X射线物理学
X射线物理学基础
6) 假定空气由20% O2 和 80% N2 组成, 其密
度为1.29×10-3 g/cm3, 试求其对于Cr Kα的质
量吸收系数um 和线吸收系数u。
7) 作出Cu靶在1, 5, 20 and 40 kV 电压下的强
度-波长关系图。
8) 对于铁靶,应用什么做滤波片,解释你的选
择理由。
一、原子能态及其表征
可以象粒子一样和微观粒子发生相互作用
同样微观粒子既有粒子性,又可以作为一
种波(德布罗意波)有干涉和衍射现象
X射线的特点: 1)不可见 2)折射率接近1 3)穿透性强 5)杀伤作用
(三) X产生与X射线管
1. 产生方式: 1.高速电子流撞击金属靶
2.同步幅射X射线 X射线管的结构 :
X射线管
阴极产生电子
X射线物理学基础作业 1.在原子序24(Cr)到74(W)之间选择7种元素,根据它们的特征谱波 长(Kα1),用图解法验证莫塞莱定律。 2.若X射线管的额定功率为1.5kW,在管电压为35kV时,容许的最大电流 是多少? 3.讨论下列各组概念中二者之间的关系: 1)同一物质的吸收谱和发射谱; 2)X射线管靶材的发射谱与其配用的滤波片的吸收谱。 3)X射线管靶材的发射谱与被照射试样的吸收谱。 4.为使Cu靶的Kβ线透射系数是Kα线透射系数的1/6,求滤波片的厚度。 5.画出MoKα辐射的透射系数(I/I0)-铅板厚度(t)的关系曲线(t取 0~1mm)。 6.欲用Mo靶X射线管激发Cu的荧光X射线辐射,所需施加的最低管电压是 多少?激发出的荧光辐射的波长是多少?
1
式中K2为与靶中主量子数有关的常数,
K2 (Z )
K2 (Z )
σ为屏蔽常数,与电子所在的壳层有关。 特征X射线谱及管电压对特征谱的影响 (钼钯K系)
chap1_X射线物理学基础
第一篇X射线衍射分析n1910年,诺贝尔奖第一次颁发,伦琴因X射线的发现而获得第一个诺贝尔物理学奖。
1895年伦琴初次发现X射线,拍摄的他夫人手指的X射线照在伦琴的两名研究生弗里德里希(W. Friedrich)和克尼(Knipping)的帮助下,劳厄进行了第一次X射线衍射实验,并取得了成功。
第一次X射线衍射实验所用的仪器。
所用的晶体是硫酸铜。
劳厄法X射线衍射实验的基本装置与所拍的照片爱因期坦称,劳厄的实验“物理学最美的实验”。
它一箭双雕地解决了X射线的波动性和晶体的结构的周期性。
第一章X射线的物理特性n1.1 X射线的产生极其性质n1.2 X射线谱n1.3 X射线与物质的相互作用n1.4 X射线的衰减规律第一节X射线的产生极其性质一、X射线的产生X射线管包括阴极、高压、靶材图1-1 X射线管的结构示意图二、X射线的本质X射线是一种电子波,横波,波长短(0.01-10nm)“硬”X射线,“软”X射线三、X射线的本质Ø不能用一般方法使X射线会聚发散Ø通常靠使荧光物质发光、使照相底片感光、使气体产生电离现象观察检测Ø软X射线的波长与晶体中原子间距比较接近,常被用来进行X射线衍射分析(0.25-0.05nm)Ø对有机质是有害的,需要加上铅制品保护。
第二节X 射线谱图1-2 两种X 射线谱示意图一、连续谱X 射线强度随波长λ而变化的关系曲线,即X 射线谱。
丘包状曲线为连续谱竖直尖峰为特征谱对应两种X 射线辐射的物理过程。
连续谱:大量高速运动的电子与靶材碰撞时而减速,不同能量损失转化成不同波长的X 射线,并按统计规律分布。
2I iZUα连=图1-2 两种X 射线谱示意图2max12o hc eU h m ευνλ====动短波限λo :hc K e U Uλ==o K=1.24nm ·kV ,短波限只与管电压有关。
连续X 射线总强度:α值约为(1.1-1.4)×10-9X 射线管发射连续X 射线的效率η为:2X X iZU ZUiUαηα===连续射线总强度射线管功率当用钨阳极(Z=74),管电压为100kV 时,η≈1%,可见效率是很低的。
第一章 X射线的性质
透射x射线
热能 图1-9. X射线与物质的相互作用
穿透
入射 X射线透过物质沿原方向的传播
相干散射: 入射 X射线与试样物质中的电子相互作用,散射波 之间发生相互干涉的散射现象称为相干散射。
散射 非相干散射: 入射 X射线与试样物质中的电子产生弹性碰撞, 产生新的光子和反冲电子的过程.(康-吴效应) 吸收 入射 X射线的能量在通过物质时,转变为其它形式的能量,其 本身能量被消耗的现象.
(2) 俄歇效应 处于K激发态的原子能量(EK—EL)如还能继续 产生二次电离使另一个核外电子脱离原子变为二 次电子,如EK—EL>EL,它就可能使L、M、N等层 的电子逸出,这种二次电子称为KL电子,它的能 量有固定值,近似地等于“EK-EL”这种具有特征能 量的电子就是俄歇电子。
三:X射线的衰减规律 (1)质量吸收系数 实验证明:当一束X射线通过物质时,由于散射和 吸收的作用使其透射方向上的强度衰减。衰减的程 度与所经过物质小的距离成正比,如图1-7所示。 强度的相对变化为: Ix Ix dx dIx
1
二.
重要的概念和公式:
1.高能粒子与物质相互作用 特征辐射(特征X射线):入射电子,击出k层 电子,发出具有特定波长的x光子。 光电效应(荧光辐射):入射x光子,击出内层 电子—光电子,发出x光子(荧光X射线)。 俄歇效应:入射x光子,击出一个k层电子,L层 一电子跃入 填充,再使L层上一电子成自由电子 (KL2L2 Auger电子)。
1.1.3 X射线谱 由X射线管发射出来的X射线可以分为两种类型。 (1) 连续X射线谱 : 定义:高速运动的带电粒子受阻而减速时,都会产 生电磁辐射,这种辐射称之为韧致辐射。由于电子 与阳极碰撞的无规律性,因而其X射线的波长是连续 分布的 ,故叫做连续X射线谱。其谱形如图1-5 (2) 特征X射线 : 定义:原子外层电子向内层跃迁所产生的X射线叫做 特征X射线,又叫标识X射线。由特征X射线构成的X 射线谱叫特征x射线谱,产生的原理见图1-6。 特征X射线产生的根本原因 1 是原子内层电子的跃迁,它的波 K (Z ) 长与原子序数服从莫塞莱定律。
§ X射线的物理学
x1
ln 2
0.693
对低能射线
m Z
a 3
⑴ Z↑——吸收本领↑ 是X射线医学诊断的物理基础.人体肌肉组织的 主要成分H、C、O,骨骼的主要成分Ca3(PO4)2, 因此骨骼的m大.
铅(82)——很好的防护材料 人工造影——消化道,硫酸钡(钡56)
⑵↑——容易被衰减 放射治疗——高能X射线
物理意义:物质对X射线衰减的强弱程度. 质量衰减系数
m
引入的意义:
同种物质,↑→ ↑但m不变——更便于比较不 同物质(分子构成)对X射线的衰减.
半价层
半价层就是使X 射线强度减弱一半的吸收体厚度 (或质量厚度). 半价层与吸收系数之间的关系式
半价层和吸收系数成反比,它标志着该射线对物 质的贯穿本领。铅对X射线的半价层约为0.1mm。 1.5mm厚的铅板将把射线强度减少215分之一或 30,000分之一。
轫致辐射 h
E-h
hmax=E
E
+
E
+
连续谱特性 ⑴ 不同管电压作用下的连续谱不同; ⑵ 存在短波极限min; ⑶ U↑→ 峰值和min向短波方向移动.
钨靶在较低 管电压下产生 的连续X射线谱
短波极限
hc min
eU E h max
min
hc 1 1.242 nm e U U kV
2. 特征X射线谱 对于钨靶,管电压在70kV以上产生的X射线谱
产生机制 高速运动的电子与阳极靶内某个原子的内层电 子作用,靶原子的内层轨道电子吸收能量从靶原 子中逸出,在原子的内层电子中出现空位;外层 电子向空位跃迁,并在跃迁过程中放出一个光子, 光子能量为电子跃迁前后的能级差.
第1章 X射线的性质
17
1.3 X射线谱--- 连续X射线谱
X射线强度与波长的 关系曲线,称之X射 线谱。 一、连续X射线谱
在管压很低时, 小 于 20kv 的 曲 线 是 连续变化的,故称 之连续X射线谱,即 连续谱。
18
1、连续X射线谱的产生机理
极大数量的电子与靶材随机碰撞 不同且连续的X射线
2、短波限λ0
15
根据量子力学理论,原子系统中的电子按泡利不相容原理不
连续地分布在K、L、M、N……等不同能级的轨道(壳层)上,
而且按能量最低原理首先填充最靠近原子核的第K层,再依次 填L、M、N等。能量大小:K<L<M<N… eg:当K电子被打出K层时,如L层电子来填充K空位时,则产 生Kα辐射。此X射线的能量为电子跃迁前后两能级的能量差,
这么大数目的电子到达靶上的时间和条件不 会相同,并且大多数电子要经过多次碰撞,能量 逐步损失掉,因此其波长必然覆盖一个很大的范 14 围,这种辐射称为连续辐射。
4.X射线产生的机理
特征辐射 当管电压达到或超过某一临界值时,则阴极发出的电 子在电场加速下,可以将靶物质原子深层的电子击到能量 较高的外部壳层或击出原子外,使原子电离。 阴极电子将自已的能量给予受激发的原子,而使它的 能量增高,原子处于激发状态。 处于激发状态的原子有自发回到稳定状态的倾向,此 时外层电子将填充内层空位,相应伴随着原子能量的降低。 原子从高能态变成低能态时,多出的能量以X射线形式辐 射出来。因物质一定,原子结构一定,两特定能级间的能 量差一定,故辐射出的特征X射波长一定。
X射线与物质的相互作用,是一个比较复杂的物理过程。
从能量的转换角度来看:
一束X射线通过物质时,其能量分为三个部分: 被散射,改变前进方向 被吸收,产生光电效应 热效应 透过物质,强度发生衰减。
第一章-X射线物理学基础
第一章 X 射线的物理学基础1、X 射线有什么性质,本质是什么?波长为多少?与可见光的区别?X 射线性质:(1)X 射线穿透物质时可被吸收;(2)原子量及密度不同的物质,对X 射线的吸收不同;(3)轻原子物质对X 射线来说几乎是透明的,而重元素物质对X 射线的吸收非常显著;(4)可穿透不透明的物质。
本质:属于电磁波。
X 射线的波长:大约在0.01~100 Å之间。
X 射线和可见光本质上同属于电磁波,只不过彼此占据不同的波长范围而已;X 射线虽然和可见光一样(没有静止质量,但有能量),与光传播有关的一些现象(如反射、折射、散射、干涉、以及偏振)都会发生,但由于相对可见光而言,X 射线的波长要短得多(光量子的能量相应要高得多),上述物理现象在表现方式上与可见光存在很大的差异。
不能象可见光一样使X 射线会聚、发散、和变向,使得X 射线无法制成显微镜!2、什么是X 射线管的管电压、管电流?它们通常采用什么单位?数值通常是什么?X 射线的管电压:加载到阴极和阳极侧之间的电压。
(KV ),50KVX 射线的管电流:在阴阳两极电场作用下,向阳极运动,形成的电流。
(mA )50mA3、X 射线的焦点与表观焦点的区别与联系?焦点:阳极靶表面被电子束轰击的地方,正是这个区域发射X 射线。
对于长方形焦点的X 射线管,引出窗口很重要。
对着焦点长边开设的窗口发射出X 射线的表观焦点为线状(称为线焦斑),其强度较弱,但其水平发散度小,分辨率较高,线性较好,粉末衍射仪多采用线焦斑;对焦点短边开设的窗口发射出的X 射线的表观焦点则为正方形(称为点焦斑),强度较高,可使衍射线明锐,适合于织构测定及德拜、劳埃照相场合。
4、X 射线有几种?产生不同X 射线的条件是什么?产生的机理是怎样的?晶体的X 射线衍射分析中采用的是哪种X 射线?硬X 射线:波长较短的硬X 射线能量较高,穿透性较强,适用于金属部件的无损探伤及金属物相分析。
X射线物理学基础
第一章X射线物理学基础【教学内容】1.X射线的发觉。
2.X射线的本质。
3.X射线的产生与X射线管。
4.X射线谱。
5.X射线与物质的彼此作用。
【重点把握内容】1.X射线的粒子性与波动性。
2.X射线的产生与X射线管的大体构造。
3•持续X射线和特点X射线谱特点及产生的机理。
4.X射线与物质的的彼此作用而产生的散射和吸收。
【了解内容】1.X射线发觉。
2.X射线的平安防护。
【教学难点】1.X射线的散射与干与。
2.X射线的吸收。
【教学目标】1•了解X射线的本质、特点。
2.把握X射线的产生和X射线谱特点。
3.把握X射线与物质的彼此作用有关知识。
4.培育能依照不同的需要选择对不同类型的X射线及在关实验条件的能力。
【教学方式】1.以课堂教学为主,通过量媒体教学手腕,增强教学成效。
并通过部份习题,增进学生对X射线本质的明白得。
2.安排一次对X射线衍射仪的参观,使学生对X射线的产生和大体装置有一个初步的感性熟悉。
一、X射线的发觉X射线发觉于19世纪末期,并在上个世纪之交掀起了一场X射线热。
它的发觉及其本质的确信在物理学上具有划时期的意义。
代表着经典物理学与近代物理学的转折点。
1895年11月8日,德国物理学家伦琴(照片)在研究真空管的高压放电现象时,偶然发觉凳子上镀有氰亚铂酸钡的硬纸板会发出荧光。
这一现象当即引发的细心的伦琴的注意。
他认真分析一下,以为这可能是真空管中发出的一种射线引发的。
连续数日呆在实验室中不回家。
他试着用各类手、纸板、木块去遮挡,但都无法挡住这种射线。
于是,一项伟大的发觉诞生了。
由于那时对这种射线的本质和特性都不了解,故称之为X射线。
其实在此之前,也有人注意到,放在高压管周围的照相底片有时会发生雾点。
但他们以为这是一种偶然现象。
没有引发重视。
伦琴发觉,不同物质对X射线的穿透能力是不同的。
他用X射线拍了一张其夫人手的照片(照片)。
1896年1月23日。
伦琴在自己的研究所第一次作关于X 射线发觉的报告时,现场再次拍了维尔兹堡闻名的解剖学教授克利克尔的一只手的照片,克利克尔教授带头向伦琴欢呼三次,并建议将这种射线称为伦琴射线。
物理学--x射线
第十六章 X 射线
第四节 X射线的产生原理
h E2 E1
hυ为特征X光子能量(即跃迁过程中释放 的能量);E2为跃迁前的能量 ;E1为跃迁后的能 量。
不同的靶物质发出的X射线的波长不同, 原子序数越高,产生的X射线波长越短。特征 X射线与X射线管的管电流无关。
第十六章 X 射线
第四节 X射线的产生原理
第十六章 X射线
第十六章 X 射线
(二)标识X射线谱
1. 产生机制
➢ 壳层间能量差较大,因而发出的光子频率较高, 波长较短。
➢ 电子由不同能级达到同一壳层的空位时发生的谱线 — 线系。
➢ 线系的最短波长边界:一个自由电子(或近似地认为是最外层 价电子)进入这个空位时发出的光子的波长。
➢ X射线管需要加几十千伏的电压才能激发出某些标识X射线系。 当X射线管的管电压较低时只出现连续X射线谱。
第十六章 X 射线
第三节 X射线的产生
➢ X射线管
b.阳极(靶):它能使高速电子突然受阻而产 生X射线。
• 又称阳极靶面, • 阳极由靶面和散热体两部分组成。 • 通常是将钨材料靶面焊接在实心或空心铜材料圆
柱体上。 • 原因:从阴极飞来的高速电子能,99%以上都在
阳极上变成热能,使阳极产生很高的温度。
钨在较高管电压下的X射线谱
第十六章 X 射线
(二)标识X射线谱
1. 产生机制
产生线状光谱X线的过程与管 电压无关,完全由靶材料的 性质决定,它表征靶物质的 原子结构特性,而与其它因 素无关。通常把这种辐射称 为特征辐射,也称为标识辐 射由此产生的X射线称为特征 X射线。
标识X射线是由较高各能 级的电子跃迁到内壳层的空位 产生的。
第十六章 X 射线
11x射线物理学基础
§2 x射线谱
x射线谱指的是x射线的强度I随波长λ变 化的关系曲线。 x射线强度大小由单位时间内通过与x射 线传播方向垂直的单位面积上的光量子 数决定。 实验表明,x射线管阳靶发射出的X射线 谱分为两类:连续x射线谱和特征x射线 谱。
一、 连续x射线谱
连续x射线是高速运动的电子被阳极靶突 然阻止而产生的。 它由某一短波限λ0开始直到波长等于无 穷大λ∞的一系列波长组成。 它具有如下实验规律:如图5—2。
2)每个特征谱线都对应—个特定的波长,
不同阳极靶元素的特征谱波长不同。 如管电流I与管电压V的增加只能增强特征 X射线的强度、而不改变波长。它的规律 为
3)不同阳极靶元素的原子序数与特征谱
波长之间的关系由莫塞莱(Mosley)定律确 定
为提高峰背比,通常,X射线的工作电压
应为激发电压的3—5倍。当使用单色器 时,则可不遵守此原则。
x射线具有很强的穿透物质的能力,经过电场 和磁场时不发生偏转,当穿过物质时x射线可 被偏振化.可被吸收而使强度减弱,它能使空 气或其它气体电离,能激发荧光效应,使照相 片感光,并能杀死生物细胞与组织。 它成为研究晶体结构,进行元素分析,以及医 疗透射照像和工业探伤等多方面问题的有力工 具。
第七章 X射线衍射与荧光光谱
第6章_X射线物理学基础
1
第六章
X射线物理学基础
第六章 X射线物理学基础
2
第一节 X射线的性质 第二节 X射线的产生与X射线谱 第三节 X射线与物质的相互作用
3. X射线上述特性,成为研究晶体结构、进行元素分析、医 疗透视和工业探伤等方面的有力工具。
第二节 X射线的产生与X射线谱
24
一、X射线产生: 1. X射线:高速运动带电粒子(电子)与某物质相撞击后突 然减速或被阻止,与该物质中内层电子相互作用而产生的。 2. X射线产生条件: 1)产生并发射自由电子(加热W灯丝发射热电子); 2)在真空中迫使电子作定向的高速运动(加速电子); 3)在电子运动路经上设障碍,使其突然减速或停止(靶) 据此,就可理解X射线发生器的构造原理了。
2. 威廉· 康拉德· 伦琴(Wilhelm Konrad RÖntgen )摄于1896年
4
1845年3月27日生于德国莱茵州雷 内普 (Lennep)镇。 1869年获苏黎世大学理学博士学位 1870年回德国维尔茨堡大学工作。 1894年任维尔茨堡大学校长。 1895年11月8日发现了X射线。 1900年任慕尼黑大学物理研究所教 授,主任。 1901年,获首届诺贝尔物理学奖。 1923年2月10日,在慕尼黑去世。
X射线波动性的表现(2)
17
4. 电场矢量E 随传播时间或传播距离变化呈周期性波动, 波振幅为 A(或E0)。 一束沿 y 轴方向传播的波长为λ的X射线波方程为:
第1章 X射线的物理学基础-2012
• X射线的能量 • 量子理论将X射线看成由一种量子或光子组 成的粒子流,每个光子具有的能量为: (依据X射线的波长即可计算出其能量)
1.24 E (keV ) h h (nm)
公式 E(keV) (nm) =1.24/ E (nm) MgK 1.253 0.9895 CaK 3.69 0.3360 FeK 7.057 0.1757 PbL 10.55 0.1175
同步辐射光的特性
• 宽波段:同步辐射光的波长覆盖面大,具有从 远红外、可见光、紫外直到 X射线范围内的连 续光谱,并且能根据使用者的需要获得特定波 长的光。
• 高准直:同步辐射光的发射集中在以电子运动 方向为中心的一个很窄的圆锥内,张角非常小, 几乎是平行光束,堪与激光媲美。 • 高偏振:从偏转磁铁引出的同步辐射光在电子 轨道平面上是完全的线偏振光,此外,可以从 特殊设计的插入件得到任意偏振状态的光。来自同步辐射光源的发展历史
• 30多年来,同步辐射光源已经历了三代 的发展,它的主体是一台电子储存环。 第一代同步辐射光源的电子储存环是为 高能物理实验而设计的,只是“寄生” 地利用从偏转磁铁引出的同步辐射光, 故又称“兼用光源”;第二代同步辐射 光源的电子储存环则是专门为使用同步 辐射光而设计的,主要从偏转磁铁引出 同步辐射光;
• * 同步辐射在微结构研究中的应用
同步辐射光源的发展历史
• 电磁场理论早就预言:在真空中以光速 运动的相对论带电粒子在二极磁场作用 下偏转时,会沿着偏转轨道切线方向发 射连续谱的电磁波。1947年人类在电子 同步加速器上首次观测到这种电磁波, 并称其为同步辐射,后来又称为同步辐 射光,并称产生和利用同步辐射光的科 学装置为同步辐射光源或装置。
迷人的X光片~~在X射线下,任何 东西都会很美!!
第一章_X射线物理学基础
它会增加连续背影,给衍射图象带来不利的影响,特别对 轻元素。
38
(2)X射线的吸收
物质对X射线的吸收:X射线能量 在通过物质时转变为其它形式的 能量,X射线发生了能量损耗。 主要表现在对物质原子中的内层
光随后产生的各种过 程。
它主要包括光电效应(二次特征 幅射)和俄歇效应等。
物质中的电子在X射线电场的作用下,产生
强迫振动。
这样每个电子在各方向产生与入射X射线同 频率的电磁波。
新的散射波之间发生的干涉现象称为相干
散射。
37
X射线的散射
②非相干散射 (incoherent scattering 量子散射)
X射线光子与束缚力不大的外层电子 或自由电子碰撞时电 子获得一部分动能成为反冲电子,X射线光子离开原来方 向,能量减小,波长增加的非相干散射波。 非相干散射是康普顿( pton)和我国物理学家吴 有训等人发现的,亦称康普顿-吴有训效应。 非相干散射突出地表现出 X射线的微粒特性,只能用量子 理论来描述,亦称量子散射。
32
特征(标识)X射线谱
莫塞莱定律
标识X射线谱的频率和波长只取决于阳极靶物质的 原子能级结构,是物质的固有特性。
莫塞莱定律:标识X射线谱的波长λ与原子序数Z 关系为:
1
C Z
33
特征(标识)X射线谱
特征X射线的强度特征
K系特征X射线的强度I与管电压U、管电流i的关系 为:
国际计量单位中用纳米(nm)表示,它们之间的换算关系为: 1nm=10Å=10-9m 1kX=1.0020772±0.000053Å (1973年值)。
第一章X射线物理学基础
λ=hc/ △E
08:47:09
高速电子在撞击到原子时,很容易将能量传 送給原子中的电子,而使原子离子化当原子內层 轨道的电子被激发后,其空位很快会被外层电子 的跃入填满,在此电子跃迁的过程中,由于不同 轨道间的能量差,X光会随着放出。 此过程所产
生的X光与原子中电子轨道的能量有关。
08:47:09
08:47:09
产生特征X射线的同时也会产生连续X射
线,但特征X射线强度要比同时产生的邻 近波长连续X射线强度高得多,提高管电 压可以提高特征X射线的强度,但同时连 续X射线强度也增加。当工作电压为激发 电压的3-5倍时,特征X射线强度与连续 X射线强度的比率最大,因此电压应选为 激发电压的3-5倍。
08:47:09
连续X射线谱的特点
1.在阳极靶所辐射的全部光子中,光子能 量的最大值不能大于电子的能量,具有 极大能量的光子波长,即为短波极限 λ0 。 当:ev=h·νmax=hc/λ0 有短波极限:λ0=12400/v
08:47:09
X光管管电流、管电压和阳极靶材对连续谱的影响
08:47:09
2.连续谱强度分布的形状主要决定于X 光管 加速电压的大小。当X 光管管压变化时,其 连续谱的强度分布的形状全不相同(见中间图), 且在λ0的约1.5 倍波长处其强度达到最大值。 连续谱各波长的强度与X 光管的电流成正比 (见左图)。此外,连续谱各波长的强度随阳极 材料的原子序数增大而增加(见右图)。连续谱 的强度(I)与X 光管的电压(V)平方、电流(i)及 阳极材料的原子序数(Z)成正比: I ∝ i Z V2
08:47:09
X射线产生的原理
电磁原理: 当带电粒子在加速或减速过程中, 会释放出电磁波,在巨大加速或减速过 程中,所释放的电磁波具有高能量,当 其波長在10-12-10-8m則成X光。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
连续谱的特征
• 连续谱的表征:
•
短波限 :
λmin
=
12 .4 V
• 最大峰值波长:
λImax
=
3 2
λmin
• 积分强度:I = 1.1×10−9 ⋅ iV 2Z
连续谱短波限
• 在连续谱短波一侧存在着短波。 它相当于电子撞击在阳极上将其全部 能量以X光子形式释放的情况。因此, 短波限λmin跟阳极物质的种类无关, 仅取决于外加电压(V)的大小。
• 发生电子跃迁的两电子壳层的 能量差将以特征X射线逸出原子。 这种跃迁必须符合量子力学理 论
产生特征X射线的物理过程
• 一是产生原子内壳层电子空位; • 二是发射X射线;
具有壳层电子空位的原子处于激发态,电子将重新排列,外壳层 电子向内壳层跃迁,填补内壳层的电子空位,同时释放出跃迁能 量,使原子回到基态。这跃迁能量以特征X射线形式释放出来, 或者能量转移给另一个轨道电子,使该电子发射出来,即俄歇电 子发射。
特征X射线光谱的特点
特征X射线光谱产生于原子内部的电子跃迁,因此具有一下特点: • X射线光谱因发生于原子的内层轨道,故基本不受价态的影响; • 波长分立,与发射谱相比谱线数量相对少,因而干扰显得不那么严
重; • 谱线波长强烈地依从于Z,并遵循莫塞莱(Moseley)定律;
Moseley定律: (1/λ)1/2=Q(Z-δ)
M 系谱线的相对强度为: Mα1 : Mα2 : Mβ1 : Mγ1 100 : 10 : 50 : 5
这里必须说明:Kα 线的波长为: λ Kα = (2 λ Kα1 + λ Kα2 ) / 3
Kα : Kβ 随原子序数而变: 对Cu(29)约为5 : 1, 对Sn(50)约为3:1,对Al(13)约为25:1
波限位置附近;从短波限到最大值曲线急剧上升;从最大值以 后曲线较平滑的下降。 • 当管电压增加到一定程度(激发电压),连续谱上会叠加有特 征谱。
连续谱与电流、电压和靶材的关系
电流
电压
靶材
特征辐射的产生
• 当一束高能光子与原子相互作 用时,其能量≥原子某一轨道电 子的结合能时,即可将该轨道 电子逐出,形成空穴。
K和L系特征X射线部分能级图
特征辐射-各线系光谱线间的相对强度关系
K 系谱线的相对强度为: Kα1 :Kα2 :Kα :Kβ1 : Kβ3 : Kβ2 100 :50 :150 :15 :15 : 5
L 系谱线的相对强度为: Lα1 :Lα2 :Lβ1 :Lβ2 :Lβ3 :Lβ4 :Lγ1 :LΙ :Lη 100 :10 :70 :30 : 10 : 5 :10 :3 : 1
造成电子空位的方法
• 电子激发(SEM、TEM、STEM、EPMA、X射线管阳极靶产生的特征谱 即是这种激发的结果);
• 质子、α粒子、来自粒子加速器的其它离子激发; • 用X光管初级线束(光子)照射; • 用放射性同位素的α、β、γ和和X射线照射; • 用同步辐射源照射; • 用二次靶的二次X射线照射;
X射线的产生
高速运动的电子突然减速便能产生X射线,这是X射线管的工作原理。 因此产生X射线的条件为:
1. 自由电子的发射(例如加热灯丝); 2. 在真空中,迫使这些自由电子朝一定方向高速运动(例如用高压电场); 3. 在电子高速运动的途径上设置能突然阻止电子运动的金属靶
X 射线光谱
X射线管: 输出依赖于下列因素: • 灯丝 • 加速电压 • 电流 • 真空 • 阳极靶材料 • 窗口
X射线的产生
• 连续谱或韧致辐射:高速电子在阳极原子核场中运动受阻,能量迅 速损失而产生宽带连续X射线谱。
• 特征X射线:当靶原子内层电子被高速运动的电子逐出,将产生空 穴,外层电子跃迁时就会放射出特征X射线。因此。造成大量电子 空位是产生特征X射线的必要条件。
X射线的产生
• 样品产生的X荧光光谱图
质量衰减系数
样品的质量吸收系数为各组分的质量吸收系数加权。 μcompound ( λ) = Σ μi(λ).wi W为元素或化合物在样品里的重量百分含量
X射线与物质的相互作用
• 吸收
-光电吸收(X射线荧光和俄歇电子发射) -散射吸收
• 散射
-相干散射 -非相干散射 -衍射
X 射线和物质的相互作用
X射线的吸收
• I = I0 exp ( -μρx) (比耳-朗伯定律)
μ -质量衰减系数[cm2/g] ρ- 密度[g/cm3] x- 辐射通过吸收体的光路[cm] μρ- 线性衰减系数[1/cm]
用户培训课程-理论部分之一
X射线物理学
X射线的波长范围
E(keV ) = hν = h c = 1.23984 λ λ(nm)
γ-rays
X-rays
UV Visual
0.001 0.01 0.1 1.0 10.0 100 200 nm
X射线的本质和定义
• X射线波长范围在0.01~10nm之间,能量为 124keV~0.124keV。其短波段与γ射线长波段相重 叠,其长波段则与真空紫外的短波段相重叠。
• 量子理论将X射线看成由一种量子或光子组成的粒 子流,每个光子具有的能量为: E(keV)=1.23984/λ
• 依据X射线的波长即可计算出其能量。
X射线的本质和定义
根据电磁辐射定律计算波长
公式
E(keV)
λ (nm) λ(nm) =1.24/ E
MgKα 1.253
0.9895
CaKα 3.69
0.3360
FeKβ 7.057
0.1757
PbLα 10.55
0.1175
X射线的起源
X射线起源于由下述过程导致的电子的能量损失: • 原子跃迁(特征辐射) • 减速 (韧致辐射,或连续谱) • 方向改变(同步辐射)
X射线的产生
• 用X射线管辐照样品,是产生荧光X射线光谱的常 用方法。X射线管产生的X射线光谱,被称作原级 X射线谱,它是由连续谱和特征谱组成。
λmin
=
12.4 V
V以kV为单位,λ以Å 为单位
I
(λ)
=
KiZ⎢⎣⎡λλmin
−1⎥⎦⎤⎢⎣⎡λ12
⎤ ⎥⎦
连续谱的特征
• 管电压增高,各相应的曲线也升高,同时最大值和短波极限均 向左(短波方向)移动;
• 连续光谱的强度随加速电压的平方而增加、还跟电流i,阳极元 素原子序数Z成正比;
• 一和等定效管波电长压λ I的max强度;分布具有一最短波长极限(短波限) λmin • 连续谱强度最大值在曲线中部而偏左,波长处在二分之三倍短