神经网络讲解与实例课件

合集下载

《hopfield神经网络》课件

《hopfield神经网络》课件

图像识别实例
总结词
通过Hopfield神经网络,可以实现高效的图像识 别。
总结词
图像识别的准确率取决于训练样本的多样性和数 量。
详细描述
在图像识别实例中,可以将图像信息转化为神经 网络的输入,通过训练和学习,网络能够将输入 的图像信息与预存的图像模式进行匹配,从而实 现图像的快速识别。
详细描述
为了提高图像识别的准确率,需要收集大量具有 代表性的训练样本,并采用多种不同的训练方法 对网络进行训练,以增加网络的泛化能力。
神经元模型
神经元模型
Hopfield神经网络的基本单元是神经元,每个神经元通过加权输 入信号进行激活或抑制。
激活函数
神经元的输出由激活函数决定,常用的激活函数有阶跃函数和 Sigmoid函数。
权重
神经元之间的连接权重用于存储记忆模式,通过训练可以调整权重 。
能量函数
1 2 3
能量函数定义
能量函数是描述Hopfield神经网络状态的一种方 式,其值越低表示网络状态越稳定。
《Hopfield神经网 络》PPT课件
目录
CONTENTS
• Hopfield神经网络概述 • Hopfield神经网络的基本原理 • Hopfield神经网络的实现 • Hopfield神经网络的优化与改进 • Hopfield神经网络的实例分析
01 Hopfield神经网络概述
定义与特点
能量函数的性质
能量函数具有非负性、对称性、连续性和可微性 等性质,这些性质对于网络的稳定性和记忆性能 至关重要。
最小能量状态
训练过程中,网络会逐渐趋近于最小能量状态, 此时对应的模式被存储在神经元连接权重中。
稳定性分析
稳定性定义

神经网络学习PPT课件

神经网络学习PPT课件
不断迭代,权重逐渐调整到最优解附近。
牛顿法
总结词
牛顿法是一种基于二阶泰勒级数的优化算法,通过迭 代更新参数,以找到损失函数的极小值点。在神经网 络训练中,牛顿法可以用于寻找最优解。
详细描述
牛顿法的基本思想是,利用二阶泰勒级数近似损失函数 ,并找到该函数的极小值点。在神经网络训练中,牛顿 法可以用于寻找最优解。具体来说,根据二阶导数矩阵 (海森矩阵)和当前点的梯度向量,计算出参数更新的 方向和步长,然后更新参数。通过不断迭代,参数逐渐 调整到最优解附近。与梯度下降法相比,牛顿法在迭代 过程中不仅考虑了梯度信息,还考虑了二阶导数信息, 因此具有更快的收敛速度和更好的全局搜索能力。
07
未来展望与挑战
深度学习的发展趋势
模型可解释性
随着深度学习在各领域的广泛应用,模型的可解释性成为研究热 点,旨在提高模型决策的透明度和可信度。
持续学习与终身学习
随着数据不断增长和模型持续更新,如何实现模型的持续学习和终 身学习成为未来的重要研究方向。
多模态学习
随着多媒体数据的普及,如何实现图像、语音、文本等多模态数据 的融合与交互,成为深度学习的另一发展趋势。
深度学习
通过构建深层的神经网络结构, 提高了对复杂数据的处理能力。
循环神经网络
适用于序列数据,如自然语言 处理和语音识别等领域。
02
神经网络的基本结构
感知机模型
感知机模型是神经网络的基本单 元,由一个输入层和一个输出层 组成,通过一个或多个权重和偏
置项来计算输出。
感知机模型只能实现线性分类, 对于非线性问题无法处理。
详细描述
反向传播算法的基本思想是,首先计算神经网络的输出层与实际值之间的误差,然后将误差逐层反向传播,并根 据梯度下降法更新每一层的权重。通过不断迭代,权重逐渐调整,使得神经网络的输出逐渐接近实际值,从而降 低误差。反向传播算法的核心是计算每一层的梯度,即权重的导数,以便更新权重。

神经网络方法-PPT课件精选全文完整版

神经网络方法-PPT课件精选全文完整版

信号和导师信号构成,分别对应网络的输入层和输出层。输
入层信号 INPi (i 1,根2,3据) 多传感器对标准试验火和各种环境条件
下的测试信号经预处理整合后确定,导师信号
Tk (k 1,2)
即上述已知条件下定义的明火和阴燃火判决结果,由此我们
确定了54个训练模式对,判决表1为其中的示例。
15
基于神经网络的融合算法
11
局部决策
局部决策采用单传感器探测的分析算法,如速率持续 法,即通过检测信号的变化速率是否持续超过一定数值来 判别火情。 设采样信号原始序列为
X(n) x1 (n), x2 (n), x3 (n)
式中,xi (n) (i 1,2,3) 分别为温度、烟雾和温度采样信号。
12
局部决策
定义一累加函数 ai (m为) 多次累加相邻采样值 的xi (差n) 值之和
样板和对应的应识别的结果输入人工神经网络,网络就会通过
自学习功能,慢慢学会识别类似的图像。
第二,具有联想存储功能。人的大脑是具有联想功能的。用人
工神经网络的反馈网络就可以实现这种联想。
第三,具有容错性。神经网络可以从不完善的数据图形进行学
习和作出决定。由于知识存在于整个系统而不是一个存储单元
中,一些结点不参与运算,对整个系统性能不会产生重大影响。
18
仿真结果
19
仿真结果
20
2
7.2 人工神经元模型—神经组织的基本特征
3
7.2 人工神经元模型—MP模型
从全局看,多个神经元构成一个网络,因此神经元模型的定义 要考虑整体,包含如下要素: (1)对单个人工神经元给出某种形式定义; (2)决定网络中神经元的数量及彼此间的联结方式; (3)元与元之间的联结强度(加权值)。

神经网络ppt课件

神经网络ppt课件
神经元层次模型 组合式模型 网络层次模型 神经系统层次模型 智能型模型
通常,人们较多地考虑神经网络的互连结构。本 节将按照神经网络连接模式,对神经网络的几种 典型结构分别进行介绍
12
2.2.1 单层感知器网络
单层感知器是最早使用的,也是最简单的神经 网络结构,由一个或多个线性阈值单元组成
这种神经网络的输入层不仅 接受外界的输入信号,同时 接受网络自身的输出信号。 输出反馈信号可以是原始输 出信号,也可以是经过转化 的输出信号;可以是本时刻 的输出信号,也可以是经过 一定延迟的输出信号
此种网络经常用于系统控制、 实时信号处理等需要根据系 统当前状态进行调节的场合
x1
…… …… ……
…… yi …… …… …… …… xi
再励学习
再励学习是介于上述两者之间的一种学习方法
19
2.3.2 学习规则
Hebb学习规则
这个规则是由Donald Hebb在1949年提出的 他的基本规则可以简单归纳为:如果处理单元从另一个处
理单元接受到一个输入,并且如果两个单元都处于高度活 动状态,这时两单元间的连接权重就要被加强 Hebb学习规则是一种没有指导的学习方法,它只根据神经 元连接间的激活水平改变权重,因此这种方法又称为相关 学习或并联学习
9
2.1.2 研究进展
重要学术会议
International Joint Conference on Neural Networks
IEEE International Conference on Systems, Man, and Cybernetics
World Congress on Computational Intelligence
复兴发展时期 1980s至1990s

第一讲神经网络基本原理ppt课件

第一讲神经网络基本原理ppt课件

人工神经网络基本要素
人工神经网络(简称神经网络)是由人工神经元(简称神经元)互 连组成的网络,它是从微观结构和功能上对人脑的抽象、简化,是模 拟人类智能的一条重要途径,反映了人脑功能的若干基本特征,如并 行信息处理、学习、联想、模式分类、记忆等。
人工神经网络(ANN)可看成是以人工神经元为节点,用有向加权 弧连接起来的有向图。
20 世 纪 80 年 代 以 来 , 人 工 神 经 网 络 ( ANN , Artificial Neural Network)研究取得了突破性进展。神经网络控制是将神经网络与控制 理论相结合而发展起来的智能控制方法。它已成为智能控制的一个新的 分支,为解决复杂的非线性、不确定、未知系统的控制问题开辟了新途 径。
y 是神经元的输出。
神经元的输出 y=f(w*u+θ )
人工神经网络基本要素 —神经元
可见,神经元的实际输出还取决于所选择的作用函数f(x)。神经元的阈值 可以看作为一个输入值是常数1对应的连接权值。根据实际情况,也可以 在神经元模型中忽略它。关于作用函数的选择将在后面详细讨论。在上述 模型中,w和θ是神经元可调节的标量参数。设计者可以依据一定的学习规 则来调整它。
每个神经元的突触数目有所不同,而且各神经元之间的连接强度 和极性有所不同,并且都可调整,基于这一特性,人脑具有存储信息的 功能。图1.1 生物神经元的结构
人工神经网络基本要素 —神经元
神经生理学和神经解剖学的研究 结果表明,神经元是脑组织的基 本单元,是神经系统结构与功能 的单位。
• 大脑
Brain
在此有向图中,人工神经元就是对生物神经元的模拟,而有向弧则 是轴突—突触—树突对的模拟。有向弧的权值表示相互连接的两个人 工神经元间相互作用的强弱。

神经网络基本介绍PPT课件

神经网络基本介绍PPT课件

神经系统的基本构造是神经元(神经细胞 ),它是处理人体内各部分之间相互信息传 递的基本单元。
每个神经元都由一个细胞体,一个连接 其他神经元的轴突和一些向外伸出的其它 较短分支—树突组成。
轴突功能是将本神经元的输出信号(兴奋 )传递给别的神经元,其末端的许多神经末 梢使得兴奋可以同时传送给多个神经元。
将神经网络与专家系统、模糊逻辑、遗传算法 等相结合,可设计新型智能控制系统。
(4) 优化计算 在常规的控制系统中,常遇到求解约束
优化问题,神经网络为这类问题的解决提供 了有效的途径。
常规模型结构的情况下,估计模型的参数。 ② 利用神经网络的线性、非线性特性,可建立线
性、非线性系统的静态、动态、逆动态及预测 模型,实现非线性系统的建模。
(2) 神经网络控制器 神经网络作为实时控制系统的控制器,对不
确定、不确知系统及扰动进行有效的控制,使控 制系统达到所要求的动态、静态特性。 (3) 神经网络与其他算法相结合
4 新连接机制时期(1986-现在) 神经网络从理论走向应用领域,出现
了神经网络芯片和神经计算机。 神经网络主要应用领域有:模式识别
与图象处理(语音、指纹、故障检测和 图象压缩等)、控制与优化、系统辨识 、预测与管理(市场预测、风险分析) 、通信等。
神经网络原理 神经生理学和神经解剖学的研究表 明,人脑极其复杂,由一千多亿个神经 元交织在一起的网状结构构成,其中大 脑 皮 层 约 140 亿 个 神 经 元 , 小 脑 皮 层 约 1000亿个神经元。 人脑能完成智能、思维等高级活动 ,为了能利用数学模型来模拟人脑的活 动,导致了神经网络的研究。
(2) 学习与遗忘:由于神经元结构的可塑 性,突触的传递作用可增强和减弱,因 此神经元具有学习与遗忘的功能。 决定神经网络模型性能三大要素为:

《神经网络电子教案》课件

《神经网络电子教案》课件

《神经网络电子教案》PPT课件第一章:神经网络简介1.1 神经网络的定义1.2 神经网络的发展历程1.3 神经网络的应用领域1.4 神经网络的基本组成第二章:人工神经元模型2.1 人工神经元的结构2.2 人工神经元的激活函数2.3 人工神经元的训练方法2.4 人工神经元的应用案例第三章:感知机3.1 感知机的原理3.2 感知机的训练算法3.3 感知机的局限性3.4 感知机的应用案例第四章:多层前馈神经网络4.1 多层前馈神经网络的结构4.2 反向传播算法4.3 多层前馈神经网络的训练过程4.4 多层前馈神经网络的应用案例第五章:卷积神经网络5.1 卷积神经网络的原理5.2 卷积神经网络的结构5.3 卷积神经网络的训练过程5.4 卷积神经网络的应用案例第六章:递归神经网络6.1 递归神经网络的原理6.2 递归神经网络的结构6.3 递归神经网络的训练过程6.4 递归神经网络的应用案例第七章:长短时记忆网络(LSTM)7.1 LSTM的原理7.2 LSTM的结构7.3 LSTM的训练过程7.4 LSTM的应用案例第八章:对抗网络(GAN)8.1 GAN的原理8.2 GAN的结构8.3 GAN的训练过程8.4 GAN的应用案例第九章:强化学习与神经网络9.1 强化学习的原理9.2 强化学习与神经网络的结合9.3 强化学习算法的训练过程9.4 强化学习与神经网络的应用案例第十章:神经网络的优化算法10.1 梯度下降算法10.2 动量梯度下降算法10.3 随机梯度下降算法10.4 批梯度下降算法10.5 其他优化算法简介第十一章:神经网络在自然语言处理中的应用11.1 词嵌入(Word Embedding)11.2 递归神经网络在文本分类中的应用11.3 长短时记忆网络(LSTM)在序列中的应用11.4 对抗网络(GAN)在自然语言中的应用第十二章:神经网络在计算机视觉中的应用12.1 卷积神经网络在图像分类中的应用12.2 递归神经网络在视频分析中的应用12.3 对抗网络(GAN)在图像合成中的应用12.4 强化学习在目标检测中的应用第十三章:神经网络在推荐系统中的应用13.1 基于内容的推荐系统13.2 协同过滤推荐系统13.3 基于神经网络的混合推荐系统13.4 对抗网络(GAN)在推荐系统中的应用第十四章:神经网络在语音识别中的应用14.1 自动语音识别的原理14.2 基于神经网络的语音识别模型14.3 深度学习在语音识别中的应用14.4 语音识别技术的应用案例第十五章:神经网络在生物医学信号处理中的应用15.1 生物医学信号的特点15.2 神经网络在医学影像分析中的应用15.3 神经网络在生理信号处理中的应用15.4 神经网络在其他生物医学信号处理中的应用重点和难点解析重点:1. 神经网络的基本概念、发展历程和应用领域。

神经网络原理与应用第1讲:基础知识PPT课件

神经网络原理与应用第1讲:基础知识PPT课件
定了神经网络的基础。
1957年,心理学家Frank Rosenblatt提出了感知机模 型,它可以识别一些简单的
模式,但无法处理异或 (XOR)问题。
1974年,Paul Werbos提出 了反向传播算法,解决了感 知机模型无法学习异或问题
的问题。
2006年,加拿大多伦多大学 的Geoffrey Hinton等人提出 了深度学习的概念,开启了
权重更新是根据损失函数的梯度调整权重的过程,通过不断 地迭代优化,使神经网络逐渐接近最优解。权重更新的过程 通常使用梯度下降法或其变种进行。
03
神经网络的类型
前馈神经网络
总结词
前馈神经网络是最基本的神经网络类型,信息从输入层开始,逐层向前传递,直 至输出层。
详细描述
前馈神经网络中,每一层的神经元只接收来自前一层的输入,并输出到下一层。 这种网络结构简单,易于训练和实现,常用于模式识别、分类和回归等任务。
利用神经网络进行游戏AI的决 策和策略制定,如AlphaGo
等。
02
神经网络的基本概念
神经元模型
总结词
神经元是神经网络的基本单元,模拟 生物神经元的行为。
详细描述
神经元模型通常包括输入信号、权重 、激活函数和输出信号等部分。输入 信号通过权重进行加权求和,经过激 活函数处理后得到输出信号。
激活函数
06
神经网络的应用实例
图像识别
总结词
图像识别是神经网络应用的重要领域之一, 通过训练神经网络识别图像中的物体、人脸 等特征,可以实现高效的图像分类、目标检 测等功能。
详细描述
神经网络在图像识别领域的应用已经取得了 显著的成果。例如,卷积神经网络(CNN) 被广泛用于图像分类、目标检测和人脸识别 等任务。通过训练神经网络,可以自动提取 图像中的特征,并基于这些特征进行分类或 检测目标。这大大提高了图像识别的准确性

《神经网络理论基础》课件

《神经网络理论基础》课件
2 发展历程
神经网络起源于20世纪40年代,经过多年的发展和研究,如今广泛应用于人工智能、图 像识别、语音识别等领域。
神经元和神经网络模型
神经元
神经网络的基本单位,接收输入信号,经过处理后 产生输出信号。
神经网络模型
由多个神经元组成的网络结构,具有输入层、隐藏 层和输出层,用于解决复杂的问题。
前馈神经网络与反馈神经网络
《神经网络理论基础》 PPT课件
本课件将介绍神经网络的定义和发展历程,神经元和神经网络模型,前馈神 经网络与反馈神经网络,深度神经网络和卷积神经网络,循环神经网络和长 短期记忆网络,神经网络的训练与优化算法,以及神经网络的应用和前景展 望。
神经网络的定义和发展历程
1 定义
神经网络是由大量相互连接的处理单元(神经元)组成的计算模型,模仿生物神经系统 的运行机制。
循环神经网络和长短期记忆网络
循环神经网络
具有反馈连接的神经网络,可以处理序列数据,如自然语言处理和语音合成。
长短期记忆网络
一种特殊的循环神经网络,通过门控单元来记忆长期依赖关系,适用于处理时间序列数据。
神经网络的训练与优化算法
1 训练
使用反向传播算法根据输入和期望输出调整神经网络的权重和偏差,使其逐渐学习到正 确的映射关系。
2 优化算法
常用的优化算法包括梯度下降、Adam、RMSprop等,用于加速神经网络的训练和提高性 能。
神经网络的应用和前景展望
应用领域
神经网络被广泛应用于人工智能、自动驾驶、金融 预测、医学影像分析等领域。
前景展望
随着技术的不断发展,神经网络在未来将继续发挥 重要作用,带来更多创新和突破。
1
前馈神经网络
信息只能单向传递,无反馈循环,适用于静态问题的处理。

《神经网络课堂讲义》PPT课件

《神经网络课堂讲义》PPT课件
• 神经网络对数据量有最低要求,一般情况下,一个权重至少需要 10个训练(xùnliàn)数据。
• 通过输入节点将输入变量加以标准化,标准化后的变量数值落在 0和1之间,或者是-1和1之间。
• 数据不能含有缺失值和离群点。 • 属性变量必须是数值型。 • 当有成百上千个属性变量时,神经网络效果就不是很好。
• 至少含有一个隐藏层的多层神经网络是一种普适近似,即可以用来近似 任何目标函数 。
• 可以处理冗余特征。 • 神经网络对训练数据中的噪声非常敏感。
• 训练ANN是一个很耗时的过程,特别当隐藏节点数量很大时。 • 可以建构非线性的模型,模型的准确度高。
第二十九页,共37页。
数据 的准备问题 (shùjù)
的隐藏层节点、适当的非线性函数、
第二十页,共37页。
三层感知器的预测(yùcè)公 式
第二十一页,共37页。
三层感知器解决(jiějué)异或(XOR)问题
u1 u2
y
00 0
01 1
10 1
11 0
第二十二页,共37页。
网络拓扑结构(jiégòu)
第二十三页,共37页。
网络拓扑结构(jiégòu)(续)
01 1
10 1
11 0
第十八页,共37页。
单层感知器的局限性
• 由于单层感知器的激活函数是符号函数,则感知器神经网络的输 出只能取-1或1。因此(yīncǐ)单层感知器只能用于简单的分类问题。
• 只能解决线性可分问题,而大量的分类问题是线性不可分的。 • 当输入矢量中有一个数比其他数都大或小得很多时,可能导致较
第二十四页,共37页。
网络拓扑结构(jiégòu)(续)
第二十五页,共37页。

神经网络基础PPT课件

神经网络基础PPT课件

AlexNet
VGGNet
ResNet
DenseNet
由Yann LeCun等人提出 ,是最早的卷积神经网 络之一,用于手写数字 识别。
由Alex Krizhevsky等人 提出,获得了2012年 ImageNet图像分类竞 赛的冠军,引入了ReLU 激活函数和数据增强等 技巧。
由牛津大学Visual Geometry Group提出 ,通过反复堆叠3x3的小 型卷积核和2x2的最大池 化层,构建了深度较深 的网络结构。
内部表示。
隐藏层
通过循环连接实现信息 的持久化,捕捉序列中
的动态信息。
输出层
将隐藏层的状态转化为 具体的输出。
循环连接
将隐藏层的状态反馈到 输入层或隐藏层自身, 实现信息的循环传递。
序列建模与长短时记忆网络(LSTM)
序列建模
01
RNN通过循环连接实现对序列数据的建模,能够处理任意长度
的序列输入。
久化。
Jordan网络
与Elman网络类似,但将输出 层的状态反馈到隐藏层。
LSTM网络
长短时记忆网络,通过引入门 控机制实现对长期依赖信息的
有效处理。
GRU网络
门控循环单元网络,一种简化 的LSTM结构,具有较少的参
数和较快的训练速度。
06 深度学习框架 TensorFlow使用指南
TensorFlow安装与配置教程
非线性可分问题
不存在一条直线(或超平面)能够将两类样本完全分开的 问题。对于这类问题,需要使用非线性分类器或者核方法 等技巧进行处理。
处理非线性可分问题的方法
包括使用多项式核、高斯核等核函数将数据映射到高维空 间使其线性可分;或者使用神经网络等非线性模型对数据 进行建模和分类。

BP神经网络及简单示例(共26张PPT)

BP神经网络及简单示例(共26张PPT)

plot(n,a)

grid on
第19页,共26页。
图形如下:
层内有互相结合的前向网络: Pf:函数返回值,最终输出延迟; Ai:初始的层次延迟,默认为0; logsig(S型函数): 有反馈的前向神经网络: 1、触角长和翼长作为输入信息,分别记为x1,x2。 PF:网络的性能函数,默认为“mse” tansig(双曲正切S型传递函数): pr=minmax(p); 工作原理:模拟生物的神经处理信息的方式 特点:任意两个神经元之间都可能有联系 a=tansig(n) pr=minmax(p); 调用格式:A=logsig(N) 图像:识别、去噪、增强、配准、融合 Y:函数返回值,网络输出; 3、将待区分的蠓虫数据输入网络,求值。 多层前馈神经网络,信号向前传播,误差向后传播。
xj为输入信号,
为阈值,
i
yi表示输出值
表示与神经元 ij
xj
连接的权值
第6页,共26页。
阈值型 线性型
S型
传递函数
f
(x)
1 0
xi 0
xi 0
1 f ( xi ) ax i b
0
xi x2
x1 xi x2
xi x1
1
f (xi )
(
xi
2 )
1e c
第7页,共26页。
神经网络的互连模式
BTF:BP网络的训练函数,默认为“trainlm”;
BLF:权值和阈值的BP学习算法,默认为“learngdm”
PF:网络的性能函数,默认为“mse”
第22页,共26页。
train 用于对神经网络进行训练。调用格式为:
[net,tr,Y,E,Pf,Af]=train(NET,P,T,Pi,Ai)

神经网络讲解与实例课件

神经网络讲解与实例课件

BP网络:采用BP算法(Back-Propagation Training Algorithm)
的多层感知器。
误差反向传播算法
认识最清楚、应用最广泛。
性能优势:识别、分类 1.多层感知器
输出层
y1

yM

针对感知器学习 …
算法的局限性:模式 第 二 隐
类必须线性可分。


结构:
第一隐 层
前馈网络;
x1
w1
x2
w2


xn
wn
互连强度/权值 输出函数
∑ f
y
输出
作比较 的阈值
图8.2 人工神经元模型
人工神经元间的互连:信息传递路径轴突-突触-树突的简化;
连接的权值:两个互连的神经元之间相互作用的强弱。
神经元的动作:
n
net wi xi i 1
y f (net)
(xi , wi R)
输出函数 f:也称作用函数,非线性。
(4) 并行工作方式; (5) 对信息采用分布式记忆,具有鲁棒性。 四个发展阶段: 第一阶段:启蒙期,始于1943年。
形式神经元的数学模型提出。
第二阶段:低潮期,始于1969年。 《感知器》(Perceptions)一书出版,指出局限性 。
第三阶段:复兴期,从1982年到1986年。 Hopfield的两篇论文提出新的神经网络模型; 《并行分布处理》出版,提出反向传播算法。
y1

yM


x1
x2

xn
感知器结构示意图
结构特点:
* 双层(输入层、输出层); * 两层单元之间为全互连; * 连接权值可调。

神经网络介绍课件

神经网络介绍课件
05
自适应学习率:根 据训练过程自动调 整学习率,提高训 练效果
02
随机梯度下降法: 每次只使用一个样 本进行梯度下降, 提高训练速度
06
正则化:在损失函 数中加入正则项, 防止过拟合
03
批量梯度下降法: 每次使用所有样本 进行梯度下降,提 高训练精度
07
早停法:在训练过 程中监控验证集损 失,当验证集损失 不再下降时停止训 练,防止过拟合
演讲人
目录
01. 神经网络概述 02. 神经网络结构 03. 神经网络预测性 04. 神经网络案例分析
神经网络基本概念
01 人工神经网络(Artificial
02 神经元(Neuron):神经网
Neural Network, ANN):
络的基本单元,接收来自其他
模拟人脑神经网络的结构和功
神经元的输入信号,进行加权
场景
自动驾驶:实现 自动驾驶汽车的
感知和控制
语音识别:将语 音信号转换为文

自然语言处理: 理解并生成自然
语言
模型构建
数据预处理:对数据进行清洗、标准化和归一化 等处理
模型选择:根据问题选择合适的神经网络模型, 如卷积神经网络、循环神经网络等
模型训练:使用训练数据训练模型,调整参数以 优化性能
模型评估:使用测试数据评估模型的性能,如准 确率、召回率等指标
04
动量法:在梯度下 降过程中引入动量 项,提高训练速度
数据预处理
A
数据清洗:去除异常值、 缺失值等
B
数据归一化:将不同特征 值缩放到同一范围
C
数据分块:将数据划分为 训练集、验证集和测试集
D
数据增强:通过相关性:选择与目标变量相关的特征
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
络按照一定的训练规则自动调节神经元之间的连接强度或拓 扑结构,使实际输出满足期望的要求或者趋于稳定。
典型的权值修正方法: Hebb学习规则、δ误差修正学习
1.Hebb学习规则
如果神经网络中某一神经元与另一直接与其相连的神经
元同时处于兴奋状态,那么这两个神经元之间的连接强度应
该加强。
神经网络讲解与实例
(3)具有学习和记忆能力.一个神经网络可以通过训练 学习判别事物;学习某一种规律或规则.神经网络可以 用于联想记忆.
(4)对数据的可容性大.在神经网络中可以同时使用量化 数据和质量数据(如好、中、差、及格、不及格等).
(5)神经网络可以用大规模集成电路来实现.如美国用 256 个神经元组成的神经网络组成硬件用于识别手写体的邮政编 码.
n1

yj f( wijxi)f(WjTX)
i1
神经网络讲解与实例
13
M类问题判决规则( 神经元的输出函数) 为
yj
f
(WjTX)
1, 1,
若X j 若X j
1 j M
* 正确判决的关键:
输出层每个神经元必须有一组合适的权值。
* 感知器采用监督学习算法得到权值;
* 权值更新方法:δ学习规则。
算法描述
人工神经元间的互连:信息传递路径轴突-突触-树突的简化;
连接的权值:两个互连的神经元之间相互作用的强弱。
神经网络讲解与实例
7
神经元的动作:
n
net wi xi i1
y f (ne)t
(xi, wi R)
输出函数 f:也称作用函数,非线性。
y
y
y
1
1
1

net
(a)
阈值型
net 0
(b)
S型
0
9
x1
w1j
x2 w2j
┇┇
i yi
xi
wij


┇Leabharlann wnjxnj yj
神经元间的连接
w i( jt 1 ) w i( jt)[yj(t)y i(t)]
wij(t+1):修正一次后的某一权值; η:学习因子,表示学习速率的比例常数; yj(t),yi(t):分别表示t时刻第j个和第i个神经元的状态(输出)。
n
输出为 yj f( wijxi j)
i1
θj:第j个神经元的阈值;
yi
wij:输入模式第i个分量与
输出层第j个神经元间的连接权。
x1
w1j
x2 w2j
┇┇
xi
wij


wnj
j yj
输出单元对所有输入数值加权求和,经阈值型输出函数
产生一组输出模式。
令 j w(n1)j 。取
W j [w 1j,w 2j, ,w (n 1 )j]T X[x1,x2, ,xn,1]T
第三阶段:复兴期,从1982年到1986年。 Hopfield的两篇论文提出新的神经网络模型;
《并行分布处理》出版,提出反向传播算法。
第四个阶段:1987年至今,趋于平稳。
回顾性综述文章“神经网络与人工智能” 。
神经网络讲解与实例
3
人工神经网络的基本 特点
(1)可处理非线性
(2)并行结构.对神经网络中的每一个神经元来说;其 运算都是同样的.这样的结构最便于计算机并行处理.
y1

yM


x1
x2

xn
感知器结构示意图
结构特点:
* 双层(输入层、输出层); * 两层单元之间为全互连; * 连接权值可调。
* 输出层神经元个数等于类 别数(两类问题时输出层 为一个神经元)。
神经网络讲解与实例
12
设输入模式向量,X[x1,x2, ,xn]T,共M类。
输出层第j个神经元对应第j个模式类,
由 yi(t)xi(t)有:
w i( jt 1 ) w i( jt)[yj(t)x i(t)]
神经网络讲解与实例
10
2. δ学习规则
(1)选择一组初始权值wij(1); (2)计算某一输入模式对应的实际输出与期望输出的误差; (3)更新权值,阈值可视为输入恒为(-1)的一个权值;
w i( j t 1 ) w i( j t) [ d j y j( t)x i] ( t)
神经网络讲解与实例
4
1.2 神经网络基本概念
1.2.1 生物神经元 1.生物神经元的结构
细胞体、树突、轴突和突触。
来自其它神经元轴突的神经末梢
树突 细胞体 细胞核
轴突
突触 神经末梢
神经网络讲解与实例
5
2.生物神经元的工作机制 兴奋和抑制两种状态。
抑制状态的神经元 由树突和细胞体 接收传来的兴奋电位
式中,η:学习因子; dj,yj(t):第j个神经元的期望输出与实际输出;
xi(t):第j个神经元的第i个输入。 (4)返回 (2) ,直到对所有训练模式网络输出均能满足要求。
神经网络的学习体现在:权值变化;网络结构变化。
神经网络讲解与实例
11
1.3 前馈神经网络
1.3.1 感知器 感知器(Perceptron):F.Rosenblatt于1957年提出。
输入兴奋总 量超过阈值
神经元被激发 进入兴奋状态
产生输出脉冲
由突触传递给其它神经元
神经网络讲解与实例
6
1.2.2 人工神经元及神经网络 人工神经元:生物神经元的简化模拟。
n维输入向量X
接收的信息
(其它神经元的输 出)
x1
w1
x2
w2


xn
wn
互连强度/权值 输出函数
∑ f
y
输出
作比较 的阈值
图8.2 人工神经元模型
优点: (1) 较强的容错性;
(2) 很强的自适应学习能力; (3) 可将识别和若干预处理融为一体进行;
神经网络讲解与实例
2
(4) 并行工作方式; (5) 对信息采用分布式记忆,具有鲁棒性。
四个发展阶段: 第一阶段:启蒙期,始于1943年。 形式神经元的数学模型提出。
第二阶段:低潮期,始于1969年。 《感知器》(Perceptions)一书出版,指出局限性 。
net
(c)
伪线性型
f 为阈值型函数时:ysgn n wixi
i1
设 wn1 ,点积形式: ysgnW(TX)
式中,W [w 1, ,w n,w n神 1 经]网T络讲X 解与实例[x1, ,xn,1]T
8
1.2.3 神经网络的学习 学习: 神经网络的最重要特征之一。
实质: 同一个训练集的样本输入输出模式反复作用于网络,网
人工神经网络
(Artificial Neural Netwroks -----ANN)
神经网络讲解与实例
1
1.1 人工神经网络发展概况
人工神经网络(Artificial Neural Networks,ANN): 简 称神经网络。
模拟人脑神经细胞的工作特点: * 单元间的广泛连接; * 并行分布式的信息存贮与处理; * 自适应的学习能力等。
相关文档
最新文档