第二章轴的拉伸与压缩10-16教案

合集下载

第二章 轴向拉伸和压缩

第二章  轴向拉伸和压缩

第二章 轴向拉伸和压缩§2−1 轴向拉伸和压缩的概念F(图2−1)则为轴向拉伸,此时杆被2−1虚线);若作用力F 压缩杆件(图(图2−2工程中许多构件,(图2−3)、各类(图2−4)等,这类结构的构2−1和图2−2。

§ 2−2 内力·截面法·轴力及轴力图一、横截面上的内力——轴力图2−5a 所示的杆件求解横截面m−m 的内力。

按截面法求解步骤有:可在此截面处假想将杆截断,保留左部分或右部分为脱离体,移去部分对保留部分的作用,用内力来代替,其合力F N ,如图2−5b 或图2−5c 所示。

对于留下部分Ⅰ来说,截面m −m 上的内力F N 就成为外力。

由于原直杆处于平衡状态,故截开后各部分仍应维持平衡。

根据保留部分的平衡条件得 mF N F N(a )(b ) (c )图2−5Ⅱ图2−1图2−2图2-4F F F F Fx==-=∑N N ,0,0 (2−1)式中,F N 为杆件任一截面m −m 上的内力,其作用线也与杆的轴线重合,即垂直于横截面并通过其形心,故称这种内力为轴力,用符号F N 表示。

若取部分Ⅱ为脱离体,则由作用与反作用原理可知,部分Ⅱ截开面上的轴力与前述部分上的轴力数值相等而方向相反(图2−5b,c)。

同样也可以从脱离体的平衡条件来确定。

二、轴力图当杆受多个轴向外力作用时,如图2−7a ,求轴力时须分段进行,因为AB 段的轴力与BC 段的轴力不相同。

要求AB 段杆内某截面m −m 的轴力,则假想用一平面沿m −m 处将杆截开,设取左段为脱离体(图2−7b),以F N Ⅰ代表该截面上的轴力。

于是,根据平衡条件∑F x =0,有 F F -=ⅠN负号表示的方向与所设的方向相反,即为压力。

要求B C 段杆内某截面n-n 的轴力,则在n −n 处将杆截开,仍取左段为脱离体(图2−7c ),以F N Ⅱ代表该截面上的轴力。

于是,根据平衡条件∑F x =0,有 02N Ⅱ=+-F F F由此得F F =N Ⅱ在多个力作用时,由于各段杆轴力的大小及正负号各异,所以为了形象地表明各截面轴力的变化情况,通常将其绘成“轴力图”(图2−7d)。

轴向拉伸和压缩

轴向拉伸和压缩

六、强度计算
1.极限应力和许用应力
工作应力 FN
A
极限应力
塑性材料
u
(S

p 0.2
脆性材料
u
( bt

bc
u n —安全因数 — 许用应力
n
塑性材料的许用应力 脆性材料的许用应力
s
ns
bt
nb
p0.2
ns
bc
nb
轴向拉伸和压缩
2.强度计算
max
FN A
轴向拉伸和压缩
二、杆的内力计算
1.内力的概念
构件所承受的载荷及约束反力统称为外力。构件在外力作用下发生变形,产生构
件内部各部分之间的相互作用力,这种作用力称为内力。
2.截面法
(1)截开 (2)代替 (3)平衡
F5
F1
F2
F5
F1
F2
m F4
m
F3
F4
F3
轴向拉伸和压缩
3.轴力
轴向拉伸或压缩时杆横截面上 F
的内力与杆轴线重合,因此 称为轴力,
F
m F
m
FN
FN
F
Fx 0
FN F 0 FN F
轴向拉伸和压缩
4.轴力图
A
为了表明横截面上的轴力
沿轴线变化的情况,可 F1
按选定的比例尺,以与
杆件轴线平行的坐标轴 表示各横截面的位置,
F1
以垂直于该坐标轴的方 向表示相应的内力值,
F1
这样做出的图形称为轴
根据强度条件,可以解决三类强度计算问题
1、强度校核: 2、设计截面: 3、确定许可载荷:
max
FN A

材料力学教案 第2章 拉伸、压缩与剪切

材料力学教案 第2章 拉伸、压缩与剪切

第2章拉伸压缩与剪切教学目的:了解材料的力学性质;掌握轴向拉伸、压缩、剪切和挤压的概念;掌握轴向拉压时构件的内力、应力、变形的计算;熟练掌握剪切应力及挤压应力的计算方法并进行强度校核;掌握拉压杆的超静定问题。

教学重点:建立弹性杆件横截面上内力、内力分量的概念;运用截面法画轴力图;掌握低碳钢的力学性质;掌握轴向拉伸和压缩时横截面上正应力计算公式及其适用条件;掌握拉压杆的强度计算;熟练掌握剪切和挤压的实用计算。

教学难点:低碳钢类塑性材料在拉伸过程中反映出的性质;许用应力的确定和使用安全系数的原因;强度计算问题;剪切面和挤压面的确定;剪切和挤压的实用计算;拉压杆超的静定计算。

教具:多媒体。

教学方法:采用启发式教学,通过提问,引导学生思考,让学生回答问题。

举例掌握轴向拉伸、压缩和剪切变形概念,通过例题、作业,加强辅导熟练运用截面法,掌握轴力图的画法;建立变形、弹性变形、应变、胡克定律和抗拉压刚度的概念;教学内容:轴向拉伸和压缩的概念;强度计算;材料的力学性能及应力应变图;许用应力与安全系数;超静定的计算;剪切概念;剪切实用计算;挤压实用计算。

教学学时:8学时。

教学提纲:2.1 轴向拉伸与压缩的概念和实例1.实例(1)液压传动中的活塞杆(2)内燃机的连杆(3)起吊重物用的钢索(4)千斤顶的螺杆(5)桁架的杆件2.概念及简图这些杆件虽然外形各异,受力方式不同,但是它们有共同的特点:(1)受力特点:作用在杆件上的外力合力的作用线与杆件轴线重合,杆件变形是沿轴线方向的伸长或缩短。

(如果两个F 力是一对离开端截面的力,则将使杆发生纵向伸长,这样的力称为轴向拉力; 如果是一对指向端截面的力,则将使杆发生纵向缩短,称为轴向压力)。

(2)变形特点:主要变形是纵向伸长或缩短。

(3)拉(压)杆的受力简图:(4)说明:本章所讲的变形是指受压杆没有被压弯的情况下,不涉及稳定性问题。

2.2 轴向拉伸或压缩时横截面上的内力和应力1.截面法求内力(1)假想沿m-m 横截面将杆切开(2)留下左半段或右半段(3)将弃去部分对留下部分的作用用内力代替(4)对留下部分写平衡方程,求出内力(即轴力)的值。

材料力学课件第二章 轴向拉伸和压缩

材料力学课件第二章 轴向拉伸和压缩

2.3 材料在拉伸和压缩时的力学性能
解: 量得a点的应力、应变分别 为230MPa、0.003
E=σa/εa=76.7GPa 比例极限σp=σa=230MPa 当应力增加到σ=350MPa时,对应b点,量得正应变值
ε = 0. 0075 过b点作直线段的平行线交于ε坐标轴,量得 此时的塑性应变和弹性应变
εp=0. 0030 εe= 0 . 0075-0.003=0.0045
内力:变形固体在受到外力作用 时,变形固体内部各相邻部分之 间的相互作用力的改变量。
①②③ 切加求 一内平 刀力衡
应力:是内力分布集度,即 单位面积上的内力
p=dF/dA
F
F
FX = 0
金属材料拉伸时的力学性能
低碳钢(C≤0.3%)
Ⅰ 弹性阶段σe σP=Eε
Ⅱ 屈服阶段 屈服强度σs 、(σ0.2)
FN FN<0
2.2 拉压杆截面上的内力和应力
第二章 轴向拉伸和压缩
在应用截面法时应注意:
(1)外载荷不能沿其作用线移动。
2.2 拉压杆截面上的内力和应力
第二章 轴向拉伸和压缩
在应用截面法时应注意:
(2)截面不能切在外载荷作用点处,要离开或 稍微离开作用点。
1
2
11
22
f 30 f 20
60kN
Ⅲ 强化阶段 抗压强度 (强度极限)σb
Ⅳ 局部颈缩阶段
例1
一根材料为Q235钢的拉伸试样,其直径d=10mm,工作段 长度l=100mm。当试验机上荷载读数达到F=10kN 时,量 得工作段的伸长为Δ l=0.0607mm ,直径的缩小为 Δd=0.0017mm 。试求此时试样横截面上的正应力σ,并求出 材料的弹性模量E。已知Q235钢的比例极限为σ p =200MPa。

材料力学 第二章 轴向拉伸和压缩

材料力学 第二章  轴向拉伸和压缩

明德行远 交通天下
材料力学
2. 轴力的正负规定 FN 与外法线同向,为正轴力(拉力)
FN
FN F N > 0
FN与外法线反向,为负轴力(压力)
FN
FN
二、轴力图--表明构件不同截面轴力的变化规律
意 ①反映出轴力与截面位置变化关系,较直观; 义 ②确定最大轴力的数值及其所在横截面的位置,
即确定危险截面位置,为强度计算提供依据。
斜截面外法线方向为正,反之为负。
明德行远 交通天下
材料力学
a pa cosa cos2 a
pa
a
pa
sin a
cosa sin a
1
2
sin 2a
讨 论:
当a = 0°时, (a )max (横截面上正应力最大)
当a = 90°时,
( a )min 0
当a
=
±
45°时,| a
|max
2
结果表明,杆件的最大工作应力在BC段,其值为0.75MPa。
明德行远 交通天下
材料力学
二、斜截面上的应力
k
F
F
设有一等直杆受拉力F作用,横截面面积为A。
求:斜截面k-k上的应力。
F
αk

解:截面法求内力。由平衡方程:
Fa=F
F
则:pa
Fa Aa
Aa:斜截面面积;Fa:斜截面上内力。
由几何关系:
A
材料力学
第二章 轴向拉伸和压缩
明德行远 交通天下
材料力学
主要内容
• §2-1 轴向拉伸与压缩的概念 • §2-2 轴力及轴力图 • §2-3 应力 • §2-4 轴向拉伸或压缩杆件的变形及节点位移 • §2-5 材料拉伸和压缩时的力学性能 • §2-6 轴向拉伸和压缩杆件的强度计算 • §2-7 轴向拉(压)杆的超静定问题

C 材料力学第二章 轴向拉伸和压缩 第一部分

C 材料力学第二章 轴向拉伸和压缩 第一部分

基于下列实验现象有“平面假设”
现象: 直线保持为直线。 相互垂直的直线依旧相互垂直。->无切应变 纵向线段伸长,横向线段缩短。 长度相等的纵向线段伸长后依旧相等。 长度相等的横向线段缩短后依旧相等。 即变形分布均匀,依据胡克定律应力分布也 均匀。
平面假设
根据表面变形情况,可以由表及里的做出 假设,即横截面间只有相对移动,相邻横 截面间纵线伸长相同,横截面保持平面, 此假设称为平面假设(Plane CrossSection Assumption)。
问题
(1)图示的曲杆,问公式 (2-2)是否适用?
2)图示杆由钢的和铝牢固 粘接而成,问公式(2-2) 是否适用?
(3)图示有凹槽的杆,问 公式(2-2)对凹槽段是否 适用?
σ
变截面杆横截面上的应力
F
F
应力集中 (Stress Concentration)
例:图示杆1为横截面为圆形的钢杆,直径d=16mm,杆2 为横截面为正方形的木杆,边长为100mm。在节点B处作 用20kN的力,试求1、2杆中的应力。
r ∆r o
θ
∆s
s
应力与变形的一般关系
正应力在正应力方向引起线应变,不引 起切应变 切应力引起切应变,在切应力方向不引 起线应变 这里作为结论直接给出,感兴趣可在课 后研究证明之。
轴拉伸实验
平面假设(基于实验观察)
a d e a a d e a b c b b c c d e b c d e
例 题
解:1、2杆都为二力杆,是简单拉 压问题,取节点B进行受力分析: 由节点B的平衡可得:
F N1 3 = G = 15kN 4 F N2 5 = − G = −25kN 4
A 2m
1.5m 1 2 C FN1 FN2 B G

材料力学 第2章轴向拉伸与压缩

材料力学 第2章轴向拉伸与压缩
15mm×15mm的方截面杆。
A
FN128.3kN FN220kN
1
(2)计算各杆件的应力。
C
45°
2
B
s AB

FN 1 A1

28.3103
202
M
Pa90MPa
4
F
FN 1
F N 2 45°
y
Bx
s BC

FN 2 A2
21052103MPa89MPa
F
§2.4 材料在拉伸和压缩时的力学性能
22
5 圣维南原理
s FN A
(2-1)
(1)问题的提出
公式(2-1)的适用范围表明:公式不适用于集中力作
用点附近的区域。因为作用点附近横截面上的应力分布是非
均匀的。随着加载方式的不同。这点附近的应力分布方式就
会发生变化。 理论和实践研究表明:
不同的加力方式,只对力作
用点附近区域的应力分布有
显著影响,而在距力作用点
力学性能:指材料从开始受力至断裂的全部过程中,所表 现出的有关变形和破坏的特性和规律。
材料力学性能一般由试验测定,以数据的形式表达。 一、试验条件及试验仪器 1、试验条件:常温(20℃);静载(缓慢地加载);
2、标准试件:常用d=10mm,l=100 mm的试件
d
l
l =10d 或 l = 5d
36
b点是弹性阶段的最高点.
σe—
oa段为直线段,材料满足 胡克定律
sE
sp
E
se sp
s
f ab
Etana s
O
f′h
反映材料抵抗弹
性变形的能力.
40

材料力学第二章-轴向拉伸与压缩

材料力学第二章-轴向拉伸与压缩
FN 3 P
1
2
P
P
1
2
FN1
3 P
3
P FN2
PP FN3
FN 1 P FN 2 0 FN 3 P
1
2
4、作内力图
P
P
P
3 P
1 FN
P
2
3
P x
[例2] 图示杆旳A、B、C、D点分别作用着大小为5P、8P、 4P、 P 旳力,方向如图,试画出杆旳轴力图。
OA PA
B PB
C PC
D PD
q
u 正应力旳正负号要求:
sx
sx sx
s
x
P
u 对变截面杆, 当截面变化缓慢时,横截面上旳 正应力也近似为均匀分布,可有:
s (x) FN (x)
A( x)
合力作用线必须与杆件轴线重叠;
圣维南原理
若用与外力系静力等 效旳合力替代原力系, 则这种替代对构件内应 力与应变旳影响只限于 原力系作用区域附近很 小旳范围内。 对于杆件,此范围相当 于横向尺寸旳1~1.5倍。
h
解: 1) BD杆内力N
取AC为研究对象,受力分析如图
mA 0 , (FNsinq ) (hctgq) Px 0
FN
Px
hcosq
2) BD杆旳最大应力: s max FN max PL A hAcosq
突变规律: 1、从左边开始,向左旳力产生正旳轴力,轴力图向上突变。 2、从右边开始,向右旳力产生正旳轴力,轴力图向上突变。 3、突变旳数值等于集中力旳大小。
即:离端面不远处,应力分布就成为均匀旳。
§2–3 直杆轴向拉压时斜截面上旳应力
一、斜截面上旳内力
n

《化工设备机械基础3版》第二章

《化工设备机械基础3版》第二章

Fp
(1)接触面为平面
Fp
Ap—实际接触面面积
挤压力 Fp= F
(2)接触面为圆柱面
Ap—直径投影面面积
2.8 剪切和挤压的实用计算
d
δ Ap d
(a)
(b)
(cd)
挤压强度条件:
p
Fp Ap
p
p 许用挤压应力,常由实验方法确定
塑性材料: p 1.5 2.5 脆性材料: p 0.9 1.5
2.4 轴向拉伸或压缩时的变形
对于变截面杆件(如阶梯
杆),或轴力变化。则:
l
li
FNili Ei Ai
2.5 材料在拉伸和压缩时的力学性能
力学性能:在外力作用下材料在变形和破坏方 面所表现出的力学特性。 2.5.1 材料在拉伸时的力学性能





实 验 条 件
温 、 静 载
2.5 材料在拉伸和压缩时的力学性能
一、纵向变形
l l1 l
l
l
F
{ FN F AA E E l l
l FNl Fl EA EA
l F,l l 1
EA
l
l1
二、横向变形
F b1 b
b b1 b
b
b
泊松比
横向应变
EA为抗拉刚度
钢材的E约为200GPa,μ约为0.25—0.33
2.4 轴向拉伸或压缩时的变形
即螺栓的轴力为
FN
F 6
π D2 p 24
根据强度条件
max
FN A

A
FN

d 2
4
D2 p
24
螺栓的直径为 d

材料力学第二章 轴向拉伸和压缩

材料力学第二章 轴向拉伸和压缩
伸长 l2 0.24mm 缩短
2、计算各杆轴向变形
C
l 2 =1m a =170mm
B'
B2
F
l1 0.48mm
3、由变形的几何条件确定B点的位移 分别以A为圆心,AB1为半径,C为圆 心,CB1为半径画弧,相较于B’点,
B"
小变形条件,可以用切线代替弧线。
材料力学
第2章 轴向拉伸和压缩
FN FN ( x)
轴力方程
即为轴力图。
即:FN随x的变化规律
以x为横坐标,以FN为纵坐标,绘制FN F( )的关系图线, N x
FN
正的轴力画在x轴的上侧,负的画在下侧.
x
材料力学
第2章 轴向拉伸和压缩
例题1
等值杆受力如图所示,试作其轴力图
F =25kN F 4=55kN 4 1=40kN F
纵向线 即: 原长相同
变形相同
横截面上各点的纵向线应变相等
c
拉压杆变形几何方程.
反映了截面上各点变形之间的几何关系.
材料力学
第2章 轴向拉伸和压缩
§2-2 横截面上的正应力 应力分布规律 找变形规律 研究思路: 试验观察 综合几何方面、物理方面、静力学方面推导应力计算公式
一、几何方面
F
a' b'
材料力学
第2章 轴向拉伸和压缩
第二章 轴向拉伸和压缩
材料力学
第2章 轴向拉伸和压缩
• • • • • •
本章主要内容 轴力及轴力图 横截面上的应力 拉压杆的变形、胡克定律 强度计算 材料的力学性质
材料力学
第2章 轴向拉伸和压缩
§2-1 概述 一、工程实际中的轴向拉压杆

工程力学 第二章 轴向拉伸与压缩.

工程力学 第二章 轴向拉伸与压缩.

2 sin ( 2 cos 1 )ctg 3.9 103 m
B1 B B1 B3 B3 B
B B
B B12 B1 B 2 4.45 10 3 m
[例2-11] 薄壁管壁厚为,求壁厚变化和直径变化D。
解:1)求横截面上的正应力
dx
N ( x) l dx EA( x) l
例[2-4] 图示杆,1段为直径 d1=20mm的圆杆,2 段为边长a=25mm的方杆,3段为直径d3=12mm的圆杆。 已知2段杆内的应力σ 2=-30MPa,E=210GPa,求整个 杆的伸长△L
解: P 2 A2
30 25 18.75KN
N 1l Pl l1 l2 EA 2 EA cos l1 Pl cos 2 EA
[例2-8]求图示结构结点A 的垂直位移和水平位移。
解:
N1 P, N 2 0
Pl l1 , l2 0 EA Pl y l1 EA
N1
N2
Pl x l1ctg ctg EA
F
FN
FN F
F
F
CL2TU2
2.实验现象:
平截面假设
截面变形前后一直保持为平面,两个平行的截面之 间的纤维伸长相同。 3.平面假设:变形前为平面的横截面变形后仍为平面。 4.应力的计算 轴力垂直于横截面,所以其应力也仅仅是正应力。按 胡克定律:变形与力成正比。同一截面上各点变形相 同,其应力必然也相同。 FN (2-1) A 式中: A横截面的面积;FN该截面的轴力。 应力的符号:拉应力为正值应力,压缩应力为负 值应力。
1. 截面法的三个步骤 切: 代: 平:
F F F F

2-1直杆的轴向拉伸与压缩

2-1直杆的轴向拉伸与压缩
教 学
重难点
ห้องสมุดไป่ตู้重点
轴向拉伸与压缩的概念与特点
难点
轴向拉伸与压缩的应力图
教学资源
多媒体、动画、仿真软件、资料
教学过程
环节
教师活动
学生活动
时间

布置任务
领取任务
5分钟
新知识导学
(收集)资讯
15分钟

辅导、督查
习题
5分钟
提问
计划与决策
5分钟

督查
实施
50分钟

点评每组成果
评价(项目毕)
10分钟

作业
课余
教学内容
1、任务:
笔记:新知识
绘制拉伸曲线
2、新知识导学:
轴的拉伸与压缩
受力特点
变形特点
内力
概念
内力的计算——截面法
应力
变形与应变
绝对变形与相对变形
胡克定律
材料拉伸与压缩的力学性能
拉伸时的应力——应变曲线
压缩时的应力——应变曲线
3、练:练习册
4、考:作任务
评价方式
类别
指标
分值
得分
基本分
出勤
10
纪律
10
任务进度
课 时 教 学 设 计1( 教 案 )
课程
机械基础
班级
授课教师
章节内容
直杆的轴向拉伸与压缩
计划学时
2
教学目标
知识
技能
轴向拉伸与压缩的概念与特点
轴向拉伸与压缩的应力图
情感
态度
求实科学的学习态度
勇于克难的生活态度
方法
过程
自学能力的提高

工程力学第2章轴向拉伸压缩与剪切

工程力学第2章轴向拉伸压缩与剪切
拉伸—拉力,其轴力为正值。方向背离所在截面。 压缩—压力,其轴力为负值。方向指向所在截面。
F
N (+) N
F
F
N (-) N
F
轴力一般按正方向假设。
3、轴力图: 轴力沿轴线变化的图形
F
F
N
4、轴力图的意义
+ x
① 直观反映轴力与截面位置变化关系;
② 确定出最大轴力的数值及其所在位置,即确定危险截面位置,为 强度计算提供依据。
1、低碳钢轴向拉伸时的力学性质 (四个阶段)
⑴、弹性阶段:OA
OA’为直线段; E
AA’为微弯曲线段。
p —比例极限; e —弹性极限。
一般这两个极限相差不大, 在工程上难以区分,统称为弹 性极限
低碳钢拉伸时的四个阶段
⑴、弹性阶段:OA, ⑵、屈服阶段:B’C。
s —屈服极限
屈服段内最低的应力值。
例 图示杆的A、B、C、D点分别作用着大小为FA = 5 F、 FB = 8 F、 FC = 4 F FD= F 的力,方向如图,试求各段内力并画出杆的轴力图。
OA
BC
D
FA
FB
FC
FD
N1
A
BC
D
FA
FB
FC
FD
解: 求OA段内力N1:设截面如图
X 0 FD FC FB FA N1 0
N4= F
FD
N1 2F , N2= –3F, N3= 5F, N4= F
N1 2F , N2= –3F, N3= 5F, N4= F
轴力图如下图示
OA
BC
D
FA
FB
FC
FD
N 2F
5F

材料力学轴向拉伸与压缩

材料力学轴向拉伸与压缩
轴向拉压变形
第二章 轴向拉伸与压缩 2.2 杆旳变形
F
1.纵向变形 (1)纵向变形 (2) 纵向应变
b h
l l1
Δl l1 l
Δl
l
h1
F
b1
第二章 轴向拉伸与压缩
b
F
h
l l1
2.横向变形
h1
F
b1
(1)横向变形 (2)横向应变 3.泊松比
b b1 b
b1 b Δb
bb
A d 2 FN 4 [ ]
由此可得链环旳圆钢直径为
d
4F [ ]
4 12.5 103 3.14 45106
m=18.8mm
第二章 轴向拉伸与压缩
[例6]如图a所示,构造涉及钢杆1和铜杆2,A、B、C处为铰链连接。 在节点A悬挂一种G=20kN旳重物。钢杆AB旳横截面面A1=75 mm2, 铜杆旳横截面面积为A2=150 mm2 。材料旳许用应力分别为 ,
GB/T 228-2023 金属材料室温拉伸试验措施
原则拉伸试样:
标距: 试样工作段旳原始长度
要求标距: l 10 d 或者
l 5d
第二章 轴向拉伸与压缩
试验设备 (1)微机控制电子万能
试验机 (2)游标卡尺
第二章 轴向拉伸与压缩
试验设备
液压式
电子式
第二章 轴向拉伸与压缩
拉伸试验
第二章 轴向拉伸与压缩
第二章 轴向拉伸与压缩
应力非均布区 应力均布区 应力非均布区
圣维南原理
力作用于杆端旳分 布方式,只影响杆端 局部范围旳应力分布, 影响区约距杆端 1~2 倍杆旳横向尺寸。
端镶入底座,横向变形 受阻,杆应力非均匀分布。

材料力学 第02章 轴向拉伸和压缩及连接件的强度计算

材料力学 第02章 轴向拉伸和压缩及连接件的强度计算
O e
弹屈 性服 阶阶 段段
强 化 阶 段
颈 缩 阶 段
33/113
2.3 材料在拉伸或压缩时的力学性能 2.3.1 低碳钢Q235拉伸时的力学性能-弹性阶段
Oa段应力与应变成正比
s Ee
s
b a
弹性模量E是直线Oa的斜率 Q235 E≈200GPa
直线部分的最高点a所对应的应力称为 比例极限,sp Oa段材料处于线弹性阶段
(2) 杆AB段上与杆轴线夹45°角(逆时针方向)斜截面上的正应力 和切应力。
A 1 300 mm B 500 kN 300 mm 2 C 3 300 kN 400 mm
26/113
D
200 kN
2.2 拉压杆截面上的内力和应力 【例2-3】解
A 1 300 mm B 500 kN 300 mm 2 C
内力相同,
但是常识告诉我们,
F F
直径细的拉杆更容易破坏。
求得各个截面上的轴力后,并不能直接判断杆件是否具有足 够的强度。必须用横截面上的应力来度量杆件的受力程度。 用横截面上的应力来度量杆件的受力程度。
18/113
2.2 拉压杆截面上的内力和应力 2.2.2 1 拉压杆横截面上的应力
a
F
c
c' d'
F4
D
FN4
F
x
0 FN4 F4 0
FN4 20 kN 拉
16/113
同一位置处左右侧截面上的内力分量具有相同的正负号
2.2 拉压杆截面上的内力和应力 【例】解
1
FR A F1
F1=40kN,F2=55kN,F3=25kN,F4=20kN
2
F2 B

第二章轴向拉伸和压缩

第二章轴向拉伸和压缩

60 MPa
已知:薄壁圆环,长度为b,内径d=200mm,壁 厚δ=5mm,承受p=2MPa的内压力作用。 求:圆环径向截面上的拉应力
b
δ p
p
d
将钢环截开,取上半部为研究对象
Fy 0

p
0
得:
b d sin d
2 pb d 2FN

2FN 0 FN p
bd 2
ABC杆为圆杆,直径d=10mm
钢材的
F1 A
E 200GPa
0.28
F2 B
C F3
求:(1)杆的伸长 (2)BC 段变形后的直径
解: 作杆的轴力图 F1 A
F2 B
C F3
杆的横截面面积
FN(kN) 10
10
A 102 106 m2 78.5106 m2
4
l
内力 — 是一个分布力系,利用截面法求得 的是该分布力系的合力。
F1
F2
F3
Fn
应力 — 内力在一点的分布集度
通俗地说,应力就是单位面积上的内力。
2、平均应力
pm

F A
F 是矢量
pm 也是矢量
3、应力
p lim F A0 A
F1
F
C
A
F2
F1
p
C
称为C点的应力
F2
4、正应力和切应力
长度为1.2 m,BD杆为8号槽钢,长
F
度为1.6 m,F=60kN,
C
B
材料的 160MPa
3
4
求:(1)校核结构的强度
(2)计算B点的位移
D
解:

第2章 轴向拉伸与压缩

第2章 轴向拉伸与压缩

2.5.5 塑性材料和脆性材料的主要区别
(5) 塑性材料承受动载荷的能力强,脆性材料承 受动荷载的能力很差,所以承受动载荷作用的构 件多由塑性材料制做。
2.5.5 塑性材料和脆性材料的主要区别
对于脆性材料,当应力达到其强度极限σb 时, 构件会断裂而破坏;对于塑性材料,当应力达到 屈服极限σs时,将产生显著的塑性变形,常会 使构件不能正常工作。
2.5.2 低碳钢拉伸时的力学性能
OB:弹性阶段__弹性极限σe BC:屈服阶段__屈服极限σs CD:强化阶段__强度极限σb DE:颈缩阶段
2.5.2 低碳钢拉伸时的力学性能
OB:弹性阶段---弹性极限σe OA:线性阶段---比例极限σP
σ=Eε 胡克定律
E: 弹性模量 σe≈σP
伸长率
Fbs
Fbs
Fbs
实际挤压面
挤压应力:
2.8.2 挤压和挤压强度计算
smaxBiblioteka dFbs(a)
smax
(b)
t
(b)
ssj bs
(c) (c)
挤压面 计算挤压面积 =dt
两种材料的极限应力分别是? 许用应力=?
2.6 拉压杆的变形
2.6 拉压杆的变形
例: 已知等截面直杆横截面面积A=500mm2,弹性模量 E=200GPa,试计算杆件总变形量。
6KN
8KN 5KN
3KN
1m
2m
1.5m
ΔL=?
2.8 拉压杆接头的计算
2.8 拉压杆接头的计算
2.8.1 剪切和剪切强度计算
(1) 多数塑性材料在弹性变形范围内,应力与应 变成正比关系,符合胡克定律;多数脆性材料在 拉伸或压缩时σ-ε图一开始就是一条微弯曲线, 即应力与应变不成正比关系,不符合胡克定律, 但由于σ-ε曲线的曲率较小,所以在应用上假设 它们成正比关系。

材力第2章:轴向拉伸与压缩

材力第2章:轴向拉伸与压缩

F
F
F
F
拉杆
压杆
§2-2 轴力及轴力图 1.内力的概念
构件因反抗外力引起的变形,而在其内部各质点间引起的相 互之间的作用力,称为内力。 显然,外力越大,变形越大,因而内力也越大,但内力不可 能无止境地随外力的增大而增大,总有个限度,一旦超过了 这个限度,材料将发生破坏。因此,材料力学中,首先研究 内力的计算,然后研究内力的限度,最后进行强度计算。
B
α α
FN1
α α
FN2
FN 2 cos + FN 1 cos - F = 0
FN 2 = FN 1 = F 2 cos Fl
A
A
F
l1 = l2 =

l2
FN 2l EA
=
=
2 EA cos
Fl
A = AA =
A l 1
=
A
l2 cos
2EA cos
2
= FN A ,
=
l l
=

E
又称为单轴应力状态下的胡克定律,不仅适用于轴向拉(压)杆,可以更普遍 地用于所有的单轴应力状态。
= E 表明在材料的线弹性范围内,正应力与线应变呈正比关系。
例题 试求图示杆 AC 的轴向变形△ l 。
FN 1
B
F1
F2
C
FN 2
C
F2
分段求解:
0
90 = 0
0
90 = 0
0
在平行于杆轴线的截面上σ、τ均为零。
• 作业: P41 • •
2-1(2)(3) 2-3 2-6
§2-5 拉、压杆的变形
杆件在轴向拉压时:

材料力学(I)第二章

材料力学(I)第二章

材料力学(Ⅰ)电子教案
轴向拉伸和压缩
25
(3) 推论:拉(压)杆受力后任意两个横截面之间纵 向线段的伸长(缩短)变形是均匀的。根据对材料的 均匀、连续假设进一步推知,拉(压)杆横截面上的 内力均匀分布,亦即横截面上各点处的正应力s 都 相等。 (4) 等截面拉(压)杆横截面上正应力的计算公 FN 。 式 s A
材料力学(Ⅰ)电子教案
轴向拉伸和压缩
34
Ⅲ. 拉(压)杆斜截面上的应力 斜截面上的内力:
F F
变形假设:两平行的斜截面在杆受拉 ( 压 ) 而 变形后仍相互平行。 两平行的斜截面之间的所 有纵向线段伸长变形相同。
材料力学(Ⅰ)电子教案
轴向拉伸和压缩
35
推论:斜截面上各点处轴向分布内力的集度相同, 即斜截面上各点处的总应力p 相等。
轴向拉伸和压缩
21
ΔF dF 该截面上M点处分布内力的集度为 p lim , Δ A d A ΔA0
其方向一般既不与截面垂直,也不与截面相切,称为总
应力。
材料力学(Ⅰ)电子教案
轴向拉伸和压缩
22
法向分量 总应力 p 切向分量
正应力s
某一截面上法向分 布内力在某一点处 的集度
切应力t
某一截面上切向分 布内力在某一点处 的集度
材料力学(Ⅰ)电子教案
(a) F/2 q=F/A
轴向拉伸和压缩
(b)
F F
27
F/2
F F
q
F/2 F/2
F F
F F
这一原理虽被许多实验所证实,但没有经过严 格的理论证明,也没有确切的数学表达式,因此 不能随便使用。上图为不能应用圣维南(SaintVenant)原理的例子(详见奚绍中编 《材料力学精 讲》,P15)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学年级:综合0901 姓名:周朝辉第二章:轴向拉伸与压缩本章重点: 1.1 拉伸与压缩的基本概念1.2 内力的求法1.3 轴向拉伸与压缩时材料的变形,虎克定律1.4 强度校核1.5 材料拉伸实验本章要求:掌握拉压杆的受力特点及变形特点。

运用力学知识求内力及校核强度,课时:10~16一、知识回顾:1、二力杆的概念及受力特点2、力的四个性质3、受力分析及作受力分析图。

二、新课新知:1、拉伸和压缩的概念拉伸和压缩受力特点是:作用在杆端的两外力(或外力的合力)大小相等,方向相反,作用线与杆的轴线重合。

变形特点:杆件沿轴线方向伸长或缩短。

2、轴向拉伸和压缩2.1内力和截面法1.内力:杆件在外力作用下产生变形,其内部的一部分对另一部分的作用称为内力。

2.轴力:拉压杆上的内力又称轴力。

3.截面法:将受外力作用的杆件假想地切开来用以显示内力,并以平衡条件来确定其合力的方法,称为截面法。

(1)截开沿欲求内力的截面,假想把杆件分成两部分。

(2)留下任意一段为研究对象(3)代替取其中一部分为研究对象,画出其受力图。

在截面上用内力代替移去部分对留下部分的作用。

(4)平衡列出平衡方程,确定未知的内力。

∑FX=0,得N-F=0 故N=F 2.2 内力和截面法4.轴力符号的规定:拉伸时N为正(N的指向背离截面);压缩时N为负(N的指向朝向截面)。

2.3拉伸和压缩时横截面上的正应力1.应力:构件在外力作用下,单位面积上的内力称为应力。

2.正应力:垂直于横截面上的应力,称为正应力。

用σ表示。

2.2轴向拉伸和压缩2.2.3拉伸和压缩时横截面上的正应力σ= N/A式中:σ——横截面上的正应力,单位MPa;N——横截面上的内力(轴力),单位N;A——横截面的面积,单位mm2。

σ的符号规定与轴力相同。

拉伸时,N为正,σ也为正,称为拉应力;压缩时N为负,σ也为负,称为压应力。

2.4轴向拉伸和压缩2.4.1 拉压变形和胡克定律(a)杆件受拉变形(b)杆件受压变形绝对变形:设等直杆的原长为L1,在轴向拉力(或压力)F的作用下,变形后的长度为L1,以△L来表示杆沿轴向的伸长(或缩短)量,则有△L= L1-L,△L称为杆件的绝对变形。

相对变形:绝对变形与杆的原长有关,为了消除杆件原长度的影响,采用单位原长度的变形量来度量杆件的变化程度,称为相对变形。

用ε表示, 则ε= △L/L=(L1-L)/L胡克定律:当杆内的轴力N不超过某一限度时, 杆的绝对变形△L与轴力N及杆长L成正比,与杆的横截面积A成反比.这一关系称为胡克定律, 即△L∝NL/A引进弹性模量E, 则有△L=NL/AE也可表达为:σ=E ε此式中胡克定律的又一表达形式,可以表述为:当应力不超过某一极限时,应力与应变成正比。

2.2.5拉伸(压缩)时材料的力学性质图1. 低碳钢拉伸变形σ—ε曲线图2. 灰铸铁拉伸变形σ—ε曲线1.低碳钢拉伸变形过程如图1所示低碳钢拉伸变形过程如图1.所示可分为四个阶段:①弹性阶段②屈服阶段③强化阶段④颈缩阶段比例极限:应力与应变成正比的最高限。

符号σp 弹性极限:产生弹性变形的最大应力极限。

符号σe 屈服极限:符号σs 低碳钢σs 为240MPa 强度极限:符号σb 低碳钢σb 为400MPa冷作硬化:将材料预拉到强化阶段,使之出现塑性变形后卸载,再重新加载,材料的比例极限提高而塑性应变减小的现象。

塑性材料:破坏时产生显著变形的材料 脆性材料:破坏时产生不显著变形的材料材料的塑性变形延伸率为: 材料的断面收缩率为:应力集中:由于杆件外形的突然变化而引起的局部应力急剧增大的现象。

三、新知运用:8-1 试求图示各杆的轴力,并指出轴力的最大值。

解:(a)(1) 用截面法求内力,取1-1、2-2截面;(2) 取1-1截面的左段;110 0 xN N FF F F F =-==∑(3) 取2-2截面的右段;220 0 0xN N FF F =-==∑(4) 轴力最大值:max N F F =(b)(a)(c) (d)N 1(1) 求固定端的约束反力;0 20 xR R FF F F F F =-+-==∑(2) 取1-1截面的左段;110 0 xN N FF F F F =-==∑(3) 取2-2截面的右段;220 0 xN R N R FF F F F F =--==-=-∑(4) 轴力最大值:max N F F =(c)(1) 用截面法求内力,取1-1、2-2、3-3截面;(2) 取1-1截面的左段;110 20 2 xN N FF F kN =+==-∑(3) 取2-2截面的左段;220 230 1 xN N FF F kN =-+==∑(4) 取3-3截面的右段;F RFN 1F RF N 21 1F N1N 2F N 3330 30 3 xN N FF F kN =-==∑(5) 轴力最大值:max 3 N F kN =(d)(1) 用截面法求内力,取1-1、2-2截面;(2) 取1-1截面的右段;110 210 1 xN N FF F kN =--==∑(2) 取2-2截面的右段;220 10 1 xN N FF F kN =--==-∑(5) 轴力最大值:max 1 N F kN =8-2 试画出8-1所示各杆的轴力图。

解:(a)(b)(c)F N1F N 2FFFF(d)8-5 图示阶梯形圆截面杆,承受轴向载荷F 1=50 kN 与F 2作用,AB 与BC 段的直径分别为d 1=20 mm 和d 2=30 mm ,如欲使AB 与BC 段横截面上的正应力相同,试求载荷F 2之值。

解:(1) 用截面法求出1-1、2-2截面的轴力;11212 N N F F F F F ==+(2) 求1-1、2-2截面的正应力,利用正应力相同;311215010159.210.024N F MPa A σπ⨯===⨯⨯32221225010159.210.034N F F MPa A σσπ⨯+====⨯⨯262.5F kN ∴=8-6 题8-5图所示圆截面杆,已知载荷F 1=200 kN ,F 2=100 kN ,AB 段的直径d 1=40 mm ,如欲使AB 与BC 段横截面上的正应力相同,试求BC 段的直径。

解:(1) 用截面法求出1-1、2-2截面的轴力;11212 N N F F F F F ==+(2) 求1-1、2-2截面的正应力,利用正应力相同;3112120010159.210.044N F MPa A σπ⨯===⨯⨯3221222(200100)10159.214N F MPa A d σσπ+⨯====⨯⨯249.0 d mm ∴=F1kN8-14 图示桁架,杆1与杆2的横截面均为圆形,直径分别为d 1=30 mm 与d 2=20 mm ,两杆材料相同,许用应力[σ]=160 MPa 。

该桁架在节点A 处承受铅直方向的载荷F =80 kN 作用,试校核桁架的强度。

解:(1) 对节点A 受力分析,求出AB 和AC 两杆所受的力;(2) 列平衡方程00000 sin 30sin 4500 cos30cos 450x AB ACyAB AC F F F FF F F =-+==+-=∑∑解得:41.4 58.6AC AB F F kN F kN ==== (2) 分别对两杆进行强度计算;[][]1282.9131.8ABAB ACAC F MPa A F MPa A σσσσ====所以桁架的强度足够。

8-15 图示桁架,杆1为圆截面钢杆,杆2为方截面木杆,在节点A 处承受铅直方向的载荷F 作用,试确定钢杆的直径d 与木杆截面的边宽b 。

已知载荷F =50 kN ,钢的许用应力[σS ] =160 MPa ,木的许用应力[σW ] =10 MPa 。

FAB F解:(1) 对节点A 受力分析,求出AB 和AC 两杆所受的力;70.7 50AC AB F kN F F kN ====(2) 运用强度条件,分别对两杆进行强度计算;[][]3213225010160 20.01470.71010 84.1AB ABS AC ACW F MPa d mmA d F MPa b mm A b σσπσσ⨯==≤=≥⨯==≤=≥所以可以确定钢杆的直径为20 mm ,木杆的边宽为84 mm 。

8-18 图示阶梯形杆AC ,F =10 kN ,l 1= l 2=400 mm ,A 1=2A 2=100 mm 2,E =200GPa ,试计算杆AC 的轴向变形△l 。

解:(1) 用截面法求AB 、BC 段的轴力;12 N N F F F F ==-(2) 分段计算个杆的轴向变形;33112212331210104001010400200101002001050 02 N N F l F l l l l EA EA .mm⨯⨯⨯⨯∆=∆+∆=+=-⨯⨯⨯⨯=-AC 杆缩短。

FF AB F ACFA CB8-26 图示两端固定等截面直杆,横截面的面积为A ,承受轴向载荷F 作用,试计算杆内横截面上的最大拉应力与最大压应力。

解:(1) 对直杆进行受力分析;列平衡方程:0 0xA B FF F F F =-+-=∑(2) 用截面法求出AB 、BC 、CD 段的轴力;123 N A N A N B F F F F F F F =-=-+=-(3) 用变形协调条件,列出补充方程;0AB BC CD l l l ∆+∆+∆=代入胡克定律;231 /3()/3/3 0N BC N CDN ABAB BC CD A A B F l F l F l l l l EA EA EAF l F F l F l EA EA EA∆=∆=∆=-+-+-=求出约束反力:/3A B F F F ==(4) 最大拉应力和最大压应力; 21,max ,max 2 33N N l y F F F FA A A Aσσ====-(b)。

相关文档
最新文档