1n n U U +>又01111lim lim 12311d n n n n U n n x n x→∞→∞⎛⎫=++++ ⎪⎝⎭=⎰ 由0111lim d lim 01t t t t x t x→+∞→+∞==⎰ 知lim 0n n U →∞=,由莱布尼茨判别法,原级数()11111123nn n n ∞=⎛⎫-⋅++++ ⎪⎝⎭∑ 收敛,而且是条件收敛.9.判别下列函数项级数在所示区间上的一致收敛性.(1) ()1!1nn x n ∞=-∑,x ∈[-3,3]; (2) 21nn x n ∞=∑,x ∈[0,1];(3) 1sin 3n n nx∞=∑,x ∈(-∞,+∞); (4)1!nxn e n -∞=∑,|x |<5; (5)3521cos n nxn x∞=+∑,x ∈(-∞,+∞)解:(1)∵()()3!!11nnx n n ≤--,x ∈[-3,3],而由比值审敛法可知()13!1nn n ∞=-∑收敛,所以原级数在 [-3,3]上一致收敛.(2)∵221nx n n≤,x ∈[0,1],293而211n n∞=∑收敛,所以原级数在[0,1]上一致收敛. (3)∵1sin 33n n nx ≤,x ∈(-∞,+∞),而113nn ∞=∑是收敛的等比级数,所以原级数在(-∞,+∞)上一致收敛. (4)因为5!!nnx ee n n -≤,x ∈(-5,5), 由比值审敛法可知51!nn e n ∞=∑收敛,故原级数在(-5,5)上一致收敛.(5)∵53523cos 1nxn xn≤+,x ∈(-∞,+∞),而5131n n∞=∑是收敛的P -级数,所以原级数在(-∞,+∞)上一致收敛.10.若在区间Ⅰ上,对任何自然数n .都有|U n (x )|≤V n (x ),则当()1n n V x ∞=∑在Ⅰ上一致收敛时,级数()1n n U x ∞=∑在这区间Ⅰ上也一致收敛.证:由()1n n V x ∞=∑在Ⅰ上一致收敛知, ∀ε>0,∃N (ε)>0,使得当n >N 时,∀x ∈Ⅰ有|V n +1(x )+V n +2(x )+…+V n +p (x )|<ε,于是,∀ε>0,∃N (ε)>0,使得当n >N 时,∀x ∈Ⅰ有|U n +1(x )+U n +2(x )+…+U n +p (x )|≤V n +1(x )+V n +2(x )+…+V n +p (x ) ≤|V n +1(x )+V n +2(x )+…+V n +p (x )|<ε,因此,级数()1n n U x ∞=∑在区间Ⅰ上处处收敛,由x 的任意性和与x 的无关294性,可知()1n n U x ∞=∑在Ⅰ上一致收敛.11.求下列幂级数的收敛半径及收敛域:(1)x +2x 2+3x 3+…+nx n +…; (2)1!nn x n n ∞=⎛⎫⎪⎝⎭∑;(3)21121n n x n -∞=-∑; (4)()2112nn x n n∞=-⋅∑; 解:(1)因为11limlim 1n n n n a n a n ρ+→∞→∞+===,所以收敛半径11R ρ==收敛区间为(-1,1),而当x =±1时,级数变为()11n n n ∞=-∑,由lim(1)0n x nn →-≠知级数1(1)nn n ∞=-∑发散,所以级数的收敛域为(-1,1).(2)因为()()1111!11lim lim lim lim e 1!11nn n n n n n n n na n n n a n n n n ρ-+-+→∞→∞→∞→∞⎡⎤+⎛⎫⎛⎫==⋅===+ ⎪⎢⎥ ⎪+⎝⎭+⎝⎭⎣⎦ 所以收敛半径1e R ρ==,收敛区间为(-e,e).当x =e 时,级数变为1e nn n n n∞=∑;应用洛必达法则求得()10e e1lim 2xx x x →-+=-,故有111lim 12n n n a n a +→∞⎛⎫-=-<⎪⎝⎭由拉阿伯判别法知,级数发散;易知x =-e 时,级数也发散,故收敛域为(-e,e).(3)级数缺少偶次幂项.根据比值审敛法求收敛半径.211212221lim lim 2121lim21n n n n n nn U x n U n x n x n x ++-→∞→∞→∞-=⋅+-=⋅+= 所以当x 2<1即|x |<1时,级数收敛,x 2>1即|x |>1时,级数发散,故295收敛半径R =1.当x =1时,级数变为1121n n ∞=-∑,当x =-1时,级数变为1121n n ∞=--∑,由1121lim 012n n n→∞-=>知,1121n n ∞=-∑发散,从而1121n n ∞=--∑也发散,故原级数的收敛域为(-1,1). (4)令t =x -1,则级数变为212nn t n n∞=⋅∑,因为()()2122lim lim 1211n n n na n na n n ρ+→∞→∞⋅===⋅++ 所以收敛半径为R =1.收敛区间为 -1<x -1<1 即0<x <2.当t =1时,级数3112n n ∞=∑收敛,当t =-1时,级数()31112n n n ∞=-⋅∑为交错级数,由莱布尼茨判别法知其收敛.所以,原级数收敛域为 0≤x ≤2,即[0,2] 12.利用幂级数的性质,求下列级数的和函数: (1)21n n nx∞+=∑;(2) 22021n n x n +∞=+∑;解:(1)由()321lim n n n x n x nx++→∞+=知,当|x |=<1时,原级数收敛,而当|x |=1时,21n n nx ∞+=∑的通项不趋于0,从而发散,故级数的收敛域为(-1,1).记 ()23111n n n n S nxxnxx ∞∞+-====∑∑易知11n n nx∞-=∑的收敛域为(-1,1),记()111n n S n xx ∞-==∑296则()1011xn n x S x x x∞===-∑⎰ 于是()()12111x S x x x '⎛⎫== ⎪-⎝⎭-,所以()()()3211x S x x x =<-(2)由2422221lim 23n n n x n x n x++→∞+=⋅+知,原级数当|x |<1时收敛,而当|x |=1时,原级数发散,故原级数的收敛域为(-1,1),记()2221002121n n n n x x S x x n n ++∞∞====++∑∑,易知级数21021n n x n +∞=+∑收敛域为(-1,1),记()211021n n x S x n +∞==+∑,则()21211n n S x x x∞='==-∑, 故()1011d ln 21xx S x x x +'=-⎰ 即()()1111ln 021x S S x x +-=-,()100S =,所以()()()11ln 121x xS xS x x x x+==<-13.将下列函数展开成x 的幂级数,并求展开式成立的区间: (1)f (x )=ln(2+x ); (2)f (x )=cos 2x ; (3)f (x )=(1+x )ln(1+x ); (4)()221x f x x=+;(5)()23xf x x=+; (6)()()1e e 2x x f x -=-; (7)f (x )=e x cos x ;(8)()()212f x x =-.解:(1)()()ln ln 2ln 2ln 11222x x f x x ⎛⎫⎛⎫===++++ ⎪ ⎪⎝⎭⎝⎭由于()()0ln 111n nn x x n ∞==+-+∑,(-1<x ≤1)故()()110ln 11221n nn n x x n +∞+=⎛⎫=+- ⎪⎝⎭+∑,(-2≤x ≤2)297因此()()()11ln ln 22121n nn n x x n +∞+==++-+∑,(-2≤x ≤2) (2)()21cos 2cos 2x f x x +==由()()20cos 1!2nnn x x n ∞==-∑,(-∞<x <+∞)得()()()()()220042cos 211!!22n n n nn n n x x x n n ∞∞==⋅==--∑∑ 所以()()22011()cos cos 222114122!2n nn n f x x x x n ∞===+⋅=+-∑,(-∞<x <+∞) (3)f (x )=(1+x )ln(1+x ) 由()()()10ln 111n nn x x n +∞==+-+∑,(-1≤x ≤1)所以()()()()()()()()()()()()()1120111111111111111111111111111n nn n n nn n n n n nn n n n n n n n n n x f x x n x x n n x x x n n n n x xn n x xn n +∞=++∞∞==++∞∞+==+∞+=-∞+==+-+=+--++=++--+++--=+⋅+-=++∑∑∑∑∑∑∑ (-1≤x ≤1)(4)()2222111x f x x xx==⋅++由于()()()2211!!2111!!21n n n n x n x∞=-=+-+∑ (-1≤x ≤1)298故()()()()221!!2111!!2n n n n x f x x n ∞=⎛⎫-+=- ⎪⎝⎭∑()()()()2211!!211!!2n n n n x xn ∞+=-=+-∑ (-1≤x ≤1) (5)()()()()2202111313133133nn n n nn n xf x x x x x x ∞=+∞+==⋅+⎛⎫=⋅- ⎪⎝⎭=-<∑∑(6)由0e !nxn x n ∞==∑,x ∈(-∞,+∞)得()01e !n nxn x n ∞-=⋅-=∑,x ∈(-∞,+∞)所以()()()()()()0002101e e 2112!!1112!,!21x x n n n n n n n n n n f x x x n n x n x x n -∞∞==∞=+∞==-⎛⎫-=- ⎪⎝⎭=⋅⎡⎤--⎣⎦=∈-∞+∞+∑∑∑∑(7)因为e cos x x 为()()1e cos sin x x i e x i x +=+的实部, 而()()[]()10002011!1!ππ2cos sin !44ππ2cos sin !44nxi n nn n nn n n n n ex i n x i n x i n x n n i n ∞+=∞=∞=∞==+=+⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦⎛⎫=⋅+ ⎪⎝⎭∑∑∑∑299取上式的实部.得2π2cos4cos !n xn n n e x x n ∞==⋅∑(-∞<x <+∞)(8)由于()1211n n nx x ∞-==-∑ |x |<1而()211412f x x =⋅⎛⎫- ⎪⎝⎭,所以()111001422n n n n n n x x f n x --∞∞+==⋅⎛⎫=⋅= ⎪⎝⎭∑∑ (|x |<2) 14.将()2132f x x x =++展开成(x +4)的幂级数.解:21113212x x x x =-++++而()()()0101113411431314413334713nn nn n x x x x x x x ∞=∞+==+-++=-⋅+-+⎛+⎫⎛⎫=-< ⎪⎪⎝⎭⎝⎭+=--<<∑∑又()()()0101122411421214412224622nn nn n x x x x x x x ∞=∞+==+-++=-+-+⎛+⎫⎛⎫=-< ⎪⎪⎝⎭⎝⎭+=--<<-∑∑300所以()()()()()2110011013244321146223n nn n n n nn n n f x x x x x x x ∞∞++==∞++==++++=-+⎛⎫=-+-<<- ⎪⎝⎭∑∑∑15.将函数()3f x x =展开成(x -1)的幂级数. 解:因为()()()()()2111111!2!m nmm mm m m x xx x n---+=++++++-<<所以()()[]()()()33221133333331121222222211111!2!!n f x x x n x x x n ==+-⎛⎫⎛⎫⎛⎫⎛⎫----+ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=+++++---(-1<x -1<1) 即()()()()()()()()()()()()()2323133131313251111111222!23!2!3152111022!n nnnn n f x x x x x n n x x n ∞=⋅⋅⋅⋅⋅⋅--+--=+++++----⋅⋅⋅⋅⋅⋅--=+-<<⋅∑ 16.利用函数的幂级数展开式,求下列各数的近似值: (1)ln3(误差不超过0.0001); (2)cos20(误差不超过0.0001)解:(1)35211ln 213521n x x x x x x n -+⎛⎫=+++++ ⎪--⎝⎭,x ∈(-1,1)令131x x +=-,可得()11,12x =∈-,301故()35211111112ln3ln 212325222112n n -+⎡⎤+++++==⎢⎥⋅⋅⋅-⎣⎦-又()()()()()()()()()()2123212121232521242122112222123222212112222123252111222212112211413221n n n n n n n n n n n r n n n n n n n n n n +++++++++-⎡⎤++=⎢⎥⋅⋅++⎣⎦⎡⎤⋅⋅++=+++⎢⎥⋅⋅+++⎣⎦⎛⎫<+++ ⎪⎝⎭+=⋅+-=+ 故5810.000123112r <≈⨯⨯61010.000033132r <≈⨯⨯. 因而取n =6则35111111ln32 1.098623252112⎛⎫=≈++++ ⎪⋅⋅⋅⎝⎭(2)()()2420ππππ909090cos 2cos 11902!4!!2nn n ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==-+-++-∵24π906102!-⎛⎫ ⎪⎝⎭≈⨯;48π90104!-⎛⎫⎪⎝⎭≈ 故2π90cos2110.00060.99942!⎛⎫⎪⎝⎭≈-≈-≈17.利用被积函数的幂级数展开式,求定积分0.5arctan d xx x⎰(误差不超过0.001)的近似值.302解:由于()3521arctan 13521n n x x x x x n +=-+-++-+ ,(-1≤x ≤1) 故()2420.50.5000.5357357arctan d d 113521925491111111292252492nx x x x x x x n x x x x ⎡⎤=-+-++-⎢⎥+⎣⎦⎛⎫=-+-+ ⎪⎝⎭=-⋅+⋅-⋅+⎰⎰ 而3110.013992⋅≈,5110.0013252⋅≈,7110.0002492⋅≈. 因此0.535arctan 11111d 0.487292252x x x ≈-⋅+⋅≈⎰ 18.判别下列级数的敛散性:(1)111n nnn nn n +∞=⎛⎫+ ⎪⎝⎭∑;(2)21cos 32n n nx n ∞=⎛⎫ ⎪⎝⎭∑; (3)()1ln 213nn n n ∞=+⎛⎫+ ⎪⎝⎭∑.解:(1)∵122111n nnnnn nn n n n n n n +⎛⎫>= ⎪+⎝⎭⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭ 而()22211221lim lim 10111nnn n n n nn n --++→∞→∞⎡⎤⎛⎫-⎛⎫==≠+⎢⎥⎪ ⎪+⎝⎭+⎝⎭⎣⎦故级数2211nn n n ∞=⎛⎫⎪+⎝⎭∑发散,由比较审敛法知原级数发散. (2)∵2cos 3022n nnx n n ⎛⎫⎪⎝⎭<≤ 由比值审敛法知级数12n n n ∞=∑收敛,由比较审敛法知,原级数21cos 32nn nx n ∞=⎛⎫ ⎪⎝⎭∑303收敛. (3)∵()()ln ln 220313nnn n n ++<<⎛⎫+ ⎪⎝⎭ 由()()()()11ln 33lim lim 3ln 21ln 3lim3ln 2113nn n n n nn U n U n n n ++→∞→∞→∞+=⋅++=+=< 知级数()1ln 23nn n ∞=+∑收敛,由比较审敛法知,原级数()1ln 213n n n n ∞=+⎛⎫+ ⎪⎝⎭∑收敛. 19.若2lim n nn U →∞存在,证明:级数1n n U ∞=∑收敛. 证:∵2lim n n n U →∞存在,∴∃M >0,使|n 2U n |≤M , 即n 2|U n |≤M ,|U n |≤2M n而21n Mn ∞=∑收敛,故1n n U ∞=∑绝对收敛. 20.证明,若21n n U ∞=∑收敛,则1nn U n∞=∑绝对收敛. 证:∵222211111222n n n nU U n U U n n n+=⋅≤=+⋅而由21n n U ∞=∑收敛,211n n∞=∑收敛,知 22111122n n U n ∞=⎛⎫+⋅ ⎪⎝⎭∑收敛,故1n n U n∞=∑收敛, 因而1nn U n∞=∑绝对收敛.30421.若级数1n n a ∞=∑与1n n b ∞=∑都绝对收敛,则函数项级数()1cos sin n n n a nx b nx ∞=+∑在R 上一致收敛.证:U n (x )=a n cos nx +b n sin nx ,∀x ∈R 有()cos sin cos sin n n n n n n n U a nx b nx a nx b nx a b x =+≤+≤+由于1n n a ∞=∑与1n n b ∞=∑都绝对收敛,故级数()1n n n a b ∞=+∑收敛.由魏尔斯特拉斯判别法知,函数项级数()1cos sin n n n a nx b nx ∞=+∑在R 上一致收敛.22.计算下列级数的收敛半径及收敛域:(1) 1311nn n n x n ∞=⎛⎫+ ⎪+⎝⎭∑;(2)()1πsin12nnn x ∞=+∑; (3) ()2112nn n x n ∞=-⋅∑解:(1)()111lim 1331lim 3123311311lim lim lim 22313e e 3n n nn nn nnn n n a a n n n n n n n n n n ρ+→∞+→∞→∞→∞→∞-=+⎛⎫⎛⎫++=⋅ ⎪ ⎪+⎝⎭+⎝⎭⎛⎫++++⎛⎫+=⋅⋅ ⎪ ⎪++⎝⎭+⎝⎭=⋅⋅=∴133R ρ==, 又当33x =±时,级数变为()113133311333nnnn n n n n n n ∞∞==⎛⎫⎛⎫⎛⎫++=±± ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭∑∑, 因为33333lim 033nn n en -→∞⎛⎫+=≠ ⎪+⎝⎭305所以当33x =±,级数发散,故原级数的收敛半径33R =,收敛域(-33,33). (2) 111ππsin122lim lim lim ππ2sin 22n n n n n n nnna a ρ+++→∞→∞→∞==== 故12R ρ==,又∵πsinπ2limsin 2lim ππ0π22n n n n n n→∞→∞⋅==≠.所以当(x +1)=±2时,级数()1πsin12n n n x ∞=+∑发散, 从而原级数的收敛域为-2<x +1<2,即-3<x <1,即(-3,1)(3) ()212121lim lim 221n n n n n na n a n ρ++→∞→∞⋅===⋅+ ∴2R =,收敛区间-2<x -1<2,即-1<x <3. 当x =-1时,级数变为()2111nn n∞=-∑,其绝对收敛,当x =3时,级数变为211n n ∞=∑,收敛. 因此原级数的收敛域为[-1,3]. 23.将函数()0arctan d xtF t x t=⎰展开成x 的幂级数. 解:由于()21arctan 121n nn t t n +∞==-+∑306所以()()()()()20002212000arctan d d 121d 112121nxx n n n n xnnn n t t F t t x t n t x t n n ∞=+∞∞====-+==--++∑⎰⎰∑∑⎰(|x |≤1)24.判别下列级数在指定区间上的一致收敛性:(1)()113n nn x ∞=-+∑,x ∈[-3,+∞); (2)1n n n x ∞=∑,x ∈(2,+∞); (3)()()222211n nx x n n ∞=⎡⎤+++⎣⎦∑,x ∈(-∞,+∞);解:(1)考虑n ≥2时,当x ≥-3时,有()1111133333nn n n nx x --=<<+-+ 而1113n n ∞-=∑收敛,由魏尔斯特拉斯判别法知,级数()113nnn x ∞=-+∑在[-3,+∞)上一致收敛. (2)当x >2时,有2n nn nx=< 由1112lim 122n n nn n +→∞+=<知级数12n n n ∞=∑收敛,由魏尔斯特拉斯判别法知,级数1n n nx ∞=∑在(2,+∞)上一致收敛. (3)∀x ∈R 有()()()22224322111nn n x n n nx n n n ≤<=⎡⎤+⋅+++⎣⎦而311n n ∞=∑收敛,由魏尔斯特拉斯判别法知,级数()()222211n n x x n n ∞=⎡⎤+++⎣⎦∑在(-∞,+∞)上一致收敛. 25.求下列级数的和函数:307(1)()211121n n n x n ∞-=--∑; (2)2121n n x n +∞=+∑; (3)()11!1n n nxn ∞-=-∑; (4)()11n n x n n ∞=+∑.解:(1)可求得原级数的收敛半径R =1,且当|x |=1时,级数()111121n n n ∞-=--∑是收敛的交错级数,故收敛域为[-1,1] 记()()()()22111111112121n n n n n n x x S x xS x x n n -∞∞--=====----∑∑ 则S 1(0)=0,()()122121111n n n S x x x∞--='==-+∑ 所以()()1121d arctan 01xS S x x x x-==+⎰ 即S 1(x )=arctan x ,所以S (x )=x arctan x ,x ∈[-1,1].(2)可求得原级数的收敛半径R =1,且当|x |=1时,原级数发散.记()21021n n x S x n +∞==+∑则()22011n n S x x x ∞='==-∑ ()200111d d ln 121xxx S x x x x x +'==--⎰⎰,即()()11ln 021xS S x x+-=-,S (0)=0 所以()11ln 21xS x x+=-,(|x |<1)(3)由()11!lim lim 0!1n n n n n a n n a n +→∞→∞+==-知收敛域为(-∞,+∞).记()()11!1n n n S x x n ∞-==-∑则()()()1011d e !!11nn xx n n x x S x x x x n n -∞∞=====--∑∑⎰,所以()()()e 1e x x S x x x '==+,(-∞<x <+∞)(4)由()()()112lim111n n n n n →∞++=+知收敛半径R =1,当x =1时,级数变为308()111n n n ∞=+∑,由()2111n n n <+知级数收敛,当x =-1时,级数变为()()111n n n n ∞=-+∑是收敛的交错级数,故收敛域为[-1,1].记()()11nn x S x n n ∞==+∑则S (0)=0,()()111n n x xS x n n +∞==+∑,()[]1111n n x xS x x∞-=''==-∑ (x ≠1) 所以()[]()0d ln 1xxS x x x ''=--⎰ 即()[]()ln 1xS x x '=--()[]()()()00d ln 1d 1ln 1xxxS x x x x x x x '=--=--+⎰⎰ 即()()()1ln 1xS x x x x =--+当x ≠0时,()()111ln 1S x x x⎛⎫=+-- ⎪⎝⎭,又当x =1时,可求得S (1)=1(∵()1lim lim 111n n S x n →∞→∞⎛⎫=-= ⎪+⎝⎭) 综上所述()()[)()0,01,1111ln 1,1,00,1x S x x x x x =⎧⎪==⎪⎨⎛⎫⎪+--∈- ⎪⎪⎝⎭⎩ 26.设f (x )是周期为2π的周期函数,它在(-π,π]上的表达式为()32π0,0π.x f x x x -<≤⎧=⎨<≤⎩ 试问f (x )的傅里叶级数在x =-π处收敛于何值?解:所给函数满足狄利克雷定理的条件,x =-π是它的间断点,在x =-π处,f (x )的傅里叶级数收敛于()()[]()33ππ11π22π222f f -+-+-=+=+30927.写出函数()21π00πx f x x x --≤≤⎧=⎨<≤⎩的傅里叶级数的和函数. 解:f (x )满足狄利克雷定理的条件,根据狄利克雷定理,在连续点处级数收敛于f (x ),在间断点x =0,x =±π处,分别收敛于()()00122f f -++=-,()()2πππ122f f -++-=,()()2πππ122f f -+-+--=,综上所述和函数.()221π00π102π1π2x x x S x x x --<<⎧⎪<<⎪⎪=-=⎨⎪⎪-=±⎪⎩28.写出下列以2π为周期的周期函数的傅里叶级数,其中f (x )在[-π,π)上的表达式为:(1)()π0π,4ππ0;4x f x x ⎧≤<⎪⎪=⎨⎪--≤<⎪⎩(2)()()2πx π=-≤≤f x x ;(3)()ππ,π,22ππ,,22ππ,π;22⎧--≤<-⎪⎪⎪=-≤<⎨⎪⎪≤<⎪⎩x f x x x x (4)()()cosππ2=-≤≤x f x x .310解:(1)函数f (x )满足狄利克雷定理的条件,x =n π,n ∈z 是其间断点,在间断占处f (x )的傅里叶级数收敛于()()ππ0044022f f +-⎛⎫+- ⎪+⎝⎭==,在x ≠n π,有()π0π-ππ011π1πcos d cos d cos d 0ππ4π4n a f x nx x nx x nx x -⎛⎫==-+= ⎪⎝⎭⎰⎰⎰ ()π0π-ππ011π1πsin d sin d sin d ππ4π40,2,4,6,,1,1,3,5,.n b f x nx x nx x nx xn n n-⎛⎫==-+ ⎪⎝⎭=⎧⎪=⎨=⎪⎩⎰⎰⎰于是f (x )的傅里叶级数展开式为()()11sin 2121n f x n x n ∞==--∑(x ≠n π) (2)函数f (x )在(-∞,+∞)上连续,故其傅里叶级数在(-∞,+∞)上收敛于f (x ),注意到f (x )为偶函数,从而f (x )cos nx 为偶函数,f (x )sin nx 为奇函数,于是()π-π1sin d 0πn b f x nx x ==⎰,2π20-π12πd π3a x x ==⎰,()()ππ22-π0124cos d cos d 1ππnn a f x nx x x nx x n ===-⋅⎰⎰ (n =1,2,…) 所以,f (x )的傅里叶级数展开式为:()()221π41cos 3nn f x nx n∞==+-⋅∑ (-∞<x <∞)(3)函数在x =(2n +1)π (n ∈z )处间断,在间断点处,级数收敛于0,当x ≠(2n +1)π时,由f (x )为奇函数,有a n =0,(n =0,1,2,…)311()()()πππ2π002222πsin d sin d sin d ππ212π1sin 1,2,π2n nb f x nx x x nx x nx x n n n n ⎡⎤==+⎢⎥⎣⎦=--+=⎰⎰⎰ 所以()()12112π1sin sin π2n n n f x nx n n ∞+=⎡⎤=-⋅+⎢⎥⎣⎦∑ (x ≠(2n +1)π,n ∈z )(4)因为()cos 2xf x =作为以2π为周期的函数时,处处连续,故其傅里叶级数收敛于f (x ),注意到f (x )为偶函数,有b n =0(n =1,2,…),()()ππ-π0π0π1212cos cos d cos cos d π2π2111cos cos d π2211sin sin 12211π224110,1,2,π41n n x xa nx x nx xn x n x x n x n x n n n n +==⎡⎤⎛⎫⎛⎫=++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎛⎫+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥=+⎢⎥+-⎢⎥⎣⎦⎛⎫=-= ⎪-⎝⎭⎰⎰⎰所以f (x )的傅里叶级数展开式为:()()12124cos 1ππ41n n nxf x n ∞+==+--∑ x ∈[-π,π]29.将下列函数f (x )展开为傅里叶级数: (1)()()πππ42x f x x =--<<(2)()()sin 02πf x x x =≤≤解:(1) ()ππ0-ππ11ππcos d d ππ422x a f x nx x x -⎛⎫==-= ⎪⎝⎭⎰⎰[]()ππππ-π-πππ1π11cos d cos d x cos d π4242π1sin 001,2,4n x a nx x nx x nx x nx n n--⎛⎫=-=- ⎪⎝⎭=-==⎰⎰⎰312()ππππ-π-π1π11sin d sin d xsin d π4242π11n n x b nx x nx x nx x n-⎛⎫=-=- ⎪⎝⎭=-⋅⎰⎰⎰故()()1πsin 14n n nxf x n∞==+-∑ (-π<x <π)(2)所给函数拓广为周期函数时处处连续, 因此其傅里叶级数在[0,2π]上收敛于f (x ),注意到f (x )为偶函数,有b n =0,()ππ0πππ011cos0d sin d ππ24sin d ππa f x x x x x x x --====⎰⎰⎰ ()()()()()()ππ0ππ02222cos d sin cos d ππ1sin 1sin 1d π211π10,1,3,5,4,2,4,6,π1n na f x nx x x nx x n x n x x n n n n -===+--⎡⎤⎣⎦-⎡⎤=+-⎣⎦-=⎧⎪-=⎨=⎪-⎩⎰⎰⎰所以()()2124cos2ππ41n nxf x n ∞=-=+-∑ (0≤x ≤2π) 30.设f (x )=x +1(0≤x ≤π),试分别将f (x )展开为正弦级数和余弦级数. 解:将f (x )作奇延拓,则有a n =0 (n =0,1,2,…)()()()()ππ0022sin d 1sin d ππ111π2πn nb f x nx x x nx x n==+--+=⋅⎰⎰从而()()()1111π2sin πnn f x nx n∞=--+=∑ (0<x <π)313若将f (x )作偶延拓,则有b n =0 (n =1,2,…)()()ππ00222cos d 1cos d ππ0,2,4,64,1,3,5,πn a f x nx x x nx x n n n ==+=⎧⎪=-⎨=⎪⎩⎰⎰ ()()ππ0π012d 1d π2ππa f x x x x -==+=+⎰⎰ 从而()()()21cos 21π242π21n n xf x n ∞=-+=--∑ (0≤x ≤π) 31.将f (x )=2+|x | (-1≤x ≤1)展开成以2为周期的傅里叶级数,并由此求级数211n n∞=∑的和. 解:f (x )在(-∞,+∞)内连续,其傅里叶级数处处收敛,由f (x )是偶函数,故b n =0,(n =1,2,…)()()11010d 22d 5a f x x x x -==+=⎰⎰()()()1112cos d 22cos d 0,2,4,64,1,3,5,πn a f x nx x x nx xn n n -==+=⎧⎪-=⎨=⎪⎩⎰⎰所以()()()221cos 21π542π21n n xf x n ∞=-=--∑,x ∈[-1,1]取x =0得,()2211π821n n ∞==-∑,故 ()()22222111111111π48212n n n n n n n n ∞∞∞∞=====+=+-∑∑∑∑ 所以211π6n n∞==∑31432.将函数f (x )=x -1(0≤x ≤2)展开成周期为4的余弦级数.解:将f (x )作偶延拓,作周期延拓后函数在(-∞,+∞)上连续,则有b n =0 (n =1,2,3,…)()()220201d 1d 02a f x x x x -==-=⎰⎰ ()()()222022221ππcos d 1cos d 2224[11]π0,2,4,6,8,1,3,5,πn nn x n xa f x x x x n n n n -==-=--=⎧⎪=⎨-=⎪⎩⎰⎰ 故()()()22121π81cos π221n n xf x n ∞=-=-⋅-∑(0≤x ≤2)33.设()()011,0,2cos π1222,1,2n n x x a f x s x a n x x x ∞=⎧≤≤⎪⎪==+⎨⎪-<<⎪⎩∑,-∞<x <+∞,其中()12cos πd n a f x n x x =⎰,求52s ⎛⎫- ⎪⎝⎭. 解:先对f (x )作偶延拓到[-1,1],再以2为周期延拓到(-∞,+∞)将f (x )展开成余弦级数而得到 s (x ),延拓后f (x )在52x =-处间断,所以515511122222221131224s f f f f +-+-⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-+-=-+-⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎛⎫=+= ⎪⎝⎭34.设函数f (x )=x 2(0≤x <1),而()1s i n πn n s x b nx ∞==∑,-∞<x <+∞,其中()12sin πd n b f x n x x =⎰ (n =1,2,3,…),求12s ⎛⎫- ⎪⎝⎭. 解:先对f (x )作奇延拓到,[-1,1],再以2为周期延拓到(-∞,+∞),并将315f (x )展开成正弦级数得到s (x ),延拓后f (x )在12x =-处连续,故.211112224s f ⎛⎫⎛⎫⎛⎫-=--=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 35.将下列各周期函数展开成为傅里叶级数,它们在一个周期内的表达式分别为:(1)f (x )=1-x 2 1122x ⎛⎫-≤< ⎪⎝⎭;(2)()21,30,1,0 3.x x f x x +-≤<⎧=⎨≤<⎩解:(1) f (x )在(-∞,+∞)上连续,故其傅里叶级数在每一点都收敛于f (x ),由于f (x )为偶函数,有b n =0 (n =1,2,3,…)()()112221002112d 41d 6a f x x x x -==-=⎰⎰, ()()()()112221021222cos2n πd 41cos2n πd 11,2,πn n a f x x x x x x n n -+==--==⎰⎰所以()()12211111cos 2π12πn n f x n x n +∞=-=+∑ (-∞<x <+∞)(2) ()()303033011d 21d d 133a f x x x x x --⎡⎤==++=-⎢⎥⎣⎦⎰⎰⎰, ()()()()330330221πcos d 331π1π21cos d cos d 3333611,1,2,3,πn nn xa f x x n x n x x x x n n --==++⎡⎤=--=⎣⎦⎰⎰⎰316()()()()33033011πsin d 331π1π21sin d sin d 333361,1,2,πn n n xb f x x n x n x x x x n n --+==++=-=⎰⎰⎰ 而函数f (x )在x =3(2k +1),k =0,±1,±2,…处间断,故()()()122116π6π11cos 1sin 2π3π3n n n n x n x f x n n ∞+=⎧⎫⎡⎤=-+--+-⎨⎬⎣⎦⎩⎭∑ (x ≠3(2k +1),k =0,±1,±2,…)36.把宽为τ,高为h ,周期为T 的矩形波(如图所示)展开成傅里叶级数的复数形式.解:根据图形写出函数关系式()0,22,220,22T t u t h t T t ττττ⎧-≤<-⎪⎪⎪=-≤<⎨⎪⎪≤≤⎪⎩()()22022111d d d 2T l T l h c u t t u t t h t l T T Tτττ---====⎰⎰⎰ ()()π2π222π2π22222π2211e d e d 212πe d e d 2ππsin e 2ππn T n i t l i t l T T n l n n i t i t T T n i t T c u t t u t tl T h T n h t i t T T n i T h h n n i n T τττττττ----------==-⎛⎫⎛⎫==⋅- ⎪ ⎪⎝⎭⎝⎭⎛⎫⎡⎤=-= ⎪⎣⎦⎝⎭⎰⎰⎰⎰。
概率论与数理统计复旦大学出版社第一章课后参考答案
精心整理第一章1.见教材习题参考答案.2.设A ,B ,C 为三个事件,试用A ,B ,C(1)A 发生,B ,C 都不发生; (2)A ,B ,C 都发生; (3)A ,B ,C (4)A ,B ,C 都不发生; (5)A ,B ,C(6)A ,【解】(1(B C (4)ABC B C (5)ABC ∪ABC ∪ABC ABC =AB BC AC3..4.设A ,?B )=0.3,求P (.【解】P 5.设A ,(A )=0.6,P (B )=0.7,(1AB (2AB【解】(1)()0.6AB P A ==,()P AB 取到最大值为(2)当()()()0.3P A P B P A B =+-= 6.设A ,B ,P (C )=1/3P (AC )至少有一事件发生的概率. )=0, 由加法公式可得=14+14+13?112=347.52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少? 【解】设A 表示“取出的13张牌中有5张黑桃,3张红心,3张方块,2张梅花”,则样本空间Ω中样本点总数为1352n C =,A 中所含样本点533213131313k C C C C =,所求概率为8.(1)求五个人的生日都在星期日的概率;(2)求五个人的生日都不在星期日的概率; (3)求五个人的生日不都在星期日的概率. 【解】(1)设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故P (A 1)=517=(17)5(亦可用独立性求解,下同) (2)设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5(3)设A 3={五个人的生日不都在星期日}P (A 3)=1?P (A 1)=1?(17)59..见教材习题参考答案.10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率. (1)n (2)n(3)n .【解】(1样本空间Ω,所求概率为;(P (2)次为正品m 件的排(3n 次抽取中此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为MN,则取得m 件正品的概率为 11..见教材习题参考答案.12.50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱.每个部件用3只铆钉.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少?【解】设A ={发生一个部件强度太弱},样本空间Ω中样本点总数为350C ,A 中所含样本点13103k C C =,因此,所求概率为133103501()C C /C 1960P A ==13.7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率. 【解】设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互不相容.样本空间Ω中样本点总数为37n=C ,2A 中所含样本点数为2143C C ,3A 中所含样本点数为34C ,故所求概率为232322()()()35P A A P A P A =+=14.0.8和0.7,在两批种子中各随机取一粒,求:(1)两粒都发芽的概率; (2)至少有一粒发芽的概率; (3)恰有一粒发芽的概率.【解】设2)0.7A =212)A A A =15.(1)问正好在第6次停止的概率;(2)问正好在第6次停止的情况下,第【解】(151次正面,(1)(P 16.0.7【解】设175双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率. 【解】设A 表示“4只鞋子中至少有两只鞋子配成一双”,从5双不同的鞋子中任取4只,取法总数为410C ,A 表示“4只鞋子中没有配对的鞋子”,A 中所含基本事件数为4111152222C C C C C ,所求概率为 18.0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求: (1)在下雨条件下下雪的概率;(2)这天下雨或下雪的概率. 【解】设A ={下雨},B ={下雪}.(1)()0.1()0.2()0.5P AB P B A P A ===(2)()()()()0.30.50.10.7P A B P A P B P AB =+-=+-= 19.3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故或在缩减样本空间中求,此时样本点总数为7.20.5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半). 【解】设A ={此人是男人},B ={此人是色盲},则A ={此人是女人},显然A ,A 是样本空间的一个划分,且1()()P A P A ==,由贝叶斯公式得21.【解】 部分所示22.(1(2【解】区域”.(1)(2)设B 23.P 【解】()()()()()P B A B P A B P A P B P AB ==+- 24.15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率. 【解】设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新 球}。
高等数学复旦大学出版第三版上册课后答案习题全
x x x x , 1 分别表示不超过 , 1 的最大整数. 20 20 20 20
14. 已知水渠的横断面为等腰梯形,斜角 =40°,如图所示.当过水断面 ABCD 的面积为定值 S0 时,求湿周 L(L=AB+BC+CD)与水深 h 之间的函数关系式,并指明其定义域.
106 106 106 件,库存数为 件,库存费为 0.05 元. x 2x 2x
3
106 0.05 设总费用为,则 y 10 x . 2x
13. 邮局规定国内的平信,每 20g 付邮资 0.80 元,不足 20 g 按 20 g 计算,信件重量不得超过 2kg, 试确定邮资 y 与重量 x 的关系. 解: 当 x 能被 20 整除,即 [
x
7. 证明: f ( x) 2 x 1 和 g ( x)
3
3
x 1 互为反函数. 2
证:由 y 2 x 1 解得 x
3
3
y 1 , 2
2
故函数 f ( x) 2 x 1 的反函数是 y
3
3
x 1 ( x R ) , 这与 g ( x) 2
3
x 1 是同一个函 2
3
又由 1 cos x 1 得 0 1 cos x 2 , 即 0 y 2 , 故可得反函数的定义域为 [0,2], 所以 , 函数 y 1 cos x, x [0, π] 的反函
3
数为 y arccos 3 x 1
(0 x 2) .
9. 判断下列函数在定义域内的有界性及单调性:
(2) f ( x) e
2 x
e 2 x sin( x) e 2 x e 2 x sin x (e 2 x e 2 x sin x) f ( x)
高等数学上复旦大学出版习题1答案.pdf
x1
=
sin
x2
,即 A 中不同的元素
x1,
x2
有相同的
像,∴f 不是单射.
综上所述, f 为满射,但不是单射.
(3)∵∀x1, x2 ∈ A , 且 x1 ≠ x2 ,有 ex1 ≠ ex2 ,即 A 中不同的元素有不同的像,∴f 是单射.
又∵ 0 ∈ B,∀x ∈ A, ex ≠ 0 ,即 B 中的元素 0 没有原像,∴f 不是满射.
2. 设 X = {1, 2,3, 4,5, 6}, A = {1, 2,3}, B = {2, 4, 6},C = {1,3,5} ,求 A∪ B ∪ C, A ∩ B ∩C , CXA,CXA∪CXB,
CXA∩CXB.
解: A∪ B ∪ C = {1, 2,3}∪{2, 4, 6}∪{1,3,5} = X
⎨ ⎩
x
≠
0
所以函数的定义域是 (−∞, 0) ∪ (0, 4].
(2)要使函数有意义,必须
所以函数的定义域是[-3,0) ∪(0,1) . (3)要使函数有意义,必须
⎧ x+3≥0
⎧x ≥ −3
⎪⎨lg(1− x) ≠ 0
即
⎪ ⎨
x
≠
0
⎪⎩ 1− x > 0
⎪⎩ x < 1
x2 −1≠ 0 即 x ≠ ±1
(2)不正确. 例如: A={1,2},B={1},C={1,3}有 A∩B=A∩C={1},但 B≠C.
4. 判定下列映射哪些是满射,哪些是单射,哪些是一一映射?
(1) A=(-∞,+∞),B=(-∞,+∞), f : x ∈ A |→ y = x3 ∈ B ;
(2) A=(-∞,+∞),B=[-1,1], f : x ∈ A |→ y = sin x ∈ B ;
高等数学复旦大学出版第三版课后答案
206习题十1. 根据二重积分性质,比较ln()d D x y σ+⎰⎰与2[ln()]d D x y σ+⎰⎰的大小,其中:(1)D 表示以(0,1),(1,0),(1,1)为顶点的三角形; (2)D 表示矩形区域{(,)|35,02}x y x y ≤≤≤≤.解:(1)区域D 如图10-1所示,由于区域D 夹在直线x +y =1与x +y =2之间,显然有图10-112x y ≤+≤从而 0l n ()x y ≤+<故有2l n ()[l n ()]x y x y+≥+ 所以 2l n ()d [l n ()]dD Dx yx y σσ+≥+⎰⎰⎰⎰(2)区域D 如图10-2所示.显然,当(,)x y D ∈时,有3x y +≥.图10-2从而 ln(x +y )>1 故有2l n ()[l n ()]x y x y+<+207所以 2l n ()d [l n ()]dD Dx yx y σσ+<+⎰⎰⎰⎰2. 根据二重积分性质,估计下列积分的值: (1),{(,)|02,02}I D x y x y σ==≤≤≤≤⎰⎰;(2)22sin sin d ,{(,)|0π,0π}D I x y D x y x y σ==≤≤≤≤⎰⎰; (3)2222(49)d ,{(,)|4}D I x y D x y x y σ=++=+≤⎰⎰. 解:(1)因为当(,)x y D ∈时,有02x ≤≤, 02y ≤≤因而 04xy ≤≤.从而22≤故2d D D σσσ≤≤⎰⎰⎰⎰⎰⎰即2d d DDσσσ≤≤⎰⎰⎰⎰而 d D σσ=⎰⎰ (σ为区域D 的面积),由σ=4 得8σ≤≤⎰⎰(2) 因为220sin 1,0sin 1x y ≤≤≤≤,从而220sin sin 1x y ≤≤故 220d sin sin d 1d D D D x y σσσ≤≤⎰⎰⎰⎰⎰⎰ 即220sin sin d d D D x y σσσ≤≤=⎰⎰⎰⎰ 而2πσ=所以2220sin sin d πD x y σ≤≤⎰⎰(3)因为当(,)x y D ∈时,2204x y ≤+≤所以22229494()925x y x y ≤++≤++≤故 229d (49)d 25d D D D x y σσσ≤++≤⎰⎰⎰⎰⎰⎰ 即229(49)d 25Dx y σσσ≤++≤⎰⎰208而2π24πσ=⋅=所以2236π(49)d 100πDx y σ≤++≤⎰⎰3. 根据二重积分的几何意义,确定下列积分的值: (1)222(,{(,)|};D a D x y x y a σ=+≤⎰⎰(2)222,{(,)|}.D x y x y a σ=+≤⎰⎰解:(1)(,D a σ⎰⎰在几何上表示以D 为底,以z 轴为轴,以(0,0,a )为顶点的圆锥的体积,所以31(π3Da a σ=⎰⎰ (2)σ⎰⎰在几何上表示以原点(0,0,0)为圆心,以a为半径的上半球的体积,故32π.3a σ=⎰⎰ 4.设f (x ,y )为连续函数,求2220021lim(,)d ,{(,)|()()}πDr f x y D x y x x y y r r σ→=-+-≤⎰⎰.解:因为f (x ,y )为连续函数,由二重积分的中值定理得,(,),D ξη∃∈使得2(,)d (,)π(,)Df x y f r f σξησξη=⋅=⋅⎰⎰又由于D 是以(x 0,y 0)为圆心,r 为半径的圆盘,所以当0r →时,00(,)(,),x y ξη→ 于是:0022200000(,)(,)11lim(,)d limπ(,)lim (,)ππlim (,)(,)Dr r r x y f x y r f f r r f f x y ξησξηξηξη→→→→=⋅===⎰⎰5. 画出积分区域,把(,)d D f x y σ⎰⎰化为累次积分: (1) {(,)|1,1,0}D x y x y y x y =+≤-≤≥;(2)2{(,)|2,}D x y y x x y =≥-≥209(3)2{(,)|,2,2}D x y y y x x x=≥≤≤解:(1)区域D 如图10-3所示,D 亦可表示为11,01y x y y -≤≤-≤≤.所以1101(,)d d (,)d yD y f x y y f x y x σ--=⎰⎰⎰⎰(2) 区域D 如图10-4所示,直线y =x -2与抛物线x =y 2的交点为(1,-1),(4,2),区域D 可表示为22,12y x y y ≤≤+-≤≤.图10-3 图10-4所以2221(,)d d (,)d y D yf x y y f x y x σ+-=⎰⎰⎰⎰(3)区域D 如图10-5所示,直线y =2x 与曲线2y x=的交点(1,2),与x =2的交点为(2,4),曲线2y x=与x =2的交点为(2,1),区域D 可表示为22,1 2.y x x x≤≤≤≤图10-5210所以2221(,)d d (,)d xD xf x y x f x y y σ=⎰⎰⎰⎰.6. 画出积分区域,改变累次积分的积分次序: (1) 2220d (,)d yyy f x y x⎰⎰; (2)e ln 1d (,)d xx f x y y ⎰⎰;(3) 1320d (,)d yy f x y x-⎰; (4)πsin 0sin2d (,)d xx x f x y y -⎰⎰;(5) 1233001d (,)d d (,)d yyy f x y y y f x y x -+⎰⎰⎰⎰.解:(1)相应二重保健的积分区域为D :202,2.y y x y ≤≤≤≤如图10-6所示.图10-6D 亦可表示为:04,.2xx y ≤≤≤所以2224002d (,)d d (,)d .yx yy f x y x x f x y y =⎰⎰⎰⎰(2) 相应二重积分的积分区域D :1e,0ln .x y x ≤≤≤≤如图10-7所示.图10-7D 亦可表示为:01,e e,y y x ≤≤≤≤211所以e ln 1e10ed (,)d d (,)d y xx f x y y y f x y x =⎰⎰⎰⎰(3) 相应二重积分的积分区域D为:01,32,y x y ≤≤≤≤-如图10-8所示.图10-8D 亦可看成D 1与D 2的和,其中 D 1:201,0,x y x ≤≤≤≤D 2:113,0(3).2x y x ≤≤≤≤-所以2113213(3)2001d (,)d d (,)d d (,)d yx x y f x y x x f x y y x f x y y --=+⎰⎰⎰⎰⎰.(4) 相应二重积分的积分区域D 为:0π,sinsin .2xx y x ≤≤-≤≤如图10-9所示.图10-9D 亦可看成由D 1与D 2两部分之和,其中 D 1:10,2arcsin π;y y x -≤≤-≤≤ D 2:01,arcsin πarcsin .y y x y ≤≤≤≤-所以πsin 0π1πarcsin 0sin 12arcsin 0arcsin 2d (,)d d (,)d d (,)d xyx y yx f x y y y f x y x y f x y x ----=+⎰⎰⎰⎰⎰⎰(5) 相应二重积分的积分区域D 由D 1与D 2两部分组成,其212中 D 1:01,02,y x y ≤≤≤≤D 2:13,03.y x y ≤≤≤≤-如图10-10所示.图10-10D 亦可表示为:02,3;2xx y x ≤≤≤≤- 所以()1233230012d ,d d (,)d d (,)d yyxxy f x y x y f x y x x f x y y --+=⎰⎰⎰⎰⎰⎰7.解:因为(,)Df x y d σ⎰⎰为一常数,不妨设(,)Df x y C =⎰⎰则有(,)x y f xy C =+从而有(,)()x y Df xy f uv C dudv =++⎰⎰而{}2(,)0 1.0D x y x y x =≤≤≤≤21(,)00()u x y f xy uv C dv du ⎡⎤∴=+⎰⎰+⎣⎦2120012u xy uv cv du ⎡⎤=+⎰+⎢⎥⎣⎦ 152012xy u cu du ⎡⎤=+⎰+⎢⎥⎣⎦163011123xy u cu ⎡⎤=++⎢⎥⎣⎦11123xy C =++18C ∴=故(,)18x y f xy ∴=+8. 计算下列二重积分:213(1) 221d d ,:12,;Dx x y D x y x y x≤≤≤≤⎰⎰ (2) e d d ,x yD x y ⎰⎰D由抛物线y 2 = x ,直线x =0与y =1所围;(3) d ,x y ⎰⎰D 是以O (0,0),A (1,-1),B (1,1)为顶点的三角形; (4) cos()d d ,{(,)|0π,π}D x y x y D x y x x y +=≤≤≤≤⎰⎰.解:(1)()22222231221111d d d d d d xx D x x x x x x y x y x x x x y yy ==-=-⎰⎰⎰⎰⎰⎰2421119.424x x ⎡⎤=-=⎢⎥⎣⎦(2) 积分区域D 如图10-12所示.图10-12D 可表示为:201,0.y x y ≤≤≤≤所示22110000ed d de d d e d()xx x y y yyyD xx y y x y y y==⎰⎰⎰⎰⎰⎰ 2111100ed (e 1)d e d d y x y y yy y y y y y y y ==-=-⎰⎰⎰⎰1111120000011de d e e d .22yy yy y y y y y =-=--=⎰⎰⎰ (3) 积分区域D 如图10-13所示.214图10-13D 可表示为:01,.x x y x ≤≤-≤≤所以2110d d arcsin d 2xxxx y x y x y x x --⎡==+⎢⎣⎰⎰⎰⎰⎰ 112300ππ1πd .2236x x x ==⋅=⎰ ππππ0πππ0(4)cos()d d d cos()d [sin()]d [sin(π)sin 2]d (sin sin 2)d 11.cos cos 222x Dxx y x y x x y y x y xx x x x x x x x +=+=+=+-=--⎡⎤==+⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰9. 计算下列二次积分:10112111224(1)d d ;(2)d e d d e d .yy y xxyxy x xy x y x +⎰⎰⎰⎰解:(1)因为sin d x x x⎰求不出来,故应改变积分次序。
复变函数与积分变换(修订版-复旦大学)课后的第一章习题答案
习题一1. 用复数的代数形式a +ib 表示下列复数.①解i4πππecos i sin 44-⎛⎫⎛⎫⎛⎫=-+-== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭②解:()()()()35i 17i 35i 1613i 7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解:()31i 1335=i i i 1i222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy ) ① :∵设z =x +iy 则()()()()()()()22i i i i i i x a y x a y x y ax a y z a z ax y ax a yx a y-++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222R e z a x a y z a x a y---⎛⎫= ⎪+⎝⎭++,()222Im z a xyz a x a y-⎛⎫=⎪+⎝⎭++.②解: 设z =x +iy∵()()()()()()()()323222222223223i i i 2i i 22i 33iz x y x y x y xy xy x y x x yxyy x y x y x xy x y y=+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3zxxy=-,()323Im 3zxy y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴R e 12=⎝⎭, Im 02=⎝⎭. ④解:∵()()(()2332313131i 28⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴R e 12=⎝⎭, Im 02=⎝⎭.⑤解: ∵()()1,2i 211i,k n k n k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩.∴当2n k =时,()()R e i 1kn=-,()Im i 0n=;当21n k =+时,()R e i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数①解:2i -+==2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++==()()()()()()2i 32i 2i 32i 2i 32i 47i++=+⋅+=-⋅-=-④解:1i 1i 222++==()1i 11i 222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222R e z z z w w z w wz z w z w w zwz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222zw z w z w z w z w++⋅=++⋅=+≤∴z wz w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z wzz w w-=-⋅+()22222z wz w zw++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w zz w w z w-=-⋅-=--=-⋅-⋅+()222Re zz w w=-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和. 7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--++ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e50255i θ⋅--===其中8πarctan19θ=-.②解:e i i θ⋅=其中π2θ=.π2ei i =③解:ππi i 1e e -==④解:()28π116ππ3θ-+==-.∴()2πi38π116πe--+=⋅⑤解:32π2πcos i sin 99⎛⎫+ ⎪⎝⎭解:∵32π2πcos i sin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i932π2πcos i sin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根. ⑴i 的三次根.解:()13ππ2π2πππ22cos sin cosi sin0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cos i sini 6622=+=z . 2551cosπi sin πi6622=+=-z3991cosπi sinπi 6622=+=--z⑵-1的三次根解:()()132π+π2ππcos πi sin πcosi sin0,1,233k k k ++=+=∴1ππ1cosi sin3322=+=+z2cos πi sin π1=+=-z3551cosπi sinπ3322=+=--z⑶的平方根.πi4e 22⎫=⎪⎪⎝⎭)()1π12i44ππ2π2π44e 6cos i sin 0,122k k k ⎛⎫++ ⎪=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos i sin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πi sin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z-+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1 从而211+0n z z z -+++=。
复旦大学出版社__高等数学上__第四版,答案
高等数学,(上),复旦大学出版社第四版。
第四章,一元函数积分学 习题四,答案1.0 填空题(1) I<K<J ,解析I,J,K 的积分上限,下限都一样。
由定理 在区间[a,b]上f(x)>g(x)恒成立,则>⎰⎰aba a f(x)dx g(x)dx ,在π[0,]4,cosx>sinx,=>>cosxcotx cosx sinx sinx,所以I<K<J 。
(2) =⎰⎰1f(2x)dx f(2x)d(2x)2因为-=+⎰2x (x)dx e c,所以-=+⎰24x 1(2x)dx e c 2(3) 画出x-[x]在【0,2006】的图像,就是y=x 在[0,1]上重复2006次,通过定积分的几何意义,可知其面积为(1*1)*2012/2=1006,所以-=⎰2012(x [x])dx 1006。
(4)注解====⎰⎰11100011f'(x)f''(x)dx f'(x)df'(x)f'(x)f'(x)|24f'(x),(5) ππ+===-=+⎰⎰20022022400x tant *sec t 11x tant,dx dt cos2x |44(1x )sec t2.选择题。
(1)A ,A 可导必定连续,所以极限一定存在。
B 原函数f(x)<g(x),但是导数不一定f ’(x)<g ’(x),比如f(x)=2,g(x)=3,所以B 错。
C 是微分和导数一样,D x 的正负不知道,可能x<0,这样定积分就不一定了。
(2)DA 是奇函数,周期为2π,π[0,2]变成区间ππ-[,],所以结果为0B 是奇函数,周期为2π,π[0,2]变成区间ππ-[,],所以结果为0C ππππ--==⎰1cos2xdx sin2x |02(3) A令f(x)=1,取F(X)=x+1,可以排除B,C.令f(x)=x,F(X)= 21x 2排除D. (4)D-==-=-=-⎰⎰2lnx 1lnx)lnx 12lnx xf'(x)dx xdf(x)xf(x)x *(x x x x x(6) C ,等价无穷小++→=-=-=---==+=+=++=→==+⎰⎰⎰⎰⎰⎰xxx11t 1t11x 0u x t,f(x)sin(x t)dt,f(x)sin(x t)d(x t)sinudum 1xt,g(x)xln(1xt)dt,g(x)ln(1xt)d(1xt)lnmdmf(x)sinxx 0,lim 1g(x)ln(1x)三,利用积分概念,求下列极限。
高等数学(上)课后习题参考答案
0 ,极大值
f
(e2 )
=
4 e2
2. x = 2 , x = 0 5
3.最大值为 2,最小值为 -2.
4.最小值 y x=−2 = 12
5.
x0
=
16 3
,
Smax
(16 3
)
=
151.7
3.6 函数图形的描绘
1. 水平渐近线 y = 0 .
区间 (0,1), (1, 2), (2,3) 内.
3.提示:利用反证法.
1、(1) arctan x ~ x ;
4、-1 6、0
7、2 x 8、3
(2) a = e 时等价; a ≠ e 时同阶;
(3) 同阶; (4) 同阶.
9、(1) a ; (2) 2 e n
(3) 3 abc 10、0
2、(1) n = 6 ; (2) n = 1; (3) m = 1 ,n = 2 . 2
2
分别补充定义 1,0;
2.1 导数概念 1、(1)-20 (2)1
2、(1) f ′(0) (2) − f ′(x0 ) (3) 2 f ′(x0 )
x = kπ(k ≠ 0)为第二类无穷;
(3) x = 0 第二类无穷. 3、(− ∞,− 2),(− 2,1),(1,+ ∞)
f(x)⎯⎯x→⎯−2→ − 1,f(x)⎯⎯x⎯→1→ ∞. 3
高等数学作业答案(14-15-1)
第一章 函数、极限与连续 1.1 映射与函数
(2)
例:
f
(x)
=
⎧1 ⎨⎩−1
x > 0, x≤0
1.(1) f(x)与 h(x)相同;
g(x)与 f(x),h(x)不同.
复旦大学出版社,高等数学,第四版,教材习题答案详细解析
高等数学上(复旦大学出版社,第四版)教材习题答案第四章,一元函数积分学。
第三节 不定积分与原函数求法,习题4-3,答案5.0 用分部积分,求下列不定积分。
东风冷雪1.0=-=--=--=-+-=-+++⎰⎰⎰⎰⎰222222x sinxdxx dcosx (x cosx 2xcosxdx)(x cosx 2xdsinx)x cosx 2xsinx 2sinxdx x cosx 2xsinx 2cosx c2.0------=-=--=--+⎰⎰⎰x x x x x x xe dx xde (xe e dx)xe e c3.0==-=-+⎰⎰⎰22222111ln xdx (x ln x x *dx)22x11x ln x x c 24x ln xdx4.0==-++-=-+=--+=-+++⎰⎰⎰⎰23332232322322x arctanxdx111x arctanxdx x arctanx 3331x 11x(1x )x x arctanx dx 331x 1111x arctanx (x ln |1x |)3322111x arctanx x ln |1x |c 3665.0=+=-=-+⎰2arccosxdxx *arccosx x *arccosx x *arccosx c6.0=-=-=--=+-=+-+⎰⎰⎰⎰⎰222222x tan xdx1x(sec x 1)dx xdtanx x 21dcos x 1x tanx tanxdx x x tanx x 2cos x 21x tanx ln |cos x |x c 2 7.0------------==-=--=-=-+⎰⎰⎰⎰⎰⎰x x x x x x x x x x x x e cos xdxe dsinx e sinx e dcos xe sinx e cos x cos xe dx2e cos xdx e sinx e cos x1e cos xdx e (sinx cos x)c 28.0==-=--=-++⎰⎰⎰⎰xsinxcosxdx11xsin2xdx xdcos2x 24111(xcos2x cos2xdx)xcos2x sin2x c 4489.0=-=--=-+=--+=---=---+=-++++⎰⎰⎰⎰⎰⎰⎰323233223232232232(lnx)dxx 1ln x 3ln x ln x 1ln xd ()(3ln xd )x x x x xln x 3ln x 6lnx ln x 3ln x 1dx 6lnxd x x x x x xln x 3ln x 6lnx 6dx x x x x 1(ln x 3ln x 6lnx 6)c x10.0===-=--=++-=+++=+=++⎰⎰⎰⎰⎰222222222atant,a sec tdtant a sec t tant a tan tsec tdta (sec t tant (sec t 1)sec tdta (sec t tant ln |sec t tant |sec tdtant)1a (sec t tant ln |sec t tant |)21x x a (*ln ||2a a a 1ln |x 2+|c6.0 求下列不定积分;1.0++-+=+++-+-+-+-+++=+==-=+=-++-+-+=-+++⎰⎰⎰222222222222x 1dx(x 1)(x 1)x 1a b c x 1x 1(x 1)(x 1)(x 1)a(x 1)b(x 1)c(x 2x 1)x 111a ,b 1,c 2211x 1122dx ()dx x 1x 1(x 1)(x 1)(x 1)11ln |x 1|c 2x 12.0++=+++-+-+-++++===-=-==-++-+-+--=+--+=+--++-+=+⎰⎰⎰⎰⎰3222222223dx x 13a bx c x 1(x 1)(x x 1)x x 1a(x x 1)(bx c)(x 1)3a 1,b 1,c 23dx 1x 2dx ()dx x 1(x 1)(x x 1)x x 112x 13ln |x 1|2x x 1131ln |x 1|ln |x x 1|1322(x )24ln |+2c3.0 (这道题,有些坑人,没有意思)+--+-+-++-=----=++++---=+++-+-+-=++-+-+-=-+++-==-=-⎰⎰⎰⎰5423332332233323222x x 8x (x x)x(x x)x x x x 8dx dx x x x x 123x x 33(x x 1)dx x x x x 23x 1113x x x ln |x x |dx 323x(x 1)(x 1)23x a b c 3x(x 1)(x 1)x x 1x 123x a(x 1)b(x x)c(x x)323101a ,b ,c 33-=---+-+=---++++-+---+=---++--=+++--⎰⎰⎰543323323x 12310133dx ()x(x 1)(x 1)3x x 1x 1231013ln |x |ln |x 1|ln |x 1|3331(ln |x |ln |x 1|ln |x 1|23ln |x |10ln |x 1|13ln |x 1|31ln(24ln |x |9ln |x 1|12ln |x 1|)3x x 8dxx x 11x x x 8ln |x |3ln |x 1|32-++4ln |x 1|c 4.0+==++⎰⎰263332x dxx 11dx 1arctanx c 33(x )15.0+-==-=--=-++⎰⎰⎰⎰222sinx dx1sinx sinx(1sinx)dx (tanxsecx tan x)dx cos xsecx (sec x 1)dx secx tanx x c6.0++==+--+==+-++++++-==-=-=-+⎰⎰⎰⎰⎰222222222cot x dxsinx cos x 1x 2t tan ,dx dt 21t 1t 21t 1t 22t *dt **dt 2t 22t 2t 1t 1t 1t 11t 1t 11t 1111()dt (1)dt lnt t 2t 2t 221x 1x ln |tan |tan c 22227.0=====+=++⎰⎰⎰2sect 2sec t tant dt 2sectdt sect tant 2ln |sect tant |2ln ||c8.0==-===-=-+=-+++=-+++⎰⎰⎰(1t,2tdt12(1)2t2ln|1t|2ln|1t11tx4ln|1|c记住口诀,反,对,幂,指,三。
高等数学上_复旦大学出版_习题一答案
(2) y =ln( x +2) + 1; (4) y =1 +cos 3 x , x ∈ [0, π].
1− x 1− y 解得 x = , 1+ x 1+ y
所以函数 y =
1− x 1− x 的反函数为 y = ( x ≠ −1) . 1+ x 1+ x
(2)由 y = ln( x + 2) + 1得 x = e y −1 − 2 , 所以,函数 y = ln( x + 2) + 1的反函数为 y = e x −1 − 2
1 x .即函数 y = 有上界. 2 1 + x2
x 为奇函数,所以函数的图形关于原点对称 ,由对称性及函数有上界知 ,函数必有下界 ,因而 1 + x2
4
高等数学上(复大版)习题一
x 函数 y = 有界. 1+ x2
又由 y1 − y2 =
x1 x ( x − x )(1 − x1 x2 ) 知,当 x1 > x2 且 x1 x2 < 1 时, y1 > y2 ,而 − 2 2 = 1 22 2 2 1 + x1 1 + x2 (1 + x1 )(1 + x2 )
1
高等数学上(复大版)习题一
综上所述 , f 是单射 .,但不是满射 . 5. 下列函数是否相等 ,为什么 ?
(1) f ( x) = x 2 , g ( x) = x ; (3) f ( x ) =
解: (1)相等 .
(2) y = sin 2 (3 x + 1), u = sin 2 (3 t + 1);
13. 判断下列函数的奇偶性 :
最新版高等数学课后习题标准答案(复旦大学出版社)(李开复编)
高等数学(上)第一章 函数与极限1. 设⎪⎩⎪⎨⎧≥<=3||,03|||,sin |)(ππϕx x x x ,求).2(446ϕπϕπϕπϕ、、、⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛6sin )6(ππϕ=21= 224sin )4(==ππϕ()0222)4sin()4(==-=-ϕππϕ2. 设()x f 的定义域为[]1,0,问:⑴()2x f ;⑵()x f s i n ; ⑶()()0>+a a x f ; ⑷()()a x f a x f -++()0>a 的定义域是什么?(1)][;,-的定义域为所以知-11)(,111022x f x x ≤≤≤≤ []ππππ)12(,2)(sin ),()12(21sin 0)2(+∈+≤≤≤≤k k x f Z k k x k x 的定义域为所以知由][a a a x f ax a a x -+-≤≤≤+≤1,)(110)3(-的定义域为所以知-由][φ时,定义域为当时,定义域为当从而得-知由211,210111010)4(>-≤<⎩⎨⎧+≤≤-≤≤⎩⎨⎧≤-≤≤+≤a a a a a x a a x a a x a x3. 设()⎪⎩⎪⎨⎧>-=<=111011x x x x f ,()xe x g =,求()[]x gf 和()[]x fg ,并做出这两个函数的图形。
⎪⎪⎩⎪⎪⎨⎧>=<==⎪⎩⎪⎨⎧>-=<=⎪⎩⎪⎨⎧>-=<=-1,1,11,)]([.)20,10,00,1)]([1)(,11)(,01)(,1)]([.)11)(x e x x e e x f g x x x x g f x g x g x g x g f x f 从而得4.设数列{}nx 有界,又,0lim =∞→nn y证明:.0lim =∞→n n n y x{}结论成立。
从而时,有,当自然数即又有对有界,∴=<=-<>∃>∀=≤∀>∃∴∞→ ..0)(,0,0lim ,,0εεεεMM y x y x My N n N y Mx n M x n n n n n n n n n5. 根据函数的定义证明: ⑴()813lim 3=-→x x8)13(lim 813303,033,33813,03=-<--<-<>∀<-<-=-->∀→x x x x x x x 所以成立时,恒有,当=取故即可。
概率论与数理统计复旦大学出版社第一章课后答案
概率论与数理统计习题及答案第一章1.略.见教材习题参考答案.2.设A ,B ,C 为三个事件,试用A ,B ,C 的运算关系式表示以下事件: 〔1〕 A 发生,B ,C 都不发生;〔2〕 A ,B ,C 都发生;〔3〕 A ,B ,C 至少有一个发生;〔4〕 A ,B ,C 都不发生;〔5〕 A ,B ,C 不都发生;〔6〕 A ,B ,C 至多有1个不发生;【解】〔1〕 ABC 〔2〕 ABC〔3〕A B C (4) ABC =A B C (5) ABC(6) ABC ∪ABC ∪ABC ∪ABC =ABBC AC 3.略.见教材习题参考答案4.设A ,B 为随机事件,且P 〔A 〕=0.7,P (A -B )=0.3,求P 〔AB 〕.【解】 P 〔AB 〕=1-P 〔AB 〕=1-[P (A )-P (A -B )]=1-[0.7-0.3]=0.65.设A ,B 是两事件,且P 〔A 〕=0.6,P (B )=0.7,求:〔1〕 在什么条件下P 〔AB 〕取到最大值?〔2〕 在什么条件下P 〔AB 〕取到最小值?【解】〔1〕 当AB =A 时,()()0.6P AB P A ==,()P AB 取到最大值为0.6.〔2〕 当A ∪B =Ω时,()()()()0.3P AB P A P B P A B =+-=,()P AB 取到最小值为0.3.6.设A ,B ,C 为三事件,且P 〔A 〕=P 〔B 〕=1/4,P 〔C 〕=1/3且P 〔AB 〕=P 〔BC 〕=0,P 〔AC 〕=1/12,求A ,B ,C 至少有一事件发生的概率.【解】 因为P 〔AB 〕=P 〔BC 〕=0,所以P (ABC )=0,由加法公式可得()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC =++---+=14+14+13-112=347.从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】 设A 表示“取出的13张牌中有5张黑桃,3张红心,3张方块,2张梅花”,则样本空间Ω中样本点总数为 1352n C =, A 中所含样本点 533213131313k C C C C =,所求概率为 5332131313131352()=C C C C /C P A 8.对一个五人学习小组考虑生日问题:〔1〕 求五个人的生日都在星期日的概率; 〔2〕 求五个人的生日都不在星期日的概率; 〔3〕 求五个人的生日不都在星期日的概率.【解】〔1〕 设A 1={五个人的生日都在星期日},基本领件总数为75,有利事件仅1个,故 P 〔A 1〕=517=〔17〕5 〔亦可用独立性求解,下同〕 〔2〕 设A 2={五个人生日都不在星期日},有利事件数为65,故P 〔A 2〕=5567=(67)5 (3) 设A 3={五个人的生日不都在星期日} P 〔A 3〕=1-P (A 1)=1-(17)5 9.略.见教材习题参考答案.10.一批产品共N 件,其中M 件正品.从中随机地取出n 件〔n <N 〕.试求其中恰有m 件〔m ≤M 〕正品〔记为A 〕的概率.如果:〔1〕 n 件是同时取出的;〔2〕 n 件是无放回逐件取出的;〔3〕 n 件是有放回逐件取出的.【解】〔1〕n 件是同时取出, 样本空间Ω中样本点总数为C nN ,A 中所含样本点 m n m M N M k C C --=,所求概率为 ;()=C C /C mn m n M N M N P A --(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有n N A 种,n 次抽取中有m次为正品的组合数为C mn 种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有m M A 种,从N -M 件次品中取n -m 件的排列数为n m N M A --种,故C ()mm n m n M N M n NA A P A A --= 由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成C C ()C m n m MN M n NP A --=可以看出,用第二种方法简便得多.〔3〕 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为n N 种,n次抽取中有m 次为正品的组合数为C m n 种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有mM 种取法,n -m 次取得次品,每次都有N -M 种取法,共有()n m N M --种取法,故()C ()/m m n m n n P A M N M N -=- 此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为M N ,则取得m 件正品的概率为 ()C 1m n m mn M M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭11.略.见教材习题参考答案.12. 50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱.每个部件用3只铆钉.假设将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少?【解】设A ={发生一个部件强度太弱},样本空间Ω中样本点总数为350C ,A 中所含样本点 13103k C C =,因此,所求概率为 133103501()C C /C 1960P A == 13.一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率.【解】 设A i ={恰有i 个白球}〔i =2,3〕,显然A 2与A 3互不相容. 样本空间Ω中样本点总数为37n=C , 2A 中所含样本点数为 2143C C ,3A中所含样本点数为 34C ,213434233377C C C 184(),()C 35C 35P A P A ==== 故 所求概率为 232322()()()35P A A P A P A =+=14.有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求:〔1〕 两粒都发芽的概率;〔2〕 至少有一粒发芽的概率;〔3〕 恰有一粒发芽的概率.【解】设A i ={第i 批种子中的一粒发芽},〔i =1,2〕注意到12,A A 相互独立,所求概率为(1) 1212()()()0.70.80.56P A A P A P A ==⨯=(2) 12()0.70.80.70.80.94P A A =+-⨯= (3) 2112()0.80.30.20.70.38P A A A A =⨯+⨯= 15.掷一枚均匀硬币直到出现3次正面才停止. 〔1〕 问正好在第6次停止的概率;〔2〕 问正好在第6次停止的情况下,第5次也是出现正面的概率.【解】〔1〕 设A 表示“正好在第6次停止”,B 表示“第5次出现正面”,事件A 发生意味着“前5次中恰好出现两次正面,且第六次出现正面”,事件AB 发生意味着“前4次中恰好出现1次正面,且第五、六次出现正面”,由伯努利概型公式可知,所求概率为〔1〕22351115()()()22232P A C == (2) 1341111C ()()()22222()()5/325P AB P B A P A === 16.甲、乙两个篮球运发动,投篮命中率分别为0.7及0.6,每人各投了3次,求二人进球数相等的概率.【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,三次投篮可以看做是3重伯努利试验,由伯努利概型公式可知,所求概率为3331212330()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯=0.3207617.从5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率.【解】 设A 表示“4只鞋子中至少有两只鞋子配成一双”,从5双不同的鞋子中任取4只,取法总数为410C ,A 表示“4只鞋子中没有配对的鞋子”,A 中所含基本领件数为4111152222C C C C C , 所求概率为4111152222410C C C C C 13()1()1C 21P A P A =-=-= 18.某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:〔1〕 在下雨条件下下雪的概率;〔2〕 这天下雨或下雪的概率.【解】 设A ={下雨},B ={下雪}.〔1〕 ()0.1()0.2()0.5P AB P B A P A === 〔2〕 ()()()()0.30.50.10.7P A B P A P B P AB =+-=+-=19.已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率〔小孩为男为女是等可能的〕.【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故()6/86()()7/87P AB P B A P A === 或在缩减样本空间中求,此时样本点总数为7. 6()7P B A =20.已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率〔假设男人和女人各占人数的一半〕.【解】 设A ={此人是男人}, B ={此人是色盲},则A ={此人是女人},显然A ,A 是样本空间的一个划分,且1()()2P A P A ==,由贝叶斯公式得 ()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.50.05200.50.050.50.002521⨯==⨯+⨯ 21.两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图 题22图 【解】设两人到达时刻分别,x y 为,则060,060x y ≤≤≤≤,可知样本空间是“边长为60 的正方形区域”,设A 表示 “一人要等另一人半小时以上”,等价于30x y ->,如图阴影 部分所示.由几何概型的概率公式可得22301()604P A == 22.从〔0,1〕中随机地取两个数,求:〔1〕 两个数之和小于65的概率; 〔2〕 两个数之积小于14的概率. 【解】设两数分别,x y 为,则01,01x y <<<<,可知样本空间是“边长为1的正方形 区域”. (1)设A 表示 “两个数之和小于65”,等价于56x y +<,如图阴影部分所示. 由几何概型的概率公式可得 14417255()10.68125P A =-== (2) 设B 表示 “两个数之积小于14”,等价于14xy <,如图阴影部分所示. 由几何概型的概率公式可得11114411()1d d ln 242x P B x y ⎛⎫=-=+ ⎪⎝⎭⎰⎰ 23.设P 〔A 〕=0.3,P (B )=0.4,P (A B )=0.5,求P 〔B |A ∪B 〕【解】 ()()()()()()()()P AB P A P AB P B A B P A B P A P B P AB -==+- 0.70.510.70.60.54-==+- 24.在一个盒中装有15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新 球}。
上海兰生复旦必修第一册第一单元《集合与常用逻辑用语》测试(答案解析)
一、选择题1.下列命题中:①命题“若1l :210ax y +-=与2l :0x y -=垂直,则2a =”的逆否命题;②命题“若1a ≠,则210a -≠”的否命题;③命题“存在0ω<,函数()sin y x ωϕ=+不存在最小正周期”的否定.其中真命题的个数为( )A .0个B .1个C .2个D .3个2.若a 、b 是两个单位向量,其夹角是θ,则“32ππθ<<”是“1a b ->”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知命题“x R ∀∈,2410ax x +-<”是假命题,则实数a 的取值范围是( ) A .(),4-∞-B .(),4-∞C .[)4,-+∞D .[)4,+∞4.设a R ∈,则“1a =”是“直线1:20l ax y +=与直线()2140+++=:l x a y 平行”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.设a ,b 都是不等于1的正数,则“log 3log 31a b >>”是“33a b <”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件6.已知集合A ={x |x 2-4|x |≤0},B ={x |x >0},则A ∩B =( )A .(]0,4B .[]0,4C .[]0,2D .(]0,2 7.已知集合{}{}2|13,|4,P x R x Q x R x =∈≤≤=∈≥ 则()R P Q ⋃=A .[2,3]B .( -2,3 ]C .[1,2)D .(,2][1,)-∞-⋃+∞8.以下有关命题的说法错误的是( )A .命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠”B .“1x =”是“2320x x -+=”的充分不必要条件C .命题“在ABC 中,若A B >,则sin sin A B >”的逆命题为假命题D .对于命题p :存在x ∈R ,使得210x x +-<,则p ⌝:任意x ∈R ,则210x x +-≥9.下列命题错误的是( )A .命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠ ,则2320x x -+≠”B .若p q ∧为假命题,则,p q 均为假命题C .对于命题p :x ∃∈R ,使得210x x ++<,则p ⌝:x ∀∈R ,均有210x x ++≥D .“2x >”是“2320x x -+>”的充分不必要条件10.设a 、b 是实数,则“0a >,0b >”是“2b aa b+≥”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件11.对于()11,2x ∀∈,()21,2x ∃∈,使得211212485211x x mx m x x -+-+=--,则实数m 的取值范围是( ) A .[]0,2 B .(],2-∞ C .()0,2D .(),2-∞12.已知命题P :∃0x R ∈,20010x x -+≥;命题Q :若a <b ,则1a >1b,则下列为真命题的是( ) A .P Q ∧B .P Q ⌝∧C .P Q ⌝∧D .P Q ⌝⌝∧二、填空题13.若“条件α:24x ≤≤”是“条件β:31m x m -≤≤-”的充分条件,则m 的取值范围是________.14.已知集合{}2,M y y x x R ==∈,221,4y N y x x R ⎧⎫⎪⎪=+=∈⎨⎬⎪⎪⎩⎭,则MN =__________.15.已知数集{}{},,,1,2,3,4a b c d =,且有下列说法:①1a =;②2>c ;③4d ≠,则满足(),,,a b c d 的数值有________组. 16.已知命题31:01x p A xx ⎧⎫-=≤⎨⎬-⎩⎭,命题{}2:30q B x x mx =--+>.若命题q 是p 的必要不充分条件,则m 的取值范围是____; 17.己知全集U =R ,集合,,则___________18.已知命题q :2,10.x R x mx ∀∈++>是真命题,则实数m 的取值范围为__________ 19.对任意的x ∈R ,函数()327f x x ax ax =++不存在极值点的充要条件是__________.20.下列有关命题的说法正确的是__________________.①命题“若x 2-3x +2=0,则x =1”的逆否命题为:若x ≠1,则x 2-3x +2≠0 ②x =1是x 2-3x +2=0的充分不必要条件 ③若p ∧q 为假命题,则p ,q 均为假命题④对于命题p :∃x ∈R ,使得x 2+x +1<0,则非p :∀x ∈R , 均有x 2+x +1≥0三、解答题21.设m R ∈,命题2:043p x x <-<,命题:(1)(3)0q x m x m -+--<. (1)若p 为真命题,求实数x 的取值范围;(2)若p 是q 的充分不必要条件,求实数m 的取值范围. 22.设全集为R ,集合A ={x |3≤x <6},B ={x |2<x <9}. (1)分别求A ∩B ,(∁R B )∪A ;(2)已知C ={x |a <x <a +1},若C ⊆B ,求实数a 的取值构成的集合. 23.在“①AB B =,②RB A ⊆,③A B =∅”这三个条件中任选一个,补充在下面横线上,求解下列问题.问题:已知集合{}24120A x x x =-++>,集合{5}B x m x m =<<+.(1)若2m =,求AB ,()R A B ;(2)若______,求m 的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.24.已知命题:p 实数t 满足22540t at a -+<,:q 实数t 满足曲线22126x y tt+=--为双曲线.(1)若1a =,且p ⌝为假,求实数t 的取值范围;(2)若0a >,且q 是p 的充分不必要条件,求实数a 的取值范围. 25.已知非空集合(){}2230A x x a a x a =-++<,集合211xB xx ⎧⎫=<⎨⎬-⎩⎭,命题:p x A ∈.命题:q x B ∈.(1)若p 是q 的充分不必要条件,求实数a 的取值范围; (2)当实数a 为何值时,p 是q 的充要条件.26.(1)已知直线:3420l x y+=-,求与直线l 平行且到直线l 距离为2的直线方程;(2)若关于x 的不等式2(1)0x a x a -++<的解集是[0,1)的子集,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据原命题和逆否命题同真假来判断①是真命题,根据定义写出命题的否命题和命题的否定,再判断②③的真假即可.①中,若1l :210ax y +-=与2l :0x y -=垂直,则()1210a ⨯+⨯-=,则2a =.故该命题是真命题,其逆否命题也是真命题;②中,命题“若1a ≠,则210a -≠”的否命题是:“若1a =,则210a -=”,易见若1a =,则21a =,则210a -=,故“若1a =,则210a -=”是真命题;③中,命题“存在0ω<,函数()sin y x ωϕ=+不存在最小正周期”的否定是“对任意的0ω<,函数()sin y x ωϕ=+存在最小正周期”, 对任意的0ω<,函数()sin y x ωϕ=+存在最小正周期2T πω=,故命题“存在0ω<,函数()sin y x ωϕ=+不存在最小正周期”的否定是真命题.故①②③均为真命题. 故选:D. 【点睛】 思路点睛:一般互为逆否的两个命题判断真假时,可以选择容易的进行判断,则另一个就同真假.2.A解析:A 【分析】求出1a b ->时θ的范围,然后由充分必要条件的定义判断. 【详解】由题意222()222cos a b a b a a b b -=-=-⋅+=-1>,则1cos 2θ<,∴,3πθπ⎛⎤∈ ⎥⎝⎦, 因此32ππθ<<时,满足,3πθπ⎛⎤∈⎥⎝⎦,但,3πθπ⎛⎤∈ ⎥⎝⎦时不一定满足32ππθ<<.应为充分不必要条件. 故选:A . 【点睛】本题考查充分必要条件的判断,实际上可以根据充分必要条件与集合包含之间的关系判断.命题p 对应集合A ,命题q 对应的集合B ,则(1)p 是q 的充分条件⇔A B ⊆; (2)p 是q 的必要条件⇔A B ⊇;(3)p 是q 的充分必要条件⇔A B =;(4)p 是q 的既不充分又不必要条件⇔集合,A B 之间没有包含关系.3.C【分析】由题意可知,命题“x R ∃∈,2410ax x +-≥”是真命题,分0x =和0x ≠两种情况讨论,结合参变量分离法可求得实数a 的取值范围. 【详解】由题意可知,命题“x R ∃∈,2410ax x +-≥”是真命题. 当0x =时,则有10-≥,不合乎题意;当0x ≠时,由2410ax x +-≥,可得214ax x ≥-,则有221414x a x x x-≥=-, 22141244x x x ⎛⎫-=--≥- ⎪⎝⎭,当且仅当12x =时,等号成立, 所以,4a ≥-.综上所述,实数a 的取值范围是[)4,-+∞. 故选:C. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.4.A解析:A 【分析】计算直线平行等价于1a =或2a =-,根据范围大小关系得到答案. 【详解】直线1:20l ax y +=与直线()2140+++=:l x a y 平行,则()12a a +=,1a =或2a =-,验证均不重合,满足.故“1a =”是“直线1:20l ax y +=与直线()2140+++=:l x a y 平行”的充分不必要条件. 故选:A. 【点睛】本题考查了充分不必要条件,意在考查学生的计算能力和推断能力.5.B解析:B 【分析】由已知结合对数不等式的性质可得13a b <<<,得到33a b <;反之,由33a b <,不一定有log 3log 31a b >>成立,再由充分必要条件的判定得答案. 【详解】解:a ,b 都是不等于1的正数,由log 3log 31a b >>,得13a b <<<,33a b ∴<;反之,由33a b <,得a b <,若01a <<,1b >,则log 30a <,故log 3log 31a b >>不成立.∴ “log 3log 31a b >>”是“33a b <”的充分不必要条件.故选:B . 【点睛】本题考查指数不等式与对数不等式的性质,考查充分必要条件的判定方法,是基础题.6.A解析:A 【分析】先求出集合A ,然后进行交集的运算即可. 【详解】 A={x|-4≤x≤4}; ∴A∩B=(0,4]. 故选A . 【点睛】本题主要考查了集合描述法、区间的定义,一元二次不等式的解法,以及交集的运算,属于中档题.7.B解析:B 【解析】有由题意可得:{}|22R C Q x x =-<< , 则()RP Q ⋃= ( -2,3 ] .本题选择B 选项.8.C解析:C 【分析】根据逆否命题的概念,可判定A 是正确的;由方程2320x x -+=,解得1x =或2x =,可判定B 是正确的;根据正弦定理,可判定C 不正确;根据存在性命题与全称命题的关系,可判定D 是正确的. 【详解】A 中,根据逆否命题的概念,可得命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠”,所以A 是正确的;B 中,由方程2320x x -+=,解得1x =或2x =,所以“1x =”是“2320x x -+=”的充分不必要条件,所以B 是正确的;C 中,在ABC 中,由sin sin A B >,根据正弦定理可得a b >,所以A B >,所以命题“在ABC 中,若A B >,则sin sin A B >”的逆命题为真命题,所以C 不正确;D 中,根据存在性命题与全称命题的关系,可得命题p :存在x ∈R ,使得210x x +-<,则p ⌝:任意x ∈R ,则210x x +-≥,所以D 是正确的.故选:C. 【点睛】本题主要考查了命题的真假判定,四种命题的关系,充分条件与必要条件的判定,以及全称命题与存在性命题的关系等知识点的应用,属于基础题.9.B解析:B 【分析】由原命题与逆否命题的关系即可判断A ;由复合命题的真值表即可判断B ; 由特称命题的否定是全称命题即可判断C ;根据充分必要条件的定义即可判断D ;. 【详解】A .命题:“若p 则q ”的逆否命题为:“若¬q 则¬p ”,故A 正确;B .若p ∧q 为假命题,则p ,q 中至少有一个为假命题,故B 错.C .由含有一个量词的命题的否定形式得,命题p :∃x ∈R ,使得x 2+x +1<0,则¬p 为:∀x ∈R ,均有x 2+x +1≥0,故C 正确;D .由x 2﹣3x +2>0解得,x >2或x <1,故x >2可推出x 2﹣3x +2>0,但x 2﹣3x +2>0推不出x >2,故“x >2”是“x 2﹣3x +2>0”的充分不必要条件,即D 正确 故选B . 【点睛】本题考查简易逻辑的基础知识:四种命题及关系,充分必要条件的定义,复合命题的真假和含有一个量词的命题的否定,这里要区别否命题的形式,本题是一道基础题.10.A解析:A 【分析】由2b aa b +≥可推导出0ab >,再利用充分条件、必要条件的定义判断可得出结论. 【详解】由2b a a b +≥可得()22222022a b b a a b ab a b ab ab-+-+-==≥,()20a b -≥,则0ab >,则“0a >,0b >”⇒“0ab >”,但“0ab >”⇒“0a >,0b >”.所以,“0a >,0b >”是“2b aa b+≥”的充分不必要条件. 故选:A. 【点睛】本题考查充分不必要条件的判断,考查推理能力,属于中等题.11.D解析:D 【分析】设(1,2)x ∈时,2485()1x x f x x -+=-的值域A ,2()1mx m g x x -+=-的值域B ,只要A B ⊆即可满足题意.【详解】设2485()1x x f x x -+=-((1,2)x ∈),24(1)11()4(1)11x f x x x x -+==-+--, 设1t x =-,则1()4f x y t t ==+,则(0,1)x ∈,由勾形函数性质知当102t <<时,y 递减,当112t <<时,y 递增, min 1144122y =⨯+=,[4,)y ∈+∞,即()f x 值域为[4,)+∞, 2()1mx m g x x -+=-((1,2)x ∈),设1x t -=,(0,1)t ∈,则2()g x y m t==+,(0,1)t ∈时,2y m t=+是减函数,(2,)y m ∈++∞,即()(2,)g x m ∈++∞, 对于()11,2x ∀∈,()21,2x ∃∈,使得211212485211x x mx m x x -+-+=--,则24m +<,2m <.故选:D . 【点睛】本题考查含有存在题词与全称题词的命题恒成立问题,解题关键是把问题转化为集合之间的包含关系.12.B解析:B 【分析】判断命题P 为真命题,命题Q 为假命题,再依次判断每个选项得到答案. 【详解】取00x =,则200110x x -+=≥,故命题P 为真命题;取2a =-,1b =,满足a b <,但是11a b<,故命题Q 为假命题. 故P Q ∧为假命题,P Q ⌝∧为真命题,P Q ⌝∧为假命题,P Q ⌝⌝∧为假命题.故选:B. 【点睛】本题考查了命题的真假判断,命题的否定,且命题,意在考查学生的计算能力和推断能力.二、填空题13.【分析】利用充分必要条件的定义问题转化为集合的包含关系根据不等式之间的关系即可得到结论【详解】设p 对应的集合为q 对应的集合为若p 是q 的充分条件则解得:实数m 的取值范围为故答案为【点睛】本题主要考查充 解析:(],4-∞-【分析】利用充分、必要条件的定义,问题转化为集合的包含关系,根据不等式之间的关系即可得到结论. 【详解】设p 对应的集合为A=[2,4),q 对应的集合为B=[3m-1,-m], 若p 是q 的充分条件, 则A B ⊆,313124m m m m -≥-⎧⎪∴-≤⎨⎪-≥⎩, 1414m m m ⎧≤⎪⎪≤⎨⎪≤-⎪⎩, 解得:4m ≤-.实数m 的取值范围为(,4]-∞-,故答案为(,4]-∞-. 【点睛】本题主要考查充分条件和必要条件的应用,以及转化思想的应用,属于中档题.14.【分析】根据函数的值域以及椭圆的性质求得集合再根据集合的运算即可求解【详解】由题意集合所以【点睛】本题主要考查了集合的运算其中解答中根据函数的值域以及椭圆的性质求得集合是解答的关键着重考查了推理与运 解析:[]0,2【分析】根据函数的值域,以及椭圆的性质求得集合,M N ,再根据集合的运算,即可求解. 【详解】由题意,集合{}2,{|0}M y y x x R y y ==∈=≥,221,{|22}4y N y x x R y y ⎧⎫⎪⎪=+=∈=-≤≤⎨⎬⎪⎪⎩⎭,所以{|02}[0,2]M N y y =≤≤=.【点睛】本题主要考查了集合的运算,其中解答中根据函数的值域,以及椭圆的性质求得集合,M N 是解答的关键,着重考查了推理与运算能力,属于基础题.15.【分析】列举出符合条件的数组即可【详解】则的取值可以是或①时即数组为;②时则或即数组为和因此符合题中条件的数组有组故答案为:【点睛】本题主要考查集合相等的应用根据条件进行分类讨论是解本题的关键考查分 解析:3【分析】列举出符合条件的数组(),,,a b c d 即可. 【详解】1a =,2>c ,4d ≠,则c 的取值可以是3或4.①3c =时,4b =,2d =,即数组为()1,4,3,2;②4c =时,则2b =,3d =或3b =,2d =,即数组为()1,2,4,3和()1,3,4,2. 因此,符合题中条件的数组(),,,a b c d 有3组,故答案为:3. 【点睛】本题主要考查集合相等的应用,根据条件进行分类讨论是解本题的关键,考查分类讨论数学思想,属于中等题.16.【分析】求得命题又由命题是的必要不充分条件所以是的真子集得出不等式组即可求解得到答案【详解】由题意命题命题又由命题是的必要不充分条件所以是的真子集设则满足解得经验证当适合题意所以的取值范围是【点睛】 解析:(],2-∞【分析】求得命题1:{|1}3p A x x =≤<,又由命题q 是p 的必要不充分条件,所以A 是B 的真子集,得出不等式组1()03(1)0f f ⎧>⎪⎨⎪≥⎩,即可求解,得到答案.【详解】由题意,命题311:0{|1}13x p A x x x x ⎧⎫-=≤=≤<⎨⎬-⎩⎭,命题{}2:30q B x x mx =--+>.又由命题q 是p 的必要不充分条件,所以A 是B 的真子集,设()23f x x mx =--+,则满足2111()()30333(1)130f m f m ⎧=--+>⎪⎨⎪=--+≥⎩,解得2m ≤, 经验证当2m =适合题意,所以m 的取值范围是(],2-∞.【点睛】本题主要考查了分式不等式的求解,以及利用充要条件求解参数问题,其中解答中正确求解集合A ,再根集合的包含关系求解是解答的关键,着重考查了推理与运算能力,属于基础题.17.【解析】试题分析:本题首先求出集合AB 再求它们的运算这两个集合都是不等式的解集故解得因此考点:集合的运算解析:【解析】试题分析:本题首先求出集合A ,B ,再求它们的运算,这两个集合都是不等式的解集,故解得{|31}A x x x =-或,{|02}B x x =<≤,因此()(0,1]U A B ⋂=.考点:集合的运算. 18.【解析】【分析】因为命题:是真命题可得即可求得答案【详解】命题:是真命题解得则实数的取值范围为故答案为【点睛】这是一道关于命题的真假判断与应用的题目关键是根据已知命题为真命题构造关于的不等式是解题的 解析:[2,2]-【解析】【分析】因为命题q :210x R x mx ∀∈++>,,是真命题,可得240m =-<即可求得答案【详解】命题q :210x R x mx ∀∈++>,,是真命题 240m ∴=-<,解得22m -<<则实数m 的取值范围为()22-,故答案为()22-,【点睛】这是一道关于命题的真假判断与应用的题目,关键是根据已知命题为真命题,构造关于m 的不等式是解题的关键19.【分析】求出导数可得出从而可求解出实数的取值范围【详解】由于函数在上不存在极值点则即解得因此函数不存在极值点的充要条件是故答案为:【点睛】本题考查利用函数极值点求参数解题时理解函数的极值点与导数零点 解析:021a ≤≤【分析】求出导数()2327f x x ax a '=++,可得出0∆≤,从而可求解出实数a 的取值范围. 【详解】()327f x x ax ax =++,()2327f x x ax a '∴=++,由于函数()y f x =在R 上不存在极值点,则24840a a ∆=-≤,即2210a a -≤, 解得021a ≤≤.因此,函数()327f x x ax ax =++不存在极值点的充要条件是021a ≤≤. 故答案为:021a ≤≤.【点睛】本题考查利用函数极值点求参数,解题时理解函数的极值点与导数零点之间的关系,考查运算求解能力,属于中等题.20.①②④【分析】对4个命题分别进行判断即可得出结论【详解】解:①命题若则的逆否命题是:若则正确;②若则成立即充分性成立;若则或此时不一定成立即必要性不成立故是的充分不必要条件正确;③若为假命题则至少有 解析:①②④【分析】对4个命题分别进行判断,即可得出结论.【详解】解:①命题“若2320x x -+=,则1x =”的逆否命题是:“若1x ≠,则2320x x -+≠”,正确;②若1x =,则2321320x x -+=-+=成立,即充分性成立;若2320x x -+=,则1x =或2x =,此时1x =不一定成立,即必要性不成立,故“1x =”是“2320x x -+=”的充分不必要条件,正确;③若p q ∧为假命题,则p 、q 至少有一个为假命题,不正确④对于命题:p x R ∃∈使得210x x ++<,则:p x R ⌝∀∈,均有210x x ++,正确. 故答案为:①②④【点睛】此题注重对基础知识的考查,特别是四种命题之间的真假关系,复合命题的真假关系,特称命题与全称命题的真假及否定,是学生易错点,属中档题.三、解答题21.(1){}|24x x <<;(2){}|13m m ≤≤【分析】(1)解不等式2043x x <-<即可求解;(2)设命题p 成立对应集合A ,命题q 成立对应集合B ,由题意可得A 是B 的真子集,利用数轴即可求解.【详解】(1)若p 为真命题,则2043x x <-<,即240x ->且243x x -<,由240x ->得2x >或2x <-,由243x x -<可得14x -<<,所以解集为:{}|24x x <<,故实数x 的取值范围为{}|24x x <<,(2)由(1)知:p 为真命题,则24x <<,设{}|24A x x =<<,由(1)(3)0x m x m -+--<可得13m x m -<<+,设{}|13B x m x m =-<<+, 若p 是q 的充分不必要条件,则A 是B 的真子集,所以1234m m -≤⎧⎨+≥⎩,解得: 13m ≤≤, 经检验当1m =和3m =时满足A 是B 的真子集,所以实数m 的取值范围是{}|13m m ≤≤【点睛】结论点睛:从集合的观点判断命题的充分条件和必要条件的规则(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.22.(1)A ∩B ={x |3≤x <6},(∁R B )∪A ={x |x ≤2,或3≤x <6,或x ≥9};(2) {a |2≤a ≤8}【分析】(1)根据集合A ={x |3≤x <6},B ={x |2<x <9},利用交集的运算求解.;根据全集为R ,B ={x |2<x <9},利用补集运算得到U B ,再利用并集的运算求解. (2)由C ={x |a <x <a +1},且C ⊆B ,利用子集的定义,分C =∅和C ≠∅两种情况求解. 【详解】(1)因为集合A ={x |3≤x <6},B ={x |2<x <9},所以A ∩B ={x |3≤x <6};因为全集为R ,集合A ={x |3≤x <6},B ={x |2<x <9}.所以{|2U B x x =≤或 }9x ≥ , 所以U B ∪A {|2x x =≤或36x <≤ 或}9x ≥;(2)由C ={x |a <x <a +1},且C ⊆B , 当C =∅时,则1a a ≥+,无解;当C ≠∅时,则1219a a a a <+⎧⎪≥⎨⎪+≤⎩,解得28a ≤≤,综上:实数a 取值构成的集合是[2,8]【点睛】本题主要考查集合的基本运算及基本关系应用,关键点是熟悉集合的性质,掌握集合的交并补基本运算,还考查了运算求解的能力,属于中档题.23.(1){|26}AB x x =<<,()R A B {|2x x =≤-或2}x >;(2)选①,21m -≤≤;选②,7m ≤-或6m ≥;选③7m ≤-或6m ≥. 【分析】先解二次不等式可得A ,进而可得A R ,(1)再利用交集并集的定义直接求解即可;(2)若选①,由B A ⊆列不等式求解即可;若选②,由52m +≤-或6m ≥即可得解;若选③,由52m +≤-或6m ≥即可得解.【详解】 集合{}24120{|26}A x x x x x =-++>=-<<,{|2R A x x =≤-或6}x ≥ (1)若2m =,{27}B x x =<<,则{|26}A B x x =<<,()R A B {|2x x =≤-或2}x >.(2)若选①A B B =,则B A ⊆,所以562m m +≤⎧⎨≥-⎩,解得21m -≤≤; 若选②R B A ⊆,则52m +≤-或6m ≥,解得:7m ≤-或6m ≥;若选③AB =∅,则52m +≤-或6m ≥, 解得:7m ≤-或6m ≥. 【点睛】本题主要考查了集合的交并补的运算及由集合的包含关系求参,属于基础题.24.(1)()1,4;(2)322a ≤≤ . 【分析】(1)可知p 为真,解出不等式即可;(2)由题可知命题p 等价于{}|4A t a t a =<<,命题q 等价于{}|26B t t =<<,由q 是p 的充分不必要条件可得集合B 是集合A 的真子集,由此列出不等式即可求解.【详解】解:(1)p ⌝为假,∴p 为真,21,540a t t =∴-+<, 解得()1,4t ∈;(2):p 由22540t at a -+<得()(4)0t a t a --<:q 由实数t 满足曲线22126x y t t+=--为双曲线.得(2)(6)0t t --<解之26t << 由0a >且()(4)0t a t a --<得,4a t a <<设{}|4A t a t a =<<,{}|26B t t =<<,因为q 是p 的充分不必要条件,所以集合B 是集合A 的真子集,故有0246a a a >⎧⎪≤⎨⎪≥⎩,得322a ≤≤. 【点睛】本题考查利用集合的关系判断命题的充分不必要条件,其中涉及一元二次不等式和对双曲线方程的理解,属于基础题.25.(1)1001-⋃(,)(,);(2)1a =-. 【分析】(1)解出集合B ,由题意得出A B ,可得出关于实数a 的不等式组,即可求得实数a 的取值范围;(2)由题意可知A B =,进而可得出1-和1是方程()2230x a a x a -++=的两根,利用韦达定理可求得实数a 的值.【详解】(1)解不等式211x x <-,即101x x +<-,解得11x -<<,则{}11B x x =-<<. 由于p 是q 的充分不必要条件,则A B ,()(){}20A x x a x a=--<, ①当2a a =时,即当0a =或1a =时,A =∅,不合题意;②当2a a <时,即当0a <或1a >时,{}2A x a x a =<<, A B ,则211a a ≥-⎧⎨≤⎩,解得10a -≤<, 又当1a =-,{}11A x x B =-<<=,不合乎题意.所以10a -<<;③当2a a <时,即当01a <<时,A B ,则211a a ⎧≥-⎨≤⎩,此时01a <<. 综上所述,实数a 的取值范围是1001-⋃(,)(,); (2)由于p 是q 的充要条件,则()1,1A B ==-,所以,1-和1是方程()2230x a a x a -++=的两根,由韦达定理得2301a a a ⎧+=⎨=-⎩,解得1a =-. 【点睛】本题考查利用充分不必要条件、充要条件求参数,考查运算求解能力,属于中等题. 26.(1)34120x y -+=或3480x y --=;(2)[]0,1【分析】(1)根据两直线平行,设所求直线为340x y c -+=,利用两平行线间的距离公式,求出c 的值,从而得到答案;(2)解一元二次不等式,然后按1a <,1a =,1a >进行分类讨论,得到答案.【详解】(1)设与直线:3420l x y+=-平行的直线方程为340x y c -+=,2=,解得12c =或8c =-,所以所求直线方程为34120x y -+=或3480x y --=.(2)解关于x 的不等式2(1)0x a x a -++<, 可化为()()10x x a --<,①当1a <时候,解集为(),1a ,要使(),1a 是[)0,1的子集,所以0a ≥,所以得到[)0,1a ∈,②当1a =时,解集为∅,满足解集是[)0,1的子集,符合题意,③当1a >时,解集为()1,a ,此时解集不是[)0,1的子集,不符合题意.综上所述,a 的取值范围为[]0,1.【点睛】本题考查根据平行求直线方程,根据平行线间的距离求参数,根据集合的包含关系求参数的范围,属于中档题.。
上海兰生复旦必修一第四单元《函数应用》测试(答案解析)
一、选择题1.已知函数,01()11,10(1)x xf xxf x≤<⎧⎪=⎨--<<⎪+⎩,()()4g x f x mx m=--,其中m是非零的实数,若函数()g x在区间(1,1)-内有且仅有两个零点,则实数m的取值范围是()A.1,(0,1)5⎛⎫-∞-⋃⎪⎝⎭B.1(,1),5⎛⎫-∞-⋃+∞⎪⎝⎭C.1(,1)0,5⎛⎫-∞-⋃ ⎪⎝⎭D.1,(1,)5⎛⎫-∞-⋃+∞⎪⎝⎭2.已知函数22,()11,x x x af xx ax⎧--≤⎪=⎨->⎪⎩,若函数图象与x轴有且仅有一个交点,则实数a 的取值范围是()A.(),1-∞-B.()[),11,2-∞-⋃C.[)1,2D.(]()1,12,-+∞3.如图所示,一隧道内设双行线公路,其截面由长方形的三条边和抛物线的一段构成,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5米,若行车道总宽度AB为7米,请计算通过隧道的车辆限制高度为()A.4.25米B.4.5米C.3.9米D.4.05米4.已知偶函数()f x在[0,)+∞上为增函数,若关于x的方程()()21xf b f=-有且只有一个实根,则实数b的取值范围是()A.2b≥B.0b≥C.1b≤-或0b=D.1b≥或1b≤-或0b=5.若对任意[]0,1m∈,总存在唯一[]1,1x∈-使得2e0xm x a+-=成立,则实数a的取值范围是()A.[]1,e B.11,ee⎛⎤+⎥⎝⎦C.(]0,e D.11,ee⎡⎤+⎢⎥⎣⎦6.已知函数()()()222,0423,46x x x f x x -⎧--≤<⎪=⎨-≤≤⎪⎩,若存在12,x x ,当12046x x ≤<≤≤时,()()12f x f x =,则()12x f x ⋅的取值范围是( ) A .[)0,1B .[]1,4C .[]1,6D .[][]0,13,87.若直角坐标平面内的两点P 、Q 满足条件:①P 、Q 都在函数()y f x =的图象上;②P 、Q 关于原点对称,则称点对[]P Q 、是函数()y f x =的一对“友好点对”(点对[]P Q 、与[]Q P 、看作同一对“友好点对”).已知函数22(0)()2(0)x x f x x x x ⎧≤=⎨->⎩,则此函数的“友好点对”有( ) A .4对 B .3对 C .2对 D .1对8.已知()11xf x e =-+,若函数2()[()](2)()2g x f x a f x a =+--有三个零点,则实数a 的取值范围是( ) A .(2,1)--B .(1,0)-C .(0,1)D .(1,2)9.函数()xf x 2sinx =-在区间[]10π,10π-上的零点的个数是( )A .10B .20C .30D .4010.已知函数23()log f x x x=-,(0,)x ∈+∞,则()f x 的零点所在的区间是 A .(0,1) B .(1,2)C .(2,3)D .(3,4)11.用d (A )表示集合A 中的元素个数,若集合A ={0,1},B ={x |(x 2-ax )(x 2-ax +1)=0},且|d (A )-d (B )|=1.设实数a 的所有可能取值构成集合M ,则d (M )=( ) A .3B .2C .1D .412.若函数()22f x x x a =--有4个零点,则实数a 的取值范围为( ) A .01a <≤B .10a -<<C .0a =或1a >D .01a <<二、填空题13.已知函数2log ,02()25(),239x x x f x x <<⎧⎪=⎨+≥⎪⎩,若函数g (x )=f (x )-k 有两个不同的零点,则实数k的取值范围是________. 14.已知函数f(x)=若关于x 的方程f(x)=k 有三个不同的实根,则实数k的取值范围是________.15.一个人喝了少量酒后,血液中的酒精含量迅速上升到0.3/mg mL ,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少,为了保障交通安全,某地根据《道路交通安全法》规定:驾驶员血液中的酒精含量不得超过0.09/mg mL ,那么这个人至少经过________小时才能开车.(精确到1小时,参考数据:lg30.48,lg 40.60≈≈) 16.函数2()23f x x x a =---有四个零点,则a 的取值范围为_______.17.(文)已知函数2cos ,1()21,1xx f x x x π⎧≤⎪=⎨⎪->⎩,则关于x 的方程2()3()20f x f x -+=的实根的个数是________个.18.已知函数()2f x x ax b =++的两个零点为1x ,2x ,且满足1202x x <<<,记()()f x x R ∈的最小值为m ,则m 的取值范围是______.19.用符号[]x 表示不超过x 的最大整数,例如:[]0.60=;[]2.32=;[]55=.设函数()()()()2222ln 22ln 2f x ax x ax x =-+-有三个零点1x ,2x ,3x ()123x x x <<且[][][]1233x x x ++=,则a 的取值范围是_____________.20.若函数|1|12x y m -⎛⎫=+ ⎪⎝⎭的图象与x 轴有公共点,则m 的取值范围是__________.三、解答题21.设函数()()21f x ax ax a R =+-∈.(1)当12a =时,求函数()f x 的零点; (2)讨论函数()f x 零点的个数.22.近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike”计划在甲、乙两座城市共投资80万元,根据行业规定,每个城市至少要投资20万元,由前期市场调研可知:甲城市收益1y 与投入x (单位:万元)满足145040,2040{25,4060x y x x -+≤<=≤≤,乙城市收益2y 与投入x (单位:万元)满足21202y x =+(1)当甲项目的投入为25万元时,求甲乙两个项目的总收益; (2)试问如何安排甲、乙两个城市的投资,才能使总收益最大? 23.设函数2()(,)f x ax x b a b R =-+∈.(1)当0b =时,若不等式()2f x x ≤在[0,2]x ∈上恒成立,求实数a 的取值范围; (2)若a 为常数,且函数()f x 在区间[0,2]上存在零点,求实数b 的取值范围. 24.我国辽东半岛普兰附近的泥炭层中,发掘出的古莲子,至今大部分还能发芽开花,这些古莲子是多少年以前的遗物呢?要测定古物的年代,可用放射性碳法.在动植物的体内都含有微量的放射性14C ,动植物死亡后,停止了新陈代谢,14C 不再产生,且原有的14C 会自动衰变,经过5570年(叫做14C 的半衰期),它的残余量只有原始量的一半,经过科学家测定知道,若14C 的原始含量为a ,则经过t 年后的残余量a '(与a 之间满足·)kt a a e -'=.现测得出土的古莲子中14C 残余量占原始量的87.9%,试推算古莲子是多少年前的遗物.(注:计算结果精确到个位数;20.693ln ≈,2log 0.8790.186≈-.)25.倡导环保意识、生态意识,构建全社会共同参与的环境治理体系,让生态环保思想成为社会生活中的主流文化.某化工企业探索改良工艺,使排放的废气中含有的污染物数量逐渐减少.已知改良工艺前所排放的废气中含有的污染物数量为32/mg m ,首次改良后排放的废气中含有污染物数量为31.94/mg m ,设改良工艺前所排放的废气中含有的污染物数量为0r ,首次改良工艺后所排放的废气中含的污染物数量为1r ,则第n 次改良后所排放的废气中的污染物数量n r 可由函数模型()()0.5*0015,n pn r r r r p R n N +=--∈∈给出,其中n 是指改良工艺的次数.(1)试求改良后n r 的函数模型;(2)依据国家环保要求,企业所排放的废气中含有的污染物数量不能超过30.08/mg m .试问:至少进行多少次改良工艺后才能使企业所排放的废气中含有污染物数量达标?(参考数据:取lg 20.3=)26.宜城市流水镇是全国闻名的西瓜基地,流水西瓜含糖量高,口感好,多次入选全国农博会并获金奖,畅销全国12省百余个大中城市.实践证明西瓜的产量和品质与施肥关系极大,现研究发现该镇礼品瓜“金皇后”的每亩产量L (单位:百斤)与施用肥料x (单位:百斤)满足如下关系:238(2),02()603,312x x L x x x x ⎧+<≤⎪⎪=⎨⎪<≤⎪+⎩,肥料成本投入为5x (单位:百元),其它成本投入为10x (单位:百元).已知“金皇后”的市场批发价为2元/斤,且销路畅通供不应求,记每亩“金皇后”的利润为()f x (单位:百元). (1)求()f x 的函数关系式;(2)当施用肥料为多少斤时,每亩“金皇后”的利润最大,最大利润是多少元?1.414≈).【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先求得分段函数的解析式,函数()g x 零点等价于函数()y f x =的图象与直线4y mx m =+公共点,做出图像,数形结合,即可求得答案.【详解】当10x -<<时,011x <+<,满足上支范围,所以()11f x x +=+,所以,01()11,101x x f x x x ≤<⎧⎪=⎨--<<⎪+⎩,作函数()y f x =的图象,如图所示.函数()g x 零点的个数等价于函数()y f x =的图象与直线4y mx m =+公共点的个数. 当直线4y mx m =+过点(1,1)时,15m =, 所以当105m <<时, 直线4y mx m =+与函数()y f x =图象有两个公共点.当直线4y mx m =+与曲线111y x =-+(10x -<<)相交时, 联立4111y mx m y x =+⎧⎪⎨=-⎪+⎩消去y 得,24(51)0mx m x m -++=, 因此22(51)160m m ∆=+->且510m +<时,解得1m <-.综上知,实数m 的取值范围是1(,1)0,5⎛⎫-∞-⋃ ⎪⎝⎭. 故选:C 【点睛】本题的关键是根据x 的范围,先求得函数解析式,做出图像,再将零点问题转化为图像交点问题,易错点为,4y mx m =+可以与函数两支都有交点,也可以与函数111y x =-+单支产生交点,需分别检验和计算,属中档题.2.B解析:B【分析】讨论a 的范围,分别确定x a ≤、x a >上与x 轴的交点情况,即可确定实数a 的取值范围. 【详解】∵当x a ≤时,()(2)(1)f x x x =-+, ∴当2a ≥时,()f x 在x a ≤与x 轴有2个交点; 当12a -≤<时,()f x 在x a ≤与x 轴有1个交点; 当1a <-时,()f x 在x a ≤与x 轴无交点;∵当x a >时,1(1)f x x=-,与x 轴有交点时交点为(1,0), ∴当1a ≥时,()f x 在x a >与x 轴无交点; 当1a <时,()f x 在x a >与x 轴有1个交点;综上要使()f x 在R 上与x 轴有且仅有一个交点,即12a ≤<或1a <-, 故选:B 【点睛】易错点睛:讨论不等式的参数时,要注意参数边界是否可以取等号.1x =时()f x 与x 轴有交点,要使()f x 在x a >与x 轴无交点则1a ≥. 1x =-时()f x 与x 轴有交点,要使()f x 在x a ≤与x 轴无交点则1a <-. 3.D解析:D 【分析】可设抛物线的方程为2(0)x ny n =<,将(5,5)-代入可得n ,可得抛物线的方程,再令3.5x =,求得y ,计算70.5y --,可得所求值.【详解】解:如右图,设抛物线的方程为2(0)x ny n =<,将点(5,5)-代入抛物线的方程可得,255n =-,解得5n =-, 即抛物线的方程为25x y =-,令 3.5x =,可得23.55y =-,解得 2.45y =-,则通过隧道的车辆限制高度为7 2.450.5 4.05--=(米). 故选:D .【点睛】利用坐标法思想,建立适当的直角坐标系,得到抛物线的方程,从而解决问题.4.D解析:D 【分析】由题意有|21|xb =±-,令20x t =>,即可得22210t t b -+-=有且只有一个实根,22()21f t t t b =-+-问题转化为()f t 在(0,)t ∈+∞上有且仅有一个零点,结合二次函数零点分布即可求b 的取值范围. 【详解】由()f x 是偶函数且在[0,)+∞上为增函数知:|21|xb =±-,∴22(21)x b =-,令20x t =>,则22210t t b -+-=,令22()21f t t t b =-+-,即()f t 在(0,)t ∈+∞上有且仅有一个零点,而2244(1)4b b ∆=--=且对称轴为直线1t =,∴当0∆=,0b =时,在(0,)t ∈+∞上有且仅有一个零点;当0∆>时,22(0)10b f b ⎧>⎨=-≤⎩,解得1b ≤-或1b ≥,在(0,)t ∈+∞上有且仅有一个零点;∴综上,有1b ≤-或1b ≥或0b =, 故选:D. 【点睛】本题考查函数与方程,将方程的根的个数问题转化为对应函数零点个数问题,注意换元法的应用、定义域范围,属于中档题.5.B解析:B 【解析】分析:由m+x 2e x ﹣a=0成立,解得x 2e x =a ﹣m ,根据题意可得:a ﹣1≥(﹣1)2e ﹣1,且a ﹣0≤12×e 1,解出并且验证等号是否成立即可得出.详解::由m+x 2e x ﹣a=0成立,得x 2e x =a ﹣m ,∴对任意的m ∈[0,1],总存在唯一的x ∈[﹣1,1],使得m+x 2e x ﹣a=0成立, ∴a ﹣1≥(﹣1)2e ﹣1,且a ﹣0≤12×e 1, 解得1+1e≤a≤e , 其中a=1+1e时,x 存在两个不同的实数,因此舍去, a 的取值范围是(1+1e,e]. 故选B .点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.6.B解析:B 【详解】根据图像,当()()12f x f x =时,有()212f x ≤≤,将()1f x =代入函数()22f x x =--中,可解得11x =或13x =, 所以当()()12f x f x =时,113x ≤≤, 当[1,2]x ∈时,()f x x =,因为()()12f x f x =, 所以()()21211111x f x x f x x x x ==⋅=⋅⋅,因为1[1,2]x ∈,所以()12[1,4]x f x ⋅∈;当[2,3]x ∈时,()4f x x =-,因为()()12f x f x =, 所以()()21211111(4)(2)4x f x x f x x x x ==⋅-=--⋅+⋅,因为1[2,3]x ∈,所以()12[3,4]x f x ⋅∈; 综上所述,()12x f x ⋅的取值范围是[1,4]. 故选:B.【点睛】本题考查了分段函数与函数与方程的综合性问题,属于中档题型,当正确画出函数的图像后,重点抓住本题的一个关键的条件()12()f x f x =,这样就可以将求()12x f x ⋅的范围转化为求()11x f x ⋅的范围.7.C解析:C 【分析】由题意,设点(,)P x y ,则Q 的坐标为(,)x y --,结合22(0)()2(0)x x f x x x x ⎧≤=⎨->⎩,转化为此函数的“友好点对”的个数即方程222x x x --=-在0x >时的解的个数,从而作图解答 【详解】解:由题意,设点(,)P x y ,则Q 的坐标为(,)x y --,因为22(0)()2(0)x x f x x x x ⎧≤=⎨->⎩,所以此函数的“友好点对”的个数即方程222x x x --=-在0x >时的解的个数, 作2x y -=-与22y x x =-的图像如图所示,两函数图像有两个交点,所以此函数的“友好点对”有2对 故选:C 【点睛】此题考查学生对新定义的理解能力及作图能力,属于中档题8.A解析:A 【分析】利用十字相乘法解()0g x =,得()2f x =或()f x a =-,利用函数与方程之间的关系转化为两个图象的交点个数问题进行求解即可. 【详解】解:若2()[()](2)()2[()2][()]g x f x a f x a f x f x a =+--=-+有三个零点, 即()[()2][()]0g x f x f x a =-+=有三个根, 即()2f x =或()f x a =-.当()2f x =时,由|1|12x e -+=,即|1|1x e -=,则11x e -=或11x e -=-, 即2x e =或0x e =,则2x ln =或x 无解,此时方程只有一个解, 则()f x a =-.有两个不同的根, 作出()f x 的图象如图:由图象知,则12a <-<,即21a -<<-, 即实数a 的取值范围是(2,1)--, 故选:A .【点睛】本题主要考查函数零点个数的应用,利用数形结合转化为两个函数图象的交点个数问题是解决本题的关键.9.A解析:A 【分析】画出函数xy 2=和y sinx =的图象,通过图象即得结果. 【详解】画出图象函数xy 2=和y sinx =的图象,根据图象可得函数()xf x 2sinx =-在区间[]10π,10π-上的零点的个数是10,故选A .【点睛】本题考查了函数的零点问题,考查数形结合思想,转化思想,是一道中档题.10.C解析:C 【分析】由题意结合零点存在定理确定()f x 的零点所在的区间即可. 【详解】由题意可知函数()23f x log x x=-在()0,+∞上单调递减,且函数为连续函数, 注意到()130f =>,()1202f =>,()231log 30f =-<,()34204f =-<, 结合函数零点存在定理可得()f x 的零点所在的区间是()2,3. 本题选择C 选项. 【点睛】应用函数零点存在定理需要注意: 一是严格把握零点存在性定理的条件;二是连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分条件,而不是必要条件;三是函数f (x )在(a ,b )上单调且f (a )f (b )<0,则f (x )在(a ,b )上只有一个零点.11.A解析:A 【分析】根据题设条件,可判断出d (B )的值为1或3,然后研究(x 2﹣ax )(x 2﹣ax +1)=0的根的情况,分类讨论出a 可能的取值. 【详解】解:由题意,|d (A )-d (B )|=1,d (A )=2,可得d (B )的值为1或3若d (B )=1,则x 2-ax=0仅有一根,必为0,此时a=0,则x 2-ax+1=x 2+1=0无根,符合题意 若d (B )=3,则x 2-ax=0有一根,必为0,此时a=0,则x 2-ax+1=x 2+1=0无根,不合题意 故x 2-ax=0有二根,一根是0,另一根是a ,所以x 2-ax+1=0必仅有一根,所以△=a 2-4=0,解得a=±2此时x 2-ax+1=0为1或-1,符合题意综上实数a 的所有可能取值构成集合M={0,-2,2},故d (M )=3.【点睛】本题考查方程的根的个数的判断以及集合中元素个数,综合性较强,考查了分类讨论的思想及一元二次方程根的个数的研究方法,难度中等.12.D解析:D 【分析】 令0f x,可得22x x a -=,作出()22g x x x =-的图象,令直线y a =与()g x 的图象有4个交点,可求出实数a 的取值范围. 【详解】 令0f x,则22x x a -=,构造函数()22g x x x =-,作出()g x 的图象,如下图,()g x 在()0,2上的最大值为()1121g =-=,当01a <<时,直线y a =与()g x 的图象有4个交点, 所以函数()f x 有4个零点,实数a 的取值范围为01a <<. 故选:D. 【点睛】本题考查函数的零点,注意利用数形结合方法,考查学生的计算求解能力,属于中档题.二、填空题13.【分析】作出函数f(x)的图象将函数g(x)=f(x)-k 有两个不同的零点转化为y=f(x)y=k 的图象又两个不同的交点求解【详解】函数的图象如图所示:若函数g(x)=f(x)-k 有两个不同的零点等解析:5,19⎛⎫⎪⎝⎭【分析】作出函数f (x ),的图象,将函数g (x )=f (x )-k 有两个不同的零点,转化为y =f (x ),y =k 的图象又两个不同的交点求解.函数2log,02 ()25(),239xx xf xx<<⎧⎪=⎨+≥⎪⎩的图象如图所示:若函数g(x)=f(x)-k有两个不同的零点,等价于y=f(x),y=k的图象又两个不同的交点,由图知:519k<<故答案为:5,19⎛⎫⎪⎝⎭【点睛】方法点睛:由函数零点或个数求参数范围问题:若方程可解,通过解方程即可得出参数的范围;若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.14.【分析】问题等价于函数f(x)与函数y=k的图象有三个不同的交点画出函数的图象然后结合图象求解即可【详解】关于x的方程f(x)=k有三个不同的实根等价于函数y=f(x)的图象与函数y=k的图象有三个解析:()1,0-【分析】问题等价于函数f(x)与函数y=k的图象有三个不同的交点,画出函数()y f x=的图象,然后结合图象求解即可.【详解】关于x的方程f(x)=k有三个不同的实根,等价于函数y=f(x)的图象与函数y=k的图象有三个不同的交点,作出函数的图象如图所示,由图可知实数k 的取值范围是(-1,0). 【点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.15.5【分析】先根据题意设小时后才能开车再结合题中条件:血液中的酒精含量不超过009mg/mL 得到一个关于的不等关系再根据指对数不等式的求解即可【详解】设小时后才能开车则有即两边取对数有因为故代入可得故解析:5 【分析】先根据题意设x 小时后才能开车.再结合题中条件:“血液中的酒精含量不超过0.09mg/mL,”得到一个关于x 的不等关系,再根据指对数不等式的求解即可. 【详解】设x 小时后才能开车,则有()0.310.250.09x⋅-≤,即30.34x⎛⎫≤ ⎪⎝⎭,两边取对数有3lg lg 0.34x ≤,因为3lg 04<故lg 0.3lg313lg3lg 4lg 4x -≥=-.代入lg30.48,lg 40.60≈≈可得0.481130.480.603x -≥=-.故x 最小为5.故答案为:5. 【点睛】 本题主要考查了指对数运算在实际情景中的运用,需要根据题意建立联系,再根据对数运算法则代入近似值计算.属于基础题.16.【分析】函数零点转化为的解即函数与直线的交点的横坐标由数形结合思想可得解【详解】由得作函数的图象和直线如图函数在和上递减在和上递增由图象知当时的图象和直线有四个交点即有4个零点故答案为:【点睛】本题 解析:(0,4)【分析】函数零点转化为223x x a --=的解,即函数2()23g x x x =--与直线y a =的交点的横坐标,由数形结合思想可得解. 【详解】由()0f x =得223xx a --=,作函数2()23g x x x =--的图象和直线y a =,如图,函数()g x 在(,1)-∞-和(1,3)上递减,在(1,3)-和(3,)+∞上递增,(1)4f =,由图象知当04a <<时,2()23g x x x =--的图象和直线y a =有四个交点.即()f x 有4个零点.故答案为:(0,4).【点睛】本题考查函数的零点个数,解题时把问题转化为函数图象与直线交点个数,通过数形结合思想求解.17.5【分析】先解方程再根据图象确定实根个数【详解】或图象如图:则由图可知实根的个数是5个故答案为:5【点睛】本题考查函数与方程考查综合分析求解能力属中档题解析:5 【分析】先解方程2()3()20f x f x -+=,再根据()f x 图象确定实根个数.【详解】2()3()20()1f x f x f x -+=∴=或()2f x =,2cos,1()21,1xx f x x x π⎧≤⎪=⎨⎪->⎩图象如图:则由图可知,实根的个数是5个 故答案为:5 【点睛】本题考查函数与方程,考查综合分析求解能力,属中档题.18.【分析】根据二次方程根的分布得出满足的关系在坐标系中作出这个关系式表示的平面区域求出的最小值平移根据这个目标函数对应的曲线可得其取值范围【详解】由题意即在直角坐标系中作出此不等式组表示的平面区域如图 解析:()1,0-【分析】根据二次方程根的分布得出,a b 满足的关系,在坐标系O ab -中作出这个关系式表示的平面区域,求出()f x 的最小值,平移根据这个目标函数对应的曲线可得其取值范围. 【详解】由题意240(0)0(2)420022a b f b f a b a ⎧->⎪=>⎪⎪⎨=++>⎪⎪<-<⎪⎩,即240040420a b b a a b ⎧->⎪>⎪⎨-<<⎪⎪++>⎩,在直角坐标系O ab -中作出此不等式组表示的平面区域,如图阴影部分(不含边界),()f x 的最小值为24a z b =-,作出曲线204a b -=,它正好是图象阴影部分的一个曲边边界,把这个曲线向下平移,24a zb =-在减小,当它在阴影部分边界时,0z =,当它过点(2,0)-时,1z =-,所以(1,0)z ∈-.故答案为:(1,0)-.【点睛】本题考查二次方程根的分布,考查非线性平面区域的非线性规划问题(仿照简单的线性规划处理方法),解题时根据二次方程根的分布求出条件,再求出最小值的表达式,然后仿照简单的线性规划问题求解,考查了学生的创新意识.19.【分析】由题意可知得;令可知单调递增区间为单调递减为作出的草图由图可知所以而所以即可得由此即可求出结果【详解】因为所以①或②由①得由②得令则所以当时单调递增时单调递减事实上当时当时由图显然所以而所以解析:2ln 2,ln 69⎡⎫--⎪⎢⎣⎭【分析】由题意可知()()()21ln 22ln 20f x x ax x =-+=,得22ln 2x a x -=;令()22ln 2xg x x=,可知()g x 单调递增区间为e ⎛ ⎝⎭,()g x 单调递减为e ⎛⎫+∞ ⎪ ⎪⎝⎭,作出()g x 的草图,由图可知()10,1x ∈,()21,22ex =∈,所以[]10x =,[]21x =,而[][][]1233x x x ++=,所以[]32x =,即[)32,3x ∈,可得()()23a g a g ⎧-≤⎪⎨->⎪⎩,由此即可求出结果.【详解】因为()()()2222ln 22ln 22ln 21ln 22ln 21ln 2f x ax ax x x x ax x x x =-+-=-+-()()21ln 22ln 20x ax x =-+=,0x >,所以1ln 20x -=①或22ln 20ax x +=②.由①得2e x =,由②得22ln 2xa x -=. 令()22ln 2x g x x =,则()()3212ln 20x g x x -'==,所以2ex =. 当0,e x ⎛⎫∈ ⎪ ⎪⎝⎭时,()0g x '>,()g x 单调递增,,e x ⎛⎫∈+∞ ⎪ ⎪⎝⎭时,()0g x '<,()g x 单调递减.事实上,当102x <<时,()0g x <,当1x >时,()0g x >. 由图显然()10,1x ∈,()21,22ex =∈,所以[]10x =,[]21x =, 而[][][]1233x x x ++=,所以[]32x =,即[)32,3x ∈.所以()()23a g a g ⎧-≤⎪⎨->⎪⎩,即2ln 4,42ln 6,9a a ⎧-≤⎪⎪⎨⎪->⎪⎩解得2ln 6ln 29a -≤<-. 故答案为:2ln 2,ln 69⎡⎫--⎪⎢⎣⎭. 【点睛】本题主要考查了导函数在函数零点中的应用,属于难题.20.【分析】由可得出设函数将问题转化为函数与函数的图象有交点利用数形结合思想可求出实数的取值范围【详解】由可得出设函数则直线与函数的图象有交点作出函数与函数的图象如下图所示由图象可知则解得因此实数的取值 解析:[)1,0-【分析】由|1|102x y m -⎛⎫=+= ⎪⎝⎭可得出112xm -⎛⎫-= ⎪⎝⎭,设函数()112xg x -⎛⎫= ⎪⎝⎭,将问题转化为函数y m =-与函数()y g x =的图象有交点,利用数形结合思想可求出实数m 的取值范围.【详解】由|1|102x y m -⎛⎫=+= ⎪⎝⎭可得出112xm -⎛⎫-= ⎪⎝⎭,设函数()112xg x -⎛⎫= ⎪⎝⎭,则直线y m =-与函数()y g x =的图象有交点,作出函数()111,122,1x x x g x x --⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪<⎩与函数y m =-的图象如下图所示,由图象可知()01g x <≤,则01m <-≤,解得10m -≤<. 因此,实数m 的取值范围是[)1,0-. 故答案为:[)1,0-. 【点睛】本题考查利用函数有零点求参数的取值范围,在含单参数的函数零点问题的求解中,一般转化为参数直线与函数图象有交点来处理,考查数形结合思想的应用,属于中等题.三、解答题21.(1)2-和1;(2)答案见解析. 【分析】 (1)当12a =时,直接解方程()0f x =,即可求得函数()f x 的零点; (2)分0a =和0a ≠两种情况讨论,在0a =时,直接求解即可;在0a ≠时,结合∆的符号可得出函数()f x 的零点个数. 【详解】 (1)当12a =时,()211122f x x x =+-,令()0f x =,可得220x x +-=,解得2x =-或1x =.此时,函数()f x 的零点为2-和1;(2)当0a =时,()1f x =-,此时函数()f x 无零点; 当0a ≠时,24a a ∆=+.①若∆<0,即40a 时,此时函数()f x 无零点;②若0∆=,即4a =-时,函数()f x 有且只有一个零点; ③若0∆>,即4a 或0a >时,此时函数()f x 有两个零点. 综上所述,当40a 时,函数()f x 无零点;当4a =-时,函数()f x 有且只有一个零点; 当4a或0a >时,函数()f x 有两个零点.【点睛】思路点睛:本题考查含参二次函数零点个数的分类讨论,步骤如下: (1)首先确定首项系数为零的情况,直接解方程()0f x =即可;(2)对首项系数不为零进行讨论,分∆<0、0∆=、0∆>三种情况讨论,可得出函数()f x 在不同情况下的零点个数.22.(1)1392万元 (2)甲城市的投入为30万元,乙城市的投入为50万元 【分析】(1)当甲城市的投入为25万元时,则乙城市的投入为802555-=万元,直接分别代入对应的收益表达式中,得出答案.(2)设甲城市的投入为x 万元,则乙城市的投入为80x -万元,分2040x ≤<和4060x ≤≤分别求出甲、乙两个城市的投资的总收益,再分别求出其最大值,再比较得出答案. 【详解】(1)当甲城市的投入为25万元时,则乙城市的投入为802555-=万元 则甲城市收益1450402225y =-+=万元 乙城市收益2195552022y =⨯+= 所以甲、乙两个城市的投资的总收益为951392222+=万元 (2)设甲城市的投入为x 万元,则乙城市的投入为80x -万元 当2040x ≤<时,甲、乙两个城市的投资的总收益为()45014080202y x x =-++⨯-+即4501100100702y x x⎛⎫=-+≤-= ⎪⎝⎭,当且仅当45012x x =即30x =时,取等号.当4060x ≤≤时,甲、乙两个城市的投资的总收益为()12580202y x =+⨯-+即()112580208522y x x =+⨯-+=- 当40x =时,1852y x =-有最小值65 综上,当30x =时,甲、乙两个城市的投资的总收益最大.所以甲城市的投入为30万元,乙城市的投入为50万元,甲、乙两个城市的投资的总收益最大【点睛】关键点睛:本题考查函数的实际应用问题,解答的关键是分段得出甲、乙两个城市的投资的总收益的表达式,当2040x ≤<时,甲、乙两个城市的投资的总收益为()45014080202y x x =-++⨯-+,当4060x ≤≤时,甲、乙两个城市的投资的总收益为()12580202y x =+⨯-+,分别求出最大值,从而可解,属于中档题. 23.(1)[0,2];(2)答案见解析.【分析】(1)0x =时恒成立,2(]0,x ∈,不等式变形后得22x a -≤-≤,求出x a -的取值范围,由这个范围包含于(0,2]可得a 的范围;(2)问题转化为程||2x a x b -=-在[0,2]上有解,引入函数22,(),x ax x a h x x a x x ax x a⎧-≥=-=⎨-<⎩,分类讨论求出()h x ([0,2]x ∈)的值域以可得. 【详解】解:(1)当0b =时,若不等式||2x a x x -在[0,2]x ∈上恒成立;当0x =时,不等式恒成立,则a R ∈;当02x <≤,则||2a x -在(0,2]上恒成立,即22x a -≤-≤在(0,2]上恒成立,因为y x a =-在(0,2]上单调增,max 2y a =-,y a >-,则222a a -⎧⎨--⎩, 解得,02a ≤≤;则实数a 的取值范围为[0,2];(2)函数()f x 在[0,2]上存在零点,即方程||2x a x b -=-在[0,2]上有解;设22,(),x ax x a h x x ax x a⎧-≥=⎨-+<⎩ 当0a ≤时,则()2h x x ax =-,[]0,2x ∈,且()h x 在[0,2]上单调递增,所以()()min 00h x h ==,()()max 242h x h a ==-, 则当0242b a ≤-≤-时,原方程有解,则20a b -≤≤;当0a >时,22,(),x ax x a h x x ax x a⎧-≥=⎨-+<⎩, 则()h x 在0,2a ⎡⎤⎢⎥⎣⎦上单调增,在,2a a ⎡⎤⎢⎥⎣⎦上单调减,在[,)a +∞上单调增; ①当22a ≥,即4a ≥时,()()max 242h x h a ==-,()()min 00h x h ==, 则当0224b a ≤-≤-时,原方程有解,则20a b -≤≤;②当22a a <≤,即24a ≤<时,2max ()24a a h x h ⎛⎫== ⎪⎝⎭,()(0)0min h x h == 则当2024ab -时,原方程有解,则208a b -; ③当02a <<时,2max ()max ,(2)max ,4224a a h x h h a ⎧⎫⎧⎫⎛⎫==-⎨⎬⎨⎬ ⎪⎝⎭⎩⎭⎩⎭,()(0)0min h x h ==当2424a a -,即42a -+<时,2max ()4a h x =, 则当2024ab -时,原方程有解,则208a b -;当2424a a <-时,即04a <<-+max ()42h x a =-, 则当0242b a --时,原方程有解,则20a b -;综上,当4a <-+b 的取值范围为[]2,0a -;当44a -+<时,实数b 的取值范围为2,08a ⎡⎤-⎢⎥⎣⎦; 当4a ≥时,实数b 的取值范围为[]2,0a -.【点睛】本题考查不等式恒成立,函数零点问题,解题方法是掌握问题的转化,不等式恒成立,转化求函数的最值,函数吸零点问题转化为方程有解的问题,从而转化为求函数值域.旨在考查转化与化归思想,运算求解能力.24.古莲子约为1036年前的遗物【分析】由14C 的半衰期,计算可得k ,再由两边取2为底的对数,计算可得所求值.【详解】由题意可得55701·2k a a e -=, 即557012k e -=,解得25570ln k =, 由0.879?kt a a e -=,即0.879kt e -=,两边取2为底的对数,可得2222log 0.879log ?·log 5570ln kt e t e =-=-, 5570t -=, 则55700.1861036t =⨯≈.则古莲子约为1036年前的遗物.【点睛】本题主要考查函数在实际问题中的运用以及指数与对数的运算,还考查了函数思想和运算能力,属于中档题.25.(1)()0.50.5*20.065n n r n -=-⨯∈N ;(2)6. 【分析】(1)根据改良工艺前所排放的废气中含有的污染物数量为32/mg m ,首次改良后排放的废气中含有污染物数量为31.94/mg m ,得到02r =,1 1.94r =,然后再令1n =求解.(2)根据所排放的废气中含有的污染物数量不能超过30.08/mg m ,得到0.50.520.0650.08n n r -=-⨯≤求解.【详解】(1)由题意得02r =,1 1.94r =,所以当1n =时,()0.510015p r r r r +=--⋅, 即()0.51.9422 1.945p +=--⋅,解得0.5p =-,所以()0.50.5*20.065n n r n -=-⨯∈N , 故改良后所排放的废气中含有的污染物数量的函数模型为()0.50.5*20.065n n r n -=-⨯∈N . (2)由题意可得,0.50.520.0650.08n n r -=-⨯≤, 整理得0505..1950..206n -≥,即0.50.5532n -≥, 两边同时取常用对数,得lg3205055.lg .n -≥, 整理得5lg 2211lg 2n ≥⨯+-, 取lg 20.3=代入,得5lg 2302115.31lg 27⨯+=+-, 又因为*n ∈N ,所以6n ≥.综上,至少进行6次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标.【点睛】方法点睛:在实际问题中,有关人口增长、银行利率、细胞分裂等增长率问题常用指数函数模型表示.通常可以表示为y =N (1+p )x (其中N 为基础数,p 为增长率,x 为时间)的形式.解题时,往往用到对数运算,要注意与已知表格中给定的值对应求解.26.(1)()f x 23161532,02120315,312x x x x x x x⎧-+<≤⎪⎪=⎨⎪-<≤⎪+⎩;(2)182.8斤,最大利润为5016元.【分析】(1)由()()215f x L x x =-以及()L x 的解析式可得结果;(2)分段求出最大值,再取更大的函数值即可得解.【详解】(1)()()215f x L x x =-23161532,02120315,312x x x x x x x ⎧-+<≤⎪⎪=⎨⎪-<≤⎪+⎩, (2)①当302x <≤时,对称轴3015323224x +=<=, ∴当32x =时,()max 45.5f x =百元, ②当332x <≤时,()()12013515113513550.161f x x x ⎡⎤=-++≤-=-≈⎢⎥+⎣⎦百元, 当且仅当()1201511x x =++即1 1.828x =≈百斤, 由①②可知: 1.828x =时,()max 50.16f x ≈百元.∴当施用肥料为182.8斤时,每亩“金皇后”的利润最大,最大利润为5016元.【点睛】本题考查了分段函数的最值,考查了基本不等式求最值,考查了二次函数求最值,属于中档题.。