2017考研数学大纲解析和复习规划

合集下载

2017考研数学强化复习计划

2017考研数学强化复习计划

2017考研数学强化复习计划导读:本文2017考研数学强化复习计划,仅供参考,如果能帮助到您,欢迎点评和分享。

2017考研数学强化复习计划数学九月复习:承上启下的重要环节主要任务将强化阶段所学知识进行归纳和整理,有效形成系统。

总结在上一阶段的复习过程中遇到的问题,并一一解决。

做真题,以知识点为内容进行分类练习。

反思自问知识层面达到什么样的高度?知识点掌握的程度如何?此时你的知识水平距离考试的要求还有多远?重点掌握在这一阶段的复习中,大家至少要掌握极限、导数、不定积分这三方面的内容,才能在接下来的复习中有好的收效。

九月的前半个月,我们应该怎么对强化阶段做一个良好的收尾呢。

第一,复习方法采用“两端看法”,就是对强化阶段的所学过的知识和做题方法做一个总结和归纳。

总结和归纳结束之后,采用高等数学、概率论一起交叉、轮流来看,最后汇集到线性代数上。

我们也把这个阶段用一个字来形容“啃”,所以也可以叫做“啃”强化阶段所学过到的知识。

这里的“啃”是来形容这个阶段的艰难程度,大家到了这个阶段普遍感到压力陡增,即使那些在第一阶段认真完成的同学也一样,这里的主要原因是这一阶段大家所学到的知识和解题方法普遍特点是对知识点的总结是高度的概括的,虽然老师在强化阶段帮助大家将知识体系化和系统化,但是那毕竟是老师的东西,考生应该学着将这些东西变成自己的。

第二,所选的题目不论是例题还是课后的练习题都具有一定的综合性,这些题目不再是只考查单一的知识点,单一的解题能力,而是对同学们能力的全方位考查,不仅考查同学们的计算能力、抽象概括能力、空间想象能力还考查同学们应用所学的知识解决实际问题的能力。

大家在平时练习的时候做适量难度稍大的题,会有助于大家在考试过程中保持平和的心态,遇到难题不会慌。

但这并不是说让大家在复习的过程中就只钻研难题,而对于容易的题和中等难度的题不屑一顾,这样只会导致考研失败。

我们做题难度要适当,题量要适当。

所以,大家不要进入做题的误区,要难度适当地练习,不要死扣难题,毕竟考研考察的是基础知识,使大家都能接受的水平。

考研数学复习计划

考研数学复习计划

考研数学复习计划
以下是一个考研数学复习计划建议:
阶段一:基础复习(2-3周)
1.复习高中数学基础知识和基本运算法则,包括:初等代数、
三角函数、平面几何和立体几何。

2.复习大学数学的基础课程,包括:微积分、线性代数和概率
统计。

3.建议通过练习题或者习题集,巩固基础知识,加深理解并发
现弱,强点。

阶段二:提高复习(2-3周)
1.复习高等数学课程,包括:微分方程、复变函数、常微分方程、变分法等。

2.重点复习数学分析和函数论,包括:极限、连续、可微、积
分和级数等知识点。

3.做一些综合性的例题和真题,逐渐适应考研的出题风格和难度。

阶段三:考前强化(1-2周)
1.主要复习考研的数学试题和每年的数学考研真题,重点关注
重点难点知识点。

2.做一些模拟题和题目集,弥补自己所存在的不足,并强化知
识点。

3.考前复习时,积极进行练习和交流,通过大家的意见和建议,及时纠正自己犯的错,巩固自己的知识点。

总之,考研数学的复习需要大量的时间和精力,需要认真思考和准备。

以上提出的复习计划,仅为参考,同学们可根据自己的实际情况进行切实可行的调整和安排。

2017数学二考研大纲 (1)

2017数学二考研大纲 (1)

2017数学二考研大纲2017考研数学二大纲考试科目:高等数学、线性代数考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟。

二、答题方式答题方式为闭卷、笔试。

三、试卷内容结构高等教学约78%线性代数约22%四、试卷题型结构单项选择题 8小题,每小题4分,共32分填空题 6小题,每小题4分,共24分解答题(包括证明题) 9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:第 1 页xsinx1,,, ,lim1elim1,,,,x,0,,xxx,,函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数第 2 页的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数的最大值和最小值的求法及其应用.ab, 8.会用导数判断函数图形的凹凸性,注:在区间内,设函数fx()具有,,,,,,fx()fx()二阶导数,当fx()0,时,的图形是凹的,当fx()0,时,的图形是凸的,,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.第 3 页三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分、反常(广义) 积分、定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分。

2017数学二考研大纲

2017数学二考研大纲

2017考研数学二大纲考试科目:高等数学、线性代数考试形式和试卷结构一、试卷总分值及考试时间试卷总分值为150分,考试时间为180分钟。

二、答题方式答题方式为闭卷、笔试。

三、试卷内容结构高等教学约78%线性代数约22%四、试卷题型结构单项选择题8小题,每题4分,共32分填空题6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:0sin lim 1x x x →=, 1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭ 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数的最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性〔注:在区间(),a b 内,设函数()f x 具有二阶导数.当()0f x ''>时,()f x 的图形是凹的;当()0f x ''<时,()f x 的图形是凸的〕,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分、反常(广义) 积分、定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分。

2017年考研数学(二)考试大纲(原文)

2017年考研数学(二)考试大纲(原文)

2017年考研数学(二)考试大纲(原文)2017数学二考试大纲考试科目:高等数学、线性代数考试形式和试卷结构一、试卷满分及考试试卷试卷满分为150分,考试试卷为180分钟二、答题方式答题方式为闭卷、笔试。

三、试卷内容结构高等数学约78%线性代数约22%四、试卷题型结构单项选择题 8小题,每小题4分,共32分填空题 6小题,每小题4分,共24分解答题(包括证明题) 9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限于右极限无穷小量和无穷大量的概念及其关系无穷小量及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:,函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分多元复合函数、隐函数的求导法二阶偏导数多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上连续函数的性质.3.了解多元函数偏导数和全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全积分,了解隐函数的存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元一次函数极值存在的充分条件,会求二元函数的极值,会有拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直接坐标、极坐标).八、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.3.会用降阶法解下列形式的微分方程:和4理解线性微分方程解的性质及解的结构.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.理解n维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.了解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.会用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.理解实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.When you are old and grey and full of sleep, And nodding by the fire, take down this book, And slowly read, and dream of the soft look Your eyes had once, and of their shadows deep; How many loved your moments of glad grace, And loved your beauty with love false or true, But one man loved the pilgrim soul in you,And loved the sorrows of your changing face; And bending down beside the glowing bars, Murmur, a little sadly, how love fledAnd paced upon the mountains overheadAnd hid his face amid a crowd of stars.The furthest distance in the worldIs not between life and deathBut when I stand in front of youYet you don't know thatI love you.The furthest distance in the worldIs not when I stand in front of youYet you can't see my loveBut when undoubtedly knowing the love from both Yet cannot be together.The furthest distance in the worldIs not being apart while being in loveBut when I plainly cannot resist the yearningYet pretending you have never been in my heart. The furthest distance in the worldIs not struggling against the tidesBut using one's indifferent heartTo dig an uncrossable riverFor the one who loves you.。

2017考研数学 数学全年复习规划

2017考研数学 数学全年复习规划

2017考研已经拉开序幕,很多考生不知道如何选择适合自己的考研复习资料。

中公考研辅导老师为考生准备了考研数学方面的建议,希望可以助考生一臂之力。

同时中公考研特为广大学子推出考研集训营、专业课辅导、精品网课、vip1对1等课程,针对每一个科目要点进行深入的指导分析,欢迎各位考生了解咨询。

中公考研小编整理了考研数学全程复习规划,供2017考研的同学参考,帮助考生在备考的初期阶段整理总结此部分的内容。

一、参考书目:数学每个人用的书都不同,但是课本、考试大纲、历年真题是每一位同学都必备的。

课本:《高等数学》同济版:讲解比较细致,例题难度适中,涉及内容广泛,是现在高校中采用比较广泛的教材,配套的辅导教材也很多。

《线性代数》同济版:轻薄短小,简明易懂,适合基础不好的学生。

《线性代数》清华版:适合基础比较的学生《概率论与数理统计初步》浙大版:基本的题型课后习题都有覆盖。

除了课本以外,大家还需要参考书,根据学长学姐们的经验,每个人适合的参考书都不一样,大家可以挑选适合自己的。

指导书占主导地位的有李永乐复习全书和陈文灯复习指南,第一轮建议用李的。

第二轮用陈的。

前者注重基础,难度相对低点,适用于数学基础较薄弱点的人,后者难度大些,适用于数学基础较好,想有更高提升的人,如果有能力有时间,也可两本皆看,各取其精华。

也有的同学推荐用张宇的36讲(高数18讲,现代9讲,概率论9讲)。

李永乐和陈文灯的比较全面,知识点覆盖得很好,张宇的比较倾向于理解,让学生在充分理解之后掌握知识点,老师人风趣幽默,课讲得也不错。

二、复习规划1、第一阶段(3月~6月)学习目标:根据去年考研数学大纲要求结合教材对应章节系统复习,打好基础,特别是对大纲中要求的三基--基本概念、基本理论、基本方法要系统理解和掌握。

完成从大学学习到考研备战的基础准备。

复习建议:这一阶段主要的焦点要集中精力把教材好好地梳理,要至始至终不留死角和空白,按大纲要求结合教材对应章节全面复习,另外按章节顺序完成教材及相应的配套练习题,通过练习检验你是否真正地把教材的内容掌握了。

2017考研数学四大阶段复习攻略

2017考研数学四大阶段复习攻略

2017考研数学四大阶段复习攻略1.基础复习阶段——现在至2016年6月“基础不牢,地动山摇”,张宇老师总结历年考研数学考试规律,提出“考研真题中绝大部分题目都是在考察大家的基本方法掌握情况”这一观点。

本阶段大家要明确考研专业,确定考数学几,开始第一轮复习,重点是对教材的复习完成,教材是高教出版社出版的全国首批示范教材,有同济第七版的高数,同济第六版的线代和浙大第四版的概率,这三本是主流的本科教材。

但是考研的考试要求和本科教学的要求是不一样的,根据高教版的考研数学大纲,考研数学与本科教学内容有交集,但是也有本科需要掌握的而考研不作要求的和考研要考的而本科没有要求的。

这就要求考生复习之前必须先明确三点:考研不考的坚决不看,考研要求而本科没学的需要补学,二者的交集必须吃透。

切勿没有目标,没有侧重点的闷头死学!根据考研数学大纲,张宇老师有三本对应的张宇带你学,此书的目的就是帮助考生完成以上提出的三点:不考的删,要考的补,交集吃透。

书中每一章开头目录有个导学表格,表格中会根据考研大纲列出本章有哪些重点,哪些课后题需要做一下,帮助学生有侧重点的学习。

不管你是刚刚开始准备考研还是已经开始复习,想要打好基础必须在六月份之前完成对教材的复习。

完成教材复习还是不够的,因为每个人的学习进度,自己的基础知识不一样,六月份之前完成教材的复习之后,需要开始36讲(高数18讲,线代9讲,概率9讲)和题源1000题的复习。

教材中的课后题比较简单,36讲课后题比较有针对性,比较难,但是题目比较少,大家都知道学好数学需要大量的做题,题源1000题分三本,数一数二数三都有自己对应的书。

题源1000题里面的题是命题人出题参考资料里面的题目,所以每年都会命中原题,这不是偶然。

有的同学可能已经看过去年的真题,去年数学考得很难,难在不按常规套路出题,第一题上来就是特别难一道题,之后来几道简单一点的,最难得题目放在试卷的中间,出题不再是从易到难,而是难以混搭。

2017考研数学的全程备考指南

2017考研数学的全程备考指南

2017考研数学的全程备考指南在研究生入学考试中,考研数学150分,占有很重要的地位,同时数学也是一门区分度比较大的学科,有的考生考了满分,有的考生不及格,也有的考生考二三十分,在某种程度上来讲,数学成绩直接决定了你的考研成绩,也决定了你的研究生命运。

那么,2017考研数学怎么复习?数学复习具有基础性和长期性的特点,数学辅导老师提醒2017考生们尽早准备,先人一步,胜人一筹。

备考数学可分为以下几个阶段,一、基础夯实阶段——全面复习(2015年6月前)首先,明确考试科目。

考研数学分为数一、数二、数三,结合自己专业以及报考院校,明确考试科目。

其次,选择学习资料。

推荐参考书目:数学考试大纲、《高等数学》同济版、《线性代数》同济版、《概率论与数理统计》浙大版。

再次,基础学习。

明确自己考数几,选择好学习资料,信心百倍的进入考研数学复习的基础夯实阶段。

这一阶段,主要是读懂教材,真正理解教材的基本概念,基本定理、基本方法,夯实基础。

考研数学,重视基础知识的考察,有很多历年真题都是教材原题的再现,或者稍微改变,比如2009年数二、数三直接考察朗格朗日中值定理的证明。

在复习时,一定要真正理解知识点,通过课后习题及时巩固,真正做到举一反三。

另外,这一阶段在复习时,一定要结合考研数学大纲,复习全面。

二、强化提高阶段——熟悉题型(2015.7—2015.10)只看教材,应付考研是远远不够的,在学习完高等数学、线性代数、概率论与数理统计的基础上,一定要选择一本复习全书,熟悉考研题型。

通过做题,明确考研数学的重点、难点,加强知识点之间的联系,全面构建知识理论体系。

考研数学注重综合应用,纵看十年真题,每年都会出现几道综合题目,在备考时,一定要注重知识点与知识点之间的联系,真正做到融会贯通。

三、模考冲刺阶段——复习巩固(2015.10—2015.12)数学考试时间是8:30-11:30,建议考生在这个时间段像考试一样做真题,通过10年真题,测试自己的复习情况。

2017考数学全程复习规划

2017考数学全程复习规划

2017考研数学全程复习规划
——中公考研数学研究院
复习规划制定原则
考研数学是针对理工类以及经管类学科研究生阶段学习需求设计的一场全国规模的选拔性测试,考试要求考生首先要掌握必备的数学基础知识,并在此基础之上学会综合运用所学知识分析问题、解决问题,形成基本的数学思维能力。

要想在这场考试中取得良好的成绩,考生首先需要夯实基础,打下扎实的学科功底;再针对考研数学的能力要求进行全面的针对性训练,将基础知识转化为解题能力,并进一步形成全面的综合应试及得分能力。

据此,中公考研将考生全年数学的复习划分为四个阶段,包括:基础阶段、强化阶段、提高阶段、模考阶段。

各阶段基本的复习目标如下:
1、基础阶段:夯实基础,全面复习考研数学的基本概念、基本方法、基本理论。

2、强化阶段:深化对基础知识的理解,初步形成学科知识体系,分析考研数学对各个板块的能力要求,进行针对性训练。

3、提高阶段:全面梳理学科知识体系,结合真题针对重点考点进行专项练习,形成学科综合能力。

4、模考阶段:全真模拟,还原考场,积累考试经验,查漏补缺,保证将学科综合能力转化成得分能力。

以下是具体的规划:
考研数学全年复习规划。

2017年考研数学(三)考试大纲(原文)

2017年考研数学(三)考试大纲(原文)

2017年考研数学(三)考试大纲考试科目:微积分、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构微积分约56%线性代数约22%概率论与数理统计约22%四、试卷题型结构单项选择题选题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分微积分一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小量的概念和基本性质,掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数、反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念、导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理、拉格朗日( Lagrange)中值定理,了解泰勒(Taylor)定理、柯西(Cauchy)中值定理,掌握这四个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点和渐近线.9.会描述简单函数的图形.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton- Leibniz)公式不定积分和定积分的换元积分法与分部积分法反常(广义)积分定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法与分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿-莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积、旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算反常积分.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算无界区域上简单的反常二重积分考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标),了解无界区域上较简单的反常二重积分并会计算.五、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1.了解级数的收敛与发散、收敛级数的和的概念.2.了解级数的基本性质及级数收敛的必要条件,掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.4.会求幂级数的收敛半径、收敛区间及收敛域.5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.6.了解,,,及的麦克劳林(Maclaurin)展开式.六、常微分方程与差分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法.3.会解二阶常系数齐次线性微分方程.4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式、指数函数、正弦函数、余弦函数的二阶常系数非齐次线性微分方程.5.了解差分与差分方程及其通解与特解等概念.6.了解一阶常系数线性差分方程的求解方法.7.会用微分方程求解简单的经济应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系非齐次线性方程组的通解考试要求1.会用克拉默法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数()的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为5.会求随机变量函数的分布.三、多维随机变量的分布考试内容多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常见二维随机变量的分布两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度,掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其简单函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.3.了解切比雪夫不等式.五、大数定律和中心极限定理考试内容切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗—拉普拉斯(De Moivre-Laplace)定理列维—林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2.了解产生变量、变量和变量的典型模式;了解标准正态分布、分布、分布和分布的上侧分位数,会查相应的数值表.3.掌握正态总体的样本均值、样本方差、样本矩的抽样分布.4.了解经验分布函数的概念和性质.七、参数估计考试内容点估计的概念估计量和估计值矩估计法最大似然估计法考试要求1.了解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.When you are old and grey and full of sleep,And nodding by the fire, take down this book,And slowly read, and dream of the soft lookYour eyes had once, and of their shadows deep;How many loved your moments of glad grace,And loved your beauty with love false or true,But one man loved the pilgrim soul in you,And loved the sorrows of your changing face; And bending down beside the glowing bars, Murmur, a little sadly, how love fledAnd paced upon the mountains overheadAnd hid his face amid a crowd of stars.The furthest distance in the worldIs not between life and deathBut when I stand in front of youYet you don't know thatI love you.The furthest distance in the worldIs not when I stand in front of youYet you can't see my loveBut when undoubtedly knowing the love from both Yet cannot be together.The furthest distance in the worldIs not being apart while being in loveBut when I plainly cannot resist the yearningYet pretending you have never been in my heart.The furthest distance in the worldIs not struggling against the tidesBut using one's indifferent heartTo dig an uncrossable riverFor the one who loves you.倚窗远眺,目光目光尽处必有一座山,那影影绰绰的黛绿色的影,是春天的颜色。

2017考研数学整体复习计划

2017考研数学整体复习计划

2017考研数学整体复习计划提高考研数学,一些学生一筹莫展,有些学生甚至避开数学。

很多学生进行复习后感慨:数学内容繁多、知识面广、综合性强,看了很多书,做题很多题,依旧没有取得突破性的进展。

究其原因,还是方法不得当。

下面给出制胜的“五大规则”,以帮助广大考生远离数学的恐惧。

规则一:熟读教材很多学员认为看教材是浪费时间,一味地埋头做题,大搞题海战术,结果适得其反,效果不佳。

考研的基本知识点固定不变,变的只是出题的方式和角度,只有对基本概念、公式、定理有了充分的把握,才能以不变应万变,轻松取胜。

建议将教材精读三遍,将基本公式的推导和定理的证明熟练掌握,打下坚实的基础。

之后遇到到模棱两可的问题时,也要勤翻书。

构建起教材的整体脉络及知识点间的联系,对做题速度和质量都具有极大的帮助。

规则二:重视大纲在决定考研之后,首先一定要看一下去年的数学大纲,了解考试的形式和内容等。

每年的大纲变动不大,待今年的大纲发布后,要仔细研读,重视那些删减和增加的知识点,然后把握好考点和知识的重点。

规则三:适量练习9月到11月是考研复习最重要,也是最累的阶段,是决胜的关键时期。

该阶段决不能掉以轻心,需要有针对性地适量做题。

做题要做到“懂、透、化”,能抓住问题的关键所在。

要把错题、难题和重要的题目记在一个笔记本,有时间就多翻阅,跳出思维的误区,把问题搞透彻。

做题的过程会有所苦闷,但不断地坚持,就一定会化茧成蝶。

规则四:高效利用真题和模拟题考研真题讲过千锤百炼,有很高的参考价值,需要认真揣摩。

到了12月份最后的冲刺阶段,主要的任务是做真题和模拟题。

严格按照考试的要求走,将做题的时间限制在3个小时,认真、规范地答题。

做完后,按照标准答案批改打分,重点把不会做的题和错题再做一遍,查缺补漏。

近两年的真题留到考前一周做,这两年的题目反应了命题的方式和出路,需要重点练习。

期间,适当加入模拟题的训练,联系一些新题型,开阔思路。

规则五:调整心态考研与高考不同,并不是每个人都参与。

2017年考研数学全年复习计划

2017年考研数学全年复习计划

2017年考研数学全年复习计划考研数学每个阶段复习的重点都不一样,考研网为大家提供2017年考研数学全年复习计划,更多考研数学信息请关注我们网站的更新!2017年考研数学全年复习计划在这里,将对高等数学的复习提供一些建议,希望大家能有所收获,事半功倍。

1.基础阶段这个阶段的复习时间一般为3月到6月。

任务:掌握基本概念,基本原理和基本方法。

在这个阶段切忌多做题,特别是难题。

大家需要做的就是认真复习教材。

首先掌握每章的基本概念。

特别是导数,积分这些容易考的知识点的概念一定要多加理解。

最好请大家对重点概念做些笔记,写些心得体会。

然后,掌握基本原理。

我这里说的基本原理是指要清楚一些重要定理的证明。

比如微分中值定理中的费马引理,罗尔定理,拉格朗日中值定理的证明方法。

大家能够通过这些定理的证明获取相关的证明思想,为考研的证明题做方法准备。

2009年的真题曾经考过拉格朗日中值定理的证明,可见考研对基本原理的考查力度。

最后,掌握基本方法。

基本方法就是每章中常用的一些方法。

比如求极限中常用的方法有四则运算,等价无穷小,洛必达法则,两个重要极限,左右极限,单调有界等。

那么,大家就需要对这些常用方法的使用条件以及怎么使用进行总结和体会。

配合这三个任务,大家需要看的参考书就是同济版的高等数学教材。

同时可以辅助一些基础的练习题,总之,希望大家沉下心,不能浮躁,不能好高骛远,目光盯着基础,这样后续的加速度才能越来越快。

2.强化阶段这个阶段的复习时间一般为7月到8月。

任务:熟悉考研常考题型,掌握常用的方法和技巧。

大家在前面经过基础阶段的复习后,对基本概念,基本方法,基本原理都有所掌握。

那么强化阶段就是对每一章的考点进行总结归纳,形成题型,并且对方法进行扩充。

比如求极限方法,在强化阶段,大家就要掌握用定积分,级数以及夹逼原理来求极限。

所以,希望大家认真对方法进行总结同时对第一阶段的笔记进行完善。

总之,希望大家能形成知识点和方法的基本体系。

2017年考研数学复习指南

2017年考研数学复习指南

2017年考研数学复习指南距离2017考研不到百天了,考研的小伙伴要加把劲了,为了帮助考生们减轻考研压力,中公考研特将2017考研数学复习指导建议意整理出来,分享给各位考生。

一要把握复习进度,树立抢时间、抓效率的概念,踏踏实实进行每一阶段每一天的学习。

二要归纳总结题型及其解题技巧和方法,同时配以一定量的习题,强化练习,提高解题熟练度和准确度。

在做题的同时,将重点题型作上标记,以供下一阶段参考。

三要全面的研究真题,领会命题规律,真题要多做几遍,第一遍要一套一套的做,在做的同时把出现频率较多的题型归纳总结出来,以后做的时候就按照自己总结的题型去做,重点做自己易错的和不会做的。

通过做真题可以发现自己的不足,进而不断改进,在考试之前消除所有短板。

四要心态平和,减少焦虑情绪,树立必胜的信心。

随着天气渐渐转凉,秋季的脚步临近,考研人告别酷热的8月,在不知不觉中进入到秋季强化阶段。

在这一关键时期,不论从身心上还是复习备考,考生都进入了疲惫时期,因此一定要学会适当调节自己的情绪,考研人从不言放弃。

中公考研特为广大学子推出2017考研秋季集训、专业课一对一、精品网课、vip1对1、系列备考专题,针对每一个科目要点进行深入的指导分析,欢迎各位考生了解咨询。

同时,中公考研一直为大家推出考研直播课堂,足不出户就可以边听课边学习,为大家的考研梦想助力!进入九月中后旬,许多考生已经开始考研数学真题复习。

真题是宝贵的复习资源,但是如何有效利用考研数学真题,这应该是每个考研人最关心的话题。

真刀实枪,模拟考试数学考试时间是3个小时,在考场上大脑高强度地运转,思考、做题,是非常消耗体力的。

考生们在复习备考阶段应该有意识地训练自己的抗压能力,锻炼地多了,连坐3个小时也能成为一种习惯。

整套做题,切忌分科考研数学包括三个部分,高等数学、线性代数和概率论。

很多考生在复习的时候都是分开训练的,做题的时候也是复习一科就做一科的题目,这样分开来做会导致头脑里面的知识断裂开,没有很好地结合起来。

2017数学二考研大纲

2017数学二考研大纲

2017考研数学二大纲考试科目:高等数学、线性代数考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟。

二、答题方式答题方式为闭卷、笔试。

三、试卷内容结构高等教学约78%线性代数约22%四、试卷题型结构单项选择题 8小题,每小题4分,共32分填空题 6小题,每小题4分,共24分解答题(包括证明题) 9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:,函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数的最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分、反常(广义) 积分、定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档