实数测试一
2022年八年级数学上册第二章实数测试卷1新版北师大版
第二章实数测试卷一、选择题(每小题3分,共36分)1.(3分)(2018•锦州)下列实数为无理数的是()A.﹣5 B.C.0 D.π2.(3分)(2018•巴彦淖尔)的算术平方根的倒数是()A.B.C.D.3.(3分)(2018•荆州)如图,两个实数互为相反数,在数轴上的对应点分别是点A、点B,则下列说法正确的是()A.原点在点A的左边B.原点在线段AB的中点处C.原点在点B的右边D.原点可以在点A或点B上4.(3分)(2018•宁夏)计算:|﹣|﹣的结果是()A.1 B.C.0 D.﹣15.(3分)下列说法错误的是()A.a2与(﹣a)2相等B.与互为相反数C.与是互为相反数D.﹣|a|与|﹣a|互为相反数6.(3分)(2018•贺州)在﹣1、1、、2这四个数中,最小的数是()A.﹣1 B.1 C.D.2 7.(2018•苏州)在下列四个实数中,最大的数是()A.﹣3 B.0 C.D.8.(3分)下列说法正确的是()A.﹣0.064的立方根是0.4 B.16的立方根是C.﹣9的平方根是±3 D.0.01的立方根是0.0000019.(3分)(2018•莱芜)无理数2﹣3在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间10.(3分)若=﹣a,则实数a在数轴上的对应点一定在()A.原点左侧 B.原点右侧C.原点或原点左侧D.原点或原点右侧11.(3分)若,则a与b的关系是()A.a=b=0 B.a=b C.a+b=0 D.12.(3分)若一个自然数的算术平方根是m,则此自然数的下一个自然数(即相邻且更大的自然数)的算术平方根是()A.B.m2+1 C.m+1 D.二、填空题(每小题3分,共12分)13.(3分)在数轴上表示﹣的点离原点的距离是.14.(3分)一个正数n的两个平方根为m+1和m﹣3,则m= ,n= .15.(3分)若﹣是m的一个平方根,则m+20的算术平方根是.16.(3分)实数a、b在数轴上的位置如图,则化简= .三、解答题(52分)17.(5分)将下列各数填入相应的集合内.﹣7,0.32,,0,,,,π,0.1010010001…①有理数集合{ …}②无理数集合{ …}③负实数集合{ …}.18.(9分)化简①+3﹣5②(﹣)③||+|﹣2|﹣|﹣1|19.(6分)求下列x的值.(1)3x3=﹣81;(2)x2﹣=0.20.(5分)一个正数x的平方根是2a﹣3与5﹣a,则x是多少?21.(5分)如图:A,B两点的坐标分别是(2,),(3,0).(1)将△OAB向下平移个单位求所得的三角形的三个顶点的坐标;(2)求△OAB的面积.22.(5分)小明买了一箱苹果,装苹果的纸箱的尺寸为50×40×30(长度单位为厘米),现小明要将这箱苹果分装在两个大小一样的正方体纸箱内,问这两个正方体纸箱的棱长为多少厘米?(结果精确到1cm)23.(5分)已知a、b满足+|b﹣|=0,解关于x的方程(a+2)x+b2=a﹣1.24.(6分)小芳想在墙壁上钉一个三角架(如图),其中两直角边长度之比为3:2,斜边长厘米,求两直角边的长度.25.(6分)已知,a、b互为倒数,c、d互为相反数,求的值.参考答案一、选择题(每小题3分,共36分)1.(3分)(2018•锦州)下列实数为无理数的是()A.﹣5 B.C.0 D.π【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、﹣5是整数,是有理数,选项错误;B、是分数,是有理数,选项错误;C、0是整数,是有理数,选项错误;D、π是无理数,选项正确;故选:D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(3分)(2018•巴彦淖尔)的算术平方根的倒数是()A.B.C.D.【分析】直接利用实数的性质结合算术平方根以及倒数的定义分析得出答案.【解答】解:=4,则4的算术平方根为2,故2的倒数是:.故选:C.【点评】此题主要考查了实数的性质以及算术平方根,正确把握相关定义是解题关键.3.(3分)(2018•荆州)如图,两个实数互为相反数,在数轴上的对应点分别是点A、点B,则下列说法正确的是()A.原点在点A的左边B.原点在线段AB的中点处C.原点在点B的右边D.原点可以在点A或点B上【分析】根据表示互为相反数的两个数的点,它们分别在原点两旁且到原点距离相等解答.【解答】解:∵点A、点B表示的两个实数互为相反数,∴原点在到在线段AB上,且到点A、点B的距离相等,∴原点在线段AB的中点处,故选:B.【点评】本题考查的是实数与数轴、相反数的概念,掌握表示互为相反数的两个数的点,它们分别在原点两旁且到原点距离相等是解题的关键.4.(3分)(2018•宁夏)计算:|﹣|﹣的结果是()A.1 B.C.0 D.﹣1【分析】原式利用绝对值的代数意义,算术平方根定义计算即可求出值.【解答】解:原式=﹣=0,故选:C.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.5.(3分)下列说法错误的是()A.a2与(﹣a)2相等B.与互为相反数C.与是互为相反数D.﹣|a|与|﹣a|互为相反数【考点】实数的性质;相反数.【分析】根据互为相反数的平方相等,只有符号不同的两个数互为相反数,可得答案.【解答】解:A、a2与(﹣a)2是互为相反数的平方相等是正确的,不符合题意;B、与是相等的数,故B错误,符合题意;C、被开方数互为相反数的立方根互为相反数,故C正确,不符合题意;D、﹣|a|与|﹣a|互为相反数,故D正确,不符合题意.故选:B.【点评】此题考查了实数的性质,相反数的定义,相反数的概念:只有符号不同的两个数叫做互为相反数.6.(3分)(2018•贺州)在﹣1、1、、2这四个数中,最小的数是()A.﹣1 B.1 C.D.2【分析】根据实数大小比较的法则比较即可.【解答】解:在实数﹣1,1,,2中,最小的数是﹣1.故选:A.【点评】本题考查了有理数的大小比较法则的应用,注意:正数都大于0,负数都小于0,正数都大于一切负数,两个负数比较大小,其绝对值大的反而小.7.(2018•苏州)在下列四个实数中,最大的数是()A.﹣3 B.0 C.D.【分析】将各数按照从小到大顺序排列,找出最大的数即可.【解答】解:根据题意得:﹣3<0<<,则最大的数是:.故选:C.【点评】此题考查了有理数大小比较,将各数按照从小到大顺序排列是解本题的关键.8.(3分)下列说法正确的是()A.﹣0.064的立方根是0.4 B.16的立方根是C.﹣9的平方根是±3 D.0.01的立方根是0.000001【考点】立方根;平方根.【分析】A、根据立方根的定义即可判定;B、根据立方根的定义即可判定;C、根据平方根的定义即可判定;D、根据立方根的定义即可判定.【解答】解:A、﹣0.064的立方根是﹣0.4,故选项错误;B、16的立方根是,故选项正确;C、﹣9没有平方根,故选项错误;D、0.01的立方根是,故选项错误.故选B.【点评】主要考查了平方根和立方根的性质以及成立的条件.立方根的性质:①正数的立方根是正数,②负数的立方根是负数,③0的立方根是0.9.(3分)(2018•莱芜)无理数2﹣3在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【分析】首先得出2的取值范围进而得出答案.【解答】解:∵2=,∴6<<7,∴无理数2﹣3在3和4之间.故选:B.【点评】此题主要考查了估算无理数的大小,正确得出无理数的取值范围是解题关键.10.(3分)若=﹣a,则实数a在数轴上的对应点一定在()A.原点左侧 B.原点右侧C.原点或原点左侧D.原点或原点右侧【考点】实数与数轴.【分析】根据二次根式的性质,知﹣a≥0,即a≤0,根据数轴表示数的方法即可求解.【解答】解:∵=﹣a,∴a≤0,故实数a在数轴上的对应点一定在原点或原点左侧.故选C.【点评】此题主要考查了二次根式的性质:≥0,然后利用熟知数轴的这是即可解答.11.(3分)若,则a与b的关系是()A.a=b=0 B.a=b C.a+b=0 D.【考点】立方根.【分析】根据立方根的和为0,可得被开数互为相反数,可得答案.【解答】解:若,则a与b的关系是a+b=0,故选:C.【点评】本题考查了立方根,注意立方根互为相反数被开方数互为相反数.12.(3分)若一个自然数的算术平方根是m,则此自然数的下一个自然数(即相邻且更大的自然数)的算术平方根是()A.B.m2+1 C.m+1 D.【考点】实数.【分析】先求出这个数,然后加1求出下一个自然数,再根据算术平方根的定义写出即可.【解答】解:∵自然数的算术平方根为m,∴自然数是m2,∴下一个自然数是m2+1,它的算术平方根是.故选A.【点评】本题考查了算术平方根,表示出下一个自然数是解题的关键.二、填空题(每小题3分,共12分)13.(3分)在数轴上表示﹣的点离原点的距离是.【考点】实数与数轴.【分析】本题利用实数与数轴的关系即可解答.【解答】解:数轴上表示﹣的点离原点的距离是|﹣|即;故答案为.【点评】此题主要考查了数轴的点到原点的距离与点所表示的数的对应关系,在数轴上一个负数到原点的距离是这个数的绝对值.14.(3分)一个正数n的两个平方根为m+1和m﹣3,则m= 1 ,n= 4 .【考点】平方根.【专题】计算题.【分析】根据正数的平方根有2个,且互为相反数列出关于m的方程,求出方程的解即可得到m的值,进而求出n的值.【解答】解:根据题意得:m+1+m﹣3=0,解得:m=1,即两个平方根为2和﹣2,则n=4.故答案为:1;4【点评】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.15.(3分)若﹣是m的一个平方根,则m+20的算术平方根是 5 .【考点】算术平方根;平方根.【专题】计算题.【分析】根据平方根定义求出m的值,即可得到结果.【解答】解:根据题意得:m=5,∴m+20=25,则25的算术平方根为5.故答案为:5.【点评】此题考查了算术平方根,以及平方根,熟练掌握各自的定义是解本题的关键.16.(3分)实数a、b在数轴上的位置如图,则化简= ﹣2a .【考点】二次根式的性质与化简;实数与数轴.【分析】利用数轴得出a+b<0,b﹣a>0,进而化简各式得出即可.【解答】解:如图所示:a+b<0,b﹣a>0,故=﹣a﹣b+(b﹣a)=﹣2a.故答案为:﹣2a.【点评】此题主要考查了二次根式的性质与化简,正确化简各式是解题关键.三、解答题(52分)17.(5分)将下列各数填入相应的集合内.﹣7,0.32,,0,,,,π,0.1010010001…①有理数集合{ …}②无理数集合{ …}③负实数集合{ …}.【考点】实数.【分析】根据实数的分类:实数分为有理数、无理数.或者实数分为正实数、0、负实数.进行填空.【解答】解:=5,=2.①有理数集合{﹣7,0.32,,0,}②无理数集合{,,π,0.1010010001…}③负实数集合{﹣7}.故答案是:﹣7,0.32,,0,;,,π,0.1010010001…;﹣7.【点评】本题考查了实数的分类.注意0既不是正实数,也不是负实数.18.(9分)化简①+3﹣5②(﹣)③||+|﹣2|﹣|﹣1|【考点】二次根式的混合运算.【专题】计算题.【分析】①直接合并即可;②利用二次根式的乘法法则运算;③先去绝对值,然后合并即可.【解答】解:①原式=﹣;②原式=1﹣6=﹣5;③原式=﹣+2﹣+﹣1=1.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.19.(6分)求下列x的值.(1)3x3=﹣81;(2)x2﹣=0.【考点】立方根;平方根.【分析】(1)先将原式变形为x3=a的形式,然后利用立方根的定义求解即可;(2)先将原式变形为x2=a的形式,然后利用平方根的性质求解即可.【解答】解:(1)系数化为1得:x3=﹣27,∴x=﹣3;(2)移项得:∴,.【点评】本题主要考查的是平方根和立方根,掌握平方根和立方根的定义和性质是解题的关键.20.(5分)一个正数x的平方根是2a﹣3与5﹣a,则x是多少?【考点】平方根.【分析】根据一个正数的平方根互为相反数,可得a的值,再根据平方,可得被开方数.【解答】解:(2a﹣3)+(5﹣a)=0,a=﹣2,2a﹣3=﹣7,(2a﹣3)2=(﹣7)2=49.【点评】本题考查了平方根,根据平方根互为相反数,求出平方根,再求出被开方数.21.(5分)如图:A,B两点的坐标分别是(2,),(3,0).(1)将△OAB向下平移个单位求所得的三角形的三个顶点的坐标;(2)求△OAB的面积.【考点】二次根式的应用;坐标与图形变化-平移.【分析】(1)将△OAB向下平移个单位,此时点A在x轴上;将△OAB各点的横坐标不变,纵坐标减去即可得到平移后的各点的坐标;(2)△OAB的面积=OB×点A的纵坐标÷2,把相关数值代入即可求解.【解答】解:(1)∴所得的三角形的三个顶点的坐标为A′(2,0),O′(0,﹣),B′(3,﹣);(2)△OAB的面积=×3×=.【点评】此题考查了二次根式的应用及平移变化的知识,用到的知识点为:三角形的面积等于底与高积的一半;上下平移只改变点的纵坐标,上加下减.22.(5分)小明买了一箱苹果,装苹果的纸箱的尺寸为50×40×30(长度单位为厘米),现小明要将这箱苹果分装在两个大小一样的正方体纸箱内,问这两个正方体纸箱的棱长为多少厘米?(结果精确到1cm)【考点】立方根;近似数和有效数字.【分析】由题意知两个正方形的体积和长方体的体积相等,设正方体的棱长为x,根据正方体的体积公式和立方根的定义即可列出关系式求出x.【解答】解:设正方体的棱长为x,由题意知,2x3=50×40×30,解得x≈31,故这两个正方体纸箱的棱长31厘米.【点评】本题主要考查立方根和近似数和有效数字等知识点,解题关键是根据正方体的体积公式列出方程求出棱长.23.(5分)已知a、b满足+|b﹣|=0,解关于x的方程(a+2)x+b2=a﹣1.【考点】非负数的性质:算术平方根;非负数的性质:绝对值;解一元一次方程.【专题】计算题.【分析】根据非负数的性质列式求出a、b的值,然后代入方程得到关于x的方程,求解即可.【解答】解:根据题意得,2a+8=0,b﹣=0,解得a=﹣4,b=,所以(﹣4+2)x+3=﹣4﹣1,即﹣2x=﹣8,解得x=4.【点评】本题考查了绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.24.(6分)小芳想在墙壁上钉一个三角架(如图),其中两直角边长度之比为3:2,斜边长厘米,求两直角边的长度.【考点】勾股定理;实数的运算.【分析】根据两直角边之间的比值,设出一边,然后表示出另一边,用勾股定理得到方程即可求出两直角边的长即可.【解答】解:∵两直角边长度之比为3:2,∴设两条直角边分别为:3x厘米、2x厘米,∵斜边长为厘米,∴由勾股定理得:(3x)2+(2x)2=()2解得:x=2,3x=3×2=6,2x=2×2=4.故两直角边的长度为6厘米,4厘米.【点评】本题考查了勾股定理的应用,利用勾股定理不但能在直角三角形中求边长,而且它还是直角三角形中隐含的一个等量关系,利用其可以列出方程.25.(6分)已知,a、b互为倒数,c、d互为相反数,求的值.【考点】实数的运算.【分析】由a、b互为倒数可得ab=1,由c、d互为相反数可得c+d=0,然后将以上两个代数式整体代入所求代数式求值即可.【解答】解:依题意得,ab=1,c+d=0;∴==﹣1+0+1=0.【点评】本题主要考查实数的运算,解题关键是运用整体代入法求代数式的值,涉及到倒数、相反数的定义,要求学生灵活掌握各知识点.。
实数测试卷一
实数测试卷一一、选择题(每小题3分,共30分)2.(3分)的值是().+=×=C﹣.=5﹣35.(3分)(2009•长沙)已知实数a在数轴上的位置如图所示,则化简|1﹣a|+的结果为()6.(3分)已知=2.515,=0.2515,则x的值是()23,则(,则9.(3分)不小于4×的最小整数是()10.(3分)如图是正方形纸盒的展开图,若在三个正方形A,B,C内分别填入适当的实数,使得它们折成正方体后相对面上的两个数互为相反数,则填人三个正方形A,B,C内的三个实数依次为(),,﹣π,0 C.,0,﹣π二、填空题(每小题4分,共24分)11.(4分)用计算器进行计算,按键顺序的结果是_________.12.(4分)如果x2=64,那么=_________.13.(4分)若x,y为实数,且|x+2|+=0,则()2011的值为_________.14.(4分)如图:数轴上的点A和点B之间的整数点有_________.15.(4分)A,B分别表示数轴上﹣1,+1两点,则A,B两点间的距离为_________.16.(4分)有一列数,1,,,…,,,,如果从中选出若干个数,使它们的和大于3,那么至少要选_________个数.三、解答题(共66分)17.(6分)设a=﹣1,b=﹣32,c=﹣|﹣|,比较a,b,c的大小.(用“<”连接)18.(6分)计算:(1)(﹣2)2﹣(3﹣5)﹣+2×(﹣3);(2)﹣22+(﹣2)2++(﹣1)2011.19.(6分)用计算器计算:3﹣4+3﹣.(结果精确到0.01)20.(8分)若的整数部分为a,小数部分为b,求a2+b﹣的值.21.(8分)一正方形的面积为10,求以这个正方形的边为直径的圆的面积.(结果精确到0.O1)22.(10分)若是一个正整数,则满足条件的最小正整数x=_________.23.(10分)(1)用“<”,“>”,“=”填空:____________________________________(2)由上可知:①|1﹣|=_________②|﹣|=_________③|﹣|=_________④|﹣|=_________(3)计算(结果保留根号):|1﹣|+|﹣|+|﹣|+|﹣|+…+|﹣|24.(12分)一段圆钢,长2分米,体积为10π立方分米,已知1立方分米钢的重量是7.8千克,那么这段圆钢横截面的半径是多少分米?这段圆钢重多少千克?(精确到0.01)实数测试卷一参考答案与试题解析一、选择题(每小题3分,共30分)2.(3分)的值是()=.+=×=C﹣.=5﹣3×=2,故选项错误;±,一定不是有理数,正确.5.(3分)(2009•长沙)已知实数a在数轴上的位置如图所示,则化简|1﹣a|+的结果为()6.(3分)已知=2.515,=0.2515,则x的值是()解:已知23,则x=,,,∵<<,则(,则,则9.(3分)不小于4×的最小整数是()<得出×==×和确定10.(3分)如图是正方形纸盒的展开图,若在三个正方形A,B,C内分别填入适当的实数,使得它们折成正方体后相对面上的两个数互为相反数,则填人三个正方形A,B,C内的三个实数依次为(),,﹣π,0 C.,0,﹣π与﹣二、填空题(每小题4分,共24分)11.(4分)用计算器进行计算,按键顺序的结果是1.解:此按键表示:12.(4分)如果x2=64,那么=±2.∴13.(4分)若x,y为实数,且|x+2|+=0,则()2011的值为﹣1.=14.(4分)如图:数轴上的点A和点B之间的整数点有﹣1,0,1,2.和的范围,再进一步找到之间的整数.<﹣<15.(4分)A,B分别表示数轴上﹣1,+1两点,则A,B两点间的距离为2.分别表示数轴上﹣,两点间的距离为(+1)﹣(16.(4分)有一列数,1,,,…,,,,如果从中选出若干个数,使它们的和大于3,那么至少要选5个数.=,三、解答题(共66分)17.(6分)设a=﹣1,b=﹣32,c=﹣|﹣|,比较a,b,c的大小.(用“<”连接)<﹣a=>﹣<18.(6分)计算:(1)(﹣2)2﹣(3﹣5)﹣+2×(﹣3);(2)﹣22+(﹣2)2++(﹣1)2011.4+4+.19.(6分)用计算器计算:3﹣4+3﹣.(结果精确到0.01),,,20.(8分)若的整数部分为a,小数部分为b,求a2+b﹣的值.﹣=9+=621.(8分)一正方形的面积为10,求以这个正方形的边为直径的圆的面积.(结果精确到0.O1)解:正方形的边长为为直径的圆的面积为(22.(10分)若是一个正整数,则满足条件的最小正整数x=4.时,23.(10分)(1)用“<”,“>”,“=”填空:<<<<(2)由上可知:①|1﹣|=﹣1②|﹣|=﹣③|﹣|=﹣④|﹣|=﹣(3)计算(结果保留根号):|1﹣|+|﹣|+|﹣|+|﹣|+…+|﹣|<<<;﹣﹣++﹣﹣)①﹣;②﹣;③﹣;④﹣1+﹣﹣++﹣24.(12分)一段圆钢,长2分米,体积为10π立方分米,已知1立方分米钢的重量是7.8千克,那么这段圆钢横截面的半径是多少分米?这段圆钢重多少千克?(精确到0.01)r=参与本试卷答题和审题的老师有:zjx111;蓝月梦;算术;xiu;lf2-9;sks;sd2011;gsls;星期八;HJJ;CJX;gbl210;caicl;dbz1018;zhjh;马兴田(排名不分先后)菁优网2014年10月12日。
七年级数学实数测试卷1
第6章 实数一、 选择题(3分×10=18分) 1.91的平方根是( )A 、31 B 、 31- C 、 31± D 、811±2.16的平方根是( )A 、 4B 、 -4C 、 4±D 、 2± 3.列说法正确的是( )A 、41是5.0的一个平方根 B 、 正数有两个平方根,且这两个平方根之和等于0C 、 72的平方根是7D 、负数有一个平方根 4.如果5.0=y ,那么y的值是( )A 、0.5B 、25.0C 、-0.25D 、-0.5 5.a和a-都有意义,则a 的值是( )A 、 0a ≥B 、 0a ≤C 、 0a =D 、0a ≠6.如果x 是a 的立方根,则下列说法正确的是( ) A 、x -也是a 的立方根 B 、x -是a -的立方根 C 、x 是a -的立方根 D 、等于3a7.π、722、3-、3343、1416.3、3.0 可,无理数的个数是( ) A 、1个 B 、 2个 C 、 3个 D 、 4个 8.与数轴上的点建立一一对应的是( )A 、全体有理数B 、全体无理数C 、 全体实数D 、全体整数 9.如果一个实数的平方根与它的立方根相等,则这个数是( ) A 、0 B 、正实数 C 、0和1 D 、1 10.下列运算正确的是( ) A 、552332=+ B 、1010101073=∙=∙+)(C 、24±= D 、2-33-2=二、 填空题(1分×30=30分) 1.填表:2.9 的算术平方根是 ;2)3(-的算术平方根 ;9的平方根是 4.正数有 个平方根,它们 ;0的平方根是 ;负数 平方根。
正数的立方根是 数;负数的立方根是 数;0的立方根是 。
3.125-的立方根是 ,8±的立方根是 ,0的立方根是 。
4.一个数的平方等于它本身,这个数是 ;一个数的平方根等于它本身,这个数是 ,一个数的算术平方根等于它本身,这个数是 5.2的相反数是 ,π-= ,364-=6.比较下列各组数的大小:⑴ 5.1- 5.1 ⑵215- 21⑶ π 14.3三、解下列各题。
人教版初中七年级数学下册第六单元《实数》经典测试题(含答案解析)(1)
一、选择题1.对于任意不相等的两个实数a ,b ,定义运算:a ※b =a 2﹣b 2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为( )A .﹣40B .﹣32C .18D .10D 解析:D【分析】直接利用题中的新定义给出的运算公式计算得出答案.【详解】解:(-5)※4=(﹣5)2﹣42+1=10.故选:D .【点睛】本题主要考查了实数运算,以及定义新运算,正确运用新定义给出的运算公式是解题关键.2.下列各数中无理数共有( )①–0.21211211121111,②3π,③227, A .1个B .2个C .3个D .4个C 解析:C【分析】根据无理数的概念确定无理数的个数即可解答.【详解】解:无理数有3π3个. 故答案为C .【点睛】本题主要考查了无理数的定义,无理数主要有以下三种①带根号且开不尽方才是无理数,②无限不循环小数为无理数,③π的倍数.3.若“!”是一种运算符号,且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,则计算2015!2014!正确的是( ) A .2015B .2014C .20152014D .2015×2014A解析:A【分析】根据题意列出实数混合运算的式子,进而可得出结论;【详解】∵ 1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1⋅⋅⋅⋅⋅⋅,∴ 可得规律为:()()12!321n n n n =⨯-⨯-⨯⋅⋅⋅⨯⨯⨯,∴2015!2014!=201520142013120152014201320121⨯⨯⨯⋅⋅⋅⨯=⨯⨯⨯⋅⋅⋅⨯ , 故选:A .【点睛】 本题考查了实数的混合运算,熟知实数混合运算的法则是解答此题的关键.4.已知实数a 的一个平方根是2-,则此实数的算术平方根是( )A .2±B .2-C .2D .4C解析:C【分析】根据平方根的概念从而得出a 的值,再利用算术平方根的定义求解即可.【详解】∵-2是实数a 的一个平方根,∴4a =,∴4的算术平方根是2,故选:C .【点睛】本题主要考查了平方根以及算术平方根,在解题时要注意一个正数有两个平方根,它们互为相反数.一个正数的算术平方根是它的正的平方根.5.对任意两个正实数a ,b ,定义新运算a ★b 为:若a b ≥,则a ★a b b ;若a b <,则a ★b b a.则下列说法中正确的有( ) ①=a b b a ★★;②()()1a b b a =★★;③a ★b 12a b +<★ A .①B .②C .①②D .①②③A 解析:A【分析】 ①根据新运算a b ★的运算方法,分类讨论:a b ≥,a b <,判断出a b ★是否等于b a ★即可;②由①,推得=a b b a ★★,所以()()1a b b a =★★不一定成立;③应用放缩法,判断出1a b a b+★★与2的关系即可. 【详解】解:①a b ≥时,a ab b ★,b a a b★, ∴=a b b a ★★;a b <时,a b ba ★,b b a a★, ∴=a b b a ★★;∴①符合题意.②由①,可得:=a b b a ★★,当a b ≥时,∴()()()()22a b b a a b aa a ab b b ba b ====★★★★, ∴()()a b b a ★★不一定等于1, 当a b <时, ∴()()()()22a b b a a b bb b b aa a aa b ====★★★★, ∴()()a b b a ★★不一定等于1, ∴()()1a b b a =★★不一定成立,∴②不符合题意. ③当a b ≥时,0a >,0b>,∴1a b≥,∴(12a b a b a b b a ab ab ++===+=≥≥★★,当a b <时,∴(12a b a b a b ab ++====≥≥★★,∴12a b a b+<★★不成立, ∴③不符合题意,∴说法中正确的有1个:①.故选:A .【点评】此题主要考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.6.下列实数31,7π-,3.14,1.010010001…(从左到右,每两个1之间依次增加一个0)中,其中无理数有( )A .5个B .4个C .3个D .2个C 解析:C【分析】根据无理数的定义、算术平方根与立方根逐个判断即可得.【详解】31 4.4285717=小数点后的428571是无限循环的,属于有理数,3=-属于有理数,=则无理数为π-⋯,共有3个,故选:C .【点睛】本题考查了无理数、算术平方根与立方根,熟记各定义是解题关键.7.下列说法中,错误的是()A .实数与数轴上的点一一对应B .1π+是无理数C .2是分数 D C 解析:C【分析】根根据有理数和无理数的定义可对C 、B 、D 进行判断;根据实数与数轴上点的关系可对A 进行判断.【详解】解:A. 实数与数轴上的点是一一对应的,此说法正确,不符合题意;B.1π+是无理数,此说法正确,不符合题意;C.2是无理数,原说法错误,符合题意;是无限不循环小数,此说法正确,不符合题意.故选:C .本题考查了实数的有关概念:有理数和无理数统称为实数;整数和分数统称为有理数;无限不循环小数叫无理数;实数与数轴上的点是一一对应的.8.下列选项中,属于无理数的是( )A .πB .227-C .4D .0A 解析:A【分析】根据无理数是无限不循环小数,可得答案.【详解】 解:A.π是无理数;B.227-是分数,属于有理数; C.4=2是整数,属于有理数;D.0是整数,属于有理数.故选:A .【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,2,0.8080080008…(每两个8之间依次多1个0)等形式.9.估计50的立方根在哪两个整数之间( )A .2与3B .3与4C .4与5D .5与6B 解析:B【分析】根据327<350<364,可得答案.【详解】解:由327<350<364,得3<350<4,所以,50的立方根在3与4之间故选:B .【点睛】本题考查了估算无理数的大小,利用了正数的被开方数越大立方根越大的关系. 10.我们定义新运算如下:当m n ≥时,m 22n m n =-;当m n <时,m 3n m n =-.若5x =,则(3-)(6x -)x 的值为( ) A .-27B .-47C .-58D .-68C 解析:C【分析】根据新定义法则判断35-<,65≥,根据新定义内容分别代入计算即可.当5x =时,∵35-<,∴3- 5=()33527532--=--=-, ∵65≥,∴625625361026=-⨯=-=,则(3-)(6x -)x =322658--=-.故选:C .【点睛】本题考查新定义运算,掌握新定义运算技巧,理解题意为解题关键.二、填空题11.已知1,25x a y a =-=-.(1)已知x 的算术平方根为3,求a 的值;(2)如果x y ,都是同一个数的平方根,求这个数.(1)a=-8;(2)1或9【分析】(1)根据平方运算可得(1-a )的值求解可得答案;(2)根据题意可知相等或互为相反数列式求解可得a 的值根据平方运算可得答案【详解】解:(1)∵x 的算术平方根是3∴解析:(1)a=-8;(2)1或9.【分析】(1)根据平方运算,可得(1-a )的值,求解可得答案;(2)根据题意可知x y ,相等或互为相反数,列式求解可得a 的值,根据平方运算,可得答案.【详解】解:(1)∵x 的算术平方根是3,∴1-a=9,∴a=-8;(2)x ,y 都是同一个数的平方根,∴1-a=2a-5或1-a+(2a-5)=0,解得a=2,或a=4,当a=2时,(1-a )=(1-2)2=1,当a=4时,(1-a )=(1-4)2=9,答:这个数是1或9.【点睛】本题考查了平方根和算术平方根,注意第(2)问符合条件的答案有两个,小心漏解. 12.如图,数轴上点A ,B ,C 所对应的实数分别为a ,b ,c ,试化简()323|-|b a c a b +2a-c 【分析】根据数轴得到a<b<0<c 由此得到a-c<0a+b<0依此化简各式再合并同类项即可【详解】由数轴得a<b<0<c ∴a-c<0a+b<0∴=-b-(c-a )+(a+b)=-b-c+a+解析:2a-c【分析】根据数轴得到a<b<0<c ,由此得到a-c<0,a+b<0,依此化简各式,再合并同类项即可.【详解】由数轴得a<b<0<c ,∴a-c<0,a+b<0, ∴()323|-|b a c a b -+=-b-(c-a )+(a+b)=-b-c+a+a+b=2a-c.【点睛】此题考查数轴上的点表示数,利用数轴比较数的大小,绝对值的性质,立方根的化简,整式的加减法计算法则,解题的关键是依据数轴确定各式子的符号由此化简各式. 13.材料:一般地,n 个相同因数a 相乘:n a a a a a ⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____.3;【分析】由可求出由可分别求出继而可计算出结果【详解】解:(1)由题意可知:则(2)由题意可知:则∴故答案为:3;【点睛】本题主要考查定义新运算读懂题意掌握运算方法是解题关键 解析:3; 1173. 【分析】由239=可求出2log 93=,由4216=,43=81可分别求出2log 164=,3log 814=,继而可计算出结果.【详解】解:(1)由题意可知:239=,则2log 93=,(2)由题意可知: 4216=,43=81,则2log 164=,3log 814=,∴223141(log 16)log 811617333+=+=,故答案为:3;1173. 【点睛】 本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键.14.()220y -=,则xy =_________.-1【分析】由非负数的性质可知x=-y=2然后求得xy 的值即可【详解】解:∵|+(y-2)2=0∴2x+1=0y-2=0∴x=-y=2∴xy=-×2=-1故答案为:-1【点睛】本题考查了非负数的性质解析:-1【分析】由非负数的性质可知x=-12,y=2,然后求得xy 的值即可. 【详解】解:∵(y-2)2=0,∴2x+1=0,y-2=0,∴x=-12,y=2. ∴xy=-12×2=-1. 故答案为:-1.【点睛】本题考查了非负数的性质,掌握非负数的性质是解题的关键.15的相反数是________的数是________【分析】直接利用相反数的定义以及绝对值的性质分析得出答案【详解】的相反数是;绝对值等于的数是故答案为:;【点睛】本题主要考查了绝对值以及相反数正确掌握相关定义是解题关键【分析】直接利用相反数的定义以及绝对值的性质分析得出答案.【详解】;【点睛】本题主要考查了绝对值以及相反数,正确掌握相关定义是解题关键.16.已知(25|50x y -++-=.(1)求x ,y 的值;(2)求xy 的算术平方根.(1);(2)【分析】(1)根据非负数的性质求解即可;(2)先求出xy 的值再根据算术平方根的定义求解【详解】解:(1)解得:;(2)的算术平方根为【点睛】本题考查了非负数的性质以及算术平方根的定义根解析:(1)5x =-5y =2【分析】(1)根据非负数的性质求解即可;(2)先求出xy 的值,再根据算术平方根的定义求解.【详解】解:(1)(250x -+≥,50y -≥,(2550x y -++--=,50x ∴-=,50y --=,解得:5x =5y =+(2)(5525322xy =-=-=, xy ∴.【点睛】本题考查了非负数的性质,以及算术平方根的定义,根据非负数的性质求出x ,y 的值是解答本题的关键.17.若4<5,则满足条件的整数 a 分别是_________________.18192021222324【分析】求出a 的范围是16<a <25求出16和25之间的整数即可【详解】解:∵4<<5a 为整数∴<<∴整数a 有1718192021222324共8个数故答案为:17181解析:18、19、20、21、22、23、24.【分析】求出a 的范围是16<a <25,求出16和25之间的整数即可.【详解】解:∵4<5,a 为整数, ∴∴整数a 有17、18、19、20、21、22、23、24,共8个数,故答案为:17、18、19、20、21、22、23、24.【点睛】本题主要考查的是估算无理数的大小,夹逼法的应用是解题的关键.18.设a ,b a b <<,是,则a b =____.9【分析】求出的范围求出ab 的值代入求出即可【详解】∵2<<3∴a =2b =3∴ba =32=9故答案为:9【点睛】本题考查了估算无理数的大小的应用关键是求出ab的值解析:9【分析】a、b的值,代入求出即可.【详解】∵23,∴a=2,b=3,∴b a=32=9.故答案为:9.【点睛】本题考查了估算无理数的大小的应用,关键是求出a、b的值.a-的平方根是2±,则a的值为_______.5【分析】根据平方根的定义求19.已知1解即可【详解】的平方根是a-1=4a=5故答案为:5【点睛】此题考查了平方根的定义一个整数的平方根有两个它们互为相反数解析:5【分析】根据平方根的定义求解即可.【详解】a-的平方根是2±,1∴a-1=4,∴a=5.故答案为:5【点睛】此题考查了平方根的定义,一个整数的平方根有两个,它们互为相反数.20.观察下面两行数:2,4,8,16,32,64…①5,7,11,19,35,67…②根据你发现的规律,取每行的第8个数,并求出它们的和_______(要求写出最后的计算结果).515【分析】由已知条件可得:①中各数都符合2n的形式②中各数比①中对应数字大3按此规律即可求得①②中第8个数的值再求和即可【详解】根据题意可知①中第8个数为28=256;②第8个数为28+3=25解析:515【分析】由已知条件可得:①中各数都符合2n的形式,②中各数比①中对应数字大3,按此规律即可求得①、②中第8个数的值,再求和即可.【详解】根据题意可知,①中第8个数为28=256;②第8个数为28+3=259,故它们的和为256+259=515,故答案为:515.【点睛】考查了要求学生通过观察,分析、归纳发现其中的规律,解题关键是找出①②中各数间的规律.三、解答题21.计算:(1)7|2|--(2)23115422⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭解析:(1)2;(2)5【分析】(1)先计算绝对值及开立方,再计算加减法;(2)先计算括号中的减法及乘方,再按顺序计算乘除法.【详解】解:(1)7|2|--=7-2-3=2; (2)23115422⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭=15144⨯÷ =5.【点睛】 此题考查实数的混合运算,掌握运算法则及运算顺序是解题的关键.22.已知(25|50x y -++-=.(1)求x ,y 的值;(2)求xy 的算术平方根.解析:(1)5x =-5y =2【分析】(1)根据非负数的性质求解即可;(2)先求出xy 的值,再根据算术平方根的定义求解.【详解】解:(1)(250x -+≥,50y -≥,(2550x y -++--=,50x ∴-=,50y --=,解得:5x =5y =+(2)(5525322xy =-=-=, xy ∴.【点睛】本题考查了非负数的性质,以及算术平方根的定义,根据非负数的性质求出x ,y 的值是解答本题的关键.23.1解析:1【分析】先根据开方的意义,绝对值的意义进行化简,最后计算即可求解.【详解】解:原式123122=-+++⨯1=+ 【点睛】本题考查了实数的混合运算,理解开方的意义,能正确去绝对值是解题关键.24.求下列各式中x 的值.(1)4(x ﹣3)2=9;(2)(x +10)3+125=0.解析:(1)x =92或32;(2)x =﹣15 【分析】(1)利用平方根解方程即可;(2)利用立方根解方程即可.【详解】解:(1)4(x ﹣3)2=9,(x ﹣3)2=94, x ﹣3=32±, x ﹣3=32或x ﹣3=32-, 解得:x =92或32; (2)(x +10)3+125=0,(x +10)3=﹣125,x +10x +10=﹣5,解得x =﹣15.【点睛】本题主要考查利用平方根解方程、利用立方根解方程,熟练掌握解方程的方法和步骤是解答的关键,注意平方根有两个.25.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)实数m 的值是___________;(2)求|1||1|m m ++-的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有|2|c d +与4d +互为相反数,求23c d -的平方根.解析:(1)2+2;(2)2;(3)4±【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知10m +>、10m -<,再利用绝对值的性质化简绝对值号,继而求得答案;(3)根据非负数的性质求出c 、d 的值,再代入23c d -,进而求其平方根.【详解】解:(1)∵蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-∴点B 表示2+2∴2+2m =-.(2)∵2+2m =-∴1221230m +=-+=->,1221210m -=--=-< ∴11m m ++-()11m m =+--11m m =+-+2=.(3)∵2c d +4d +∴240c d d ++=∴2040c d d +=⎧⎨+=⎩ ∴24c d =⎧⎨=-⎩ ∴()23223416c d -=⨯-⨯-=∴4==±,即23c d -的平方根是4±.【点睛】本题考查了实数与数轴、绝对值的性质、相反数的性质、非负数的性质、求一个数的平方根等,熟练掌握相关知识点是解题的关键.26.求满足条件的x 值:(1)()23112x -=(2)235x -=解析:(1)13x =,21x =-;(2)1x =2x =-【分析】(1)方程两边同除以3,再运用直接开平方法求解即可;(2)方程移项后,再运用直接开平方法求解即可.【详解】解:(1)()23112x -= ()214x -=12x -=±解得,13x =,21x =-;(2)235x -=28x = ∴x =±∴1x =2x =-【点睛】本题考查了平方根的应用,解决本题的关键是熟记平方根的定义.27.1=,31a b +-的平方根是±2,C 的整数部分,求-+b a c 的平方根.解析:±3【分析】结合平方根的定义以及估算无理数大小的方法得出a ,b ,c 的值,进而得出答案.【详解】解::由题意,得: 2a−1=1,解得:a=1,3a+b−1=4,解得:b=2,c=8,所以b ﹣a +c =2﹣1+8=9∴9的平方根是±3故答案为:±3【点睛】本题考查了算术平方根的意义,平方根的意义,无理数的估算,熟练掌握算术平方根的意义、平方根的意义、夹逼法估算无理数的值是解答本题的关键.28.求满足下列条件的x 的值:(1)3(3)27x +=-;(2)2(1)218x -+=.解析:(1)6x =-;(2)3x =-或5【分析】(1)根据立方根,即可解答;(2)根据平方根,即可解答.【详解】解:(1)3(3)27x +=-33x +=-6x =-;(2)2(1)218x -+=2(1)16x -=14x -=±∴3x =-或5.【点睛】本题考查了平方根、立方根,解决本题的关键是熟记平方根、立方根的定义.。
实数单元测试题一
实数单元测试题一班级姓名一(选择题(每小题2分,共24分)1. 计算的结果是( )( 4,.2 ,(?2 ,(-2 ,(4(,,32. 在-1.732,,π, 3.,2+,3.212212221…,3.14这些数中,无理数的个214数为( ).A.5B.2C.3D.43. 已知下列结论:?在数轴上只能表示无理数2;?任何一个无理数都能用数轴上的点表示;?实数与数轴上的点一一对应;?有理数有无限个,无理数有有限个. 其中正确的结论是( ).A.??B.??C.??D.???4. 下列各式中,正确的是( ).233,5,,5,3.6,,0.6(,13),,1336,,6A. B. C. D. 6. 下列说法中,正确的是( )(A. 不带根号的数不是无理数B. 8的立方根是?233C. 绝对值是的实数是 D. 每个实数都对应数轴上一个点2(a,3),a7. 若-3,则a的取值范围是( ).A. ,3B. ?3C. ,3D. ?3 aaaa5x,2,8. 能使有意义的x的范围是( ). 3,xA. x?-2且x?3B. x?3C.-2?x,3D.-2?x?3 9.下列说法错误的是( )5A(是9的平方根 B(的平方等于5 ,3,1,1C(的平方根是 D(9的算术平方根是310.下列说法中正确的是( )22a,aA. 实数是负数 B. ,aC. 一定是正数D. 实数的绝对值是 ,aa,a11( 有下列说法:其中正确的说法的个数是( ) (1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数; (3)无理数包括正无理数、零、负无理数; (4)无理数都可以用数轴上的点来表示。
A(1 B(2 C(3 D(4212(的平方根是( ) ,0.7,,A( B( C( D( ,0.7,0.70.70.49二.填空题(每小题2分,共20分)113(若x的立方根是,,则x,___________( 414(化简 =___________。
实数单元测试题难题及答案
实数单元测试题难题及答案一、选择题1. 下列哪个数不是实数?A. πB. -3C. √2D. i2. 若a > 0,b < 0,且|a| < |b|,则a + b的值是:A. 正数B. 负数C. 零D. 无法确定3. 计算下列表达式的值:\( (-3)^2 \) 是:A. 9B. -9C. 3D. -34. 以下哪个数是无理数?A. 0.5B. 0.333...(无限循环)C. √3D. 1/3二、填空题5. 一个数的相反数是-7,这个数是______。
6. 若x² = 25,x的值可以是______。
三、解答题7. 证明:对于任意实数a和b,如果a > b,那么a² > b²。
8. 解不等式:\( 2x - 5 < 3x + 2 \)。
四、综合题9. 已知一个数列的前三项为1, 2, 3,从第四项开始,每一项都是前三项的和。
求证这个数列的所有项都是正数。
答案:1. D(i是虚数单位,不是实数)2. B(因为|a| < |b|,所以a + b < 0)3. A((-3)² = 9)4. C(√3是无理数)5. 7(-7的相反数是7)6. ±5(x² = 25,所以x = ±√25 = ±5)7. 证明:因为a > b,所以a - b > 0。
两边平方得到(a - b)² > 0,即a² - 2ab + b² > 0。
由于a²和b²都是非负数,所以a² -b² > 2ab。
因为a > b,所以2ab < 2a²,所以a² - b² > 0,即a² > b²。
8. 解:2x - 5 < 3x + 2 → -x < 7 → x > -79. 证明:设数列的第n项为a_n,已知a_1 = 1, a_2 = 2, a_3 = 3。
实数单元测试题及答案
实数单元测试题及答案一、选择题(每题3分,共30分)1. 实数集R中,最小的正整数是:A. 0B. 1C. -1D. 不存在答案:B2. 下列哪个数是无理数?A. πB. 0.5C. √4D. -3答案:A3. 如果a是一个实数,且a > 0,那么下列哪个表达式是正确的?A. -a < 0B. a + 0 = 0C. a × 0 = aD. a - a = 1答案:A4. 两个负实数相加的结果是什么?A. 正数B. 负数C. 零D. 无法确定答案:B5. 以下哪个数是实数?A. iB. √-1C. 2 + 3iD. √4答案:D6. 绝对值的定义是:A. 一个数的相反数B. 一个数的平方C. 一个数距离0的距离D. 一个数的立方答案:C7. 以下哪个不等式是正确的?A. √2 < 1.5B. √2 > 1.5C. √2 = 1.5D. √2 ≠ 1.5答案:B8. 一个实数的平方总是:A. 正数B. 零C. 负数D. 无法确定答案:A9. 如果x是一个实数,那么x² + 2x + 1的最小值是:A. 0B. 1C. 2D. 4答案:B10. 以下哪个数是实数?A. 1/0B. √-9C. 1/√2D. 0.33333...(无限循环)答案:C二、填空题(每题2分,共20分)11. √9 = ______。
答案:312. 如果一个数的绝对值是5,那么这个数可以是______或______。
答案:5 或 -513. π的值大约等于______。
答案:3.1415914. 两个相反数的和是______。
答案:015. 如果a是实数,那么a的相反数是______。
答案:-a16. 一个数的平方根是它自己的数有______和______。
答案:1 和 017. √16的平方根是______。
答案:±218. 一个数的立方等于它自己的数有______,______和______。
《实数》单元测试卷
《实数》单元测试卷一、选择题(每题2分,共20分)1. 实数包括有理数和无理数,以下哪个选项不是实数?A. √2B. -3C. 0.33333...(无限循环)D. π2. 以下哪个数是无理数?A. 1/2B. √3C. 22/7D. -13. 如果a是一个正实数,那么下列哪个表达式的结果不是正实数?A. a + 1B. a - 1C. a × 1D. a / a4. 两个负实数相加的结果是什么?A. 正实数B. 负实数C. 零D. 无理数5. 实数的绝对值总是非负的,以下哪个表达式的结果不是非负数?A. |-5|B. |5|C. |-5 + 5|D. |-5| - 5二、填空题(每题2分,共20分)1. 有理数和无理数的集合统称为_______。
2. 一个数的绝对值是该数与零的距离,例如,|-3| = _______。
3. 无理数是不可以表示为两个整数的比的数,例如_______是一个无理数。
4. 两个实数相除,如果除数为零,则结果为_______。
5. 实数的乘方运算中,任何数的零次方等于_______。
三、计算题(每题5分,共30分)1. 计算下列表达式的值:(3 + √5)²2. 求下列方程的解:2x - 5 = 73. 计算下列表达式的值:(-2)³ + √44. 求下列方程的解:x² - 4x + 4 = 0四、解答题(每题10分,共30分)1. 描述实数的分类,并给出有理数和无理数的例子。
2. 解释绝对值的概念,并给出几个绝对值的例子。
3. 讨论实数的运算规则,特别是乘方和开方。
五、附加题(10分)1. 证明:对于任意实数a和b,如果a > b,则|a| ≥ |b|。
【答案】一、选择题1. D2. B3. D4. B5. D二、填空题1. 实数2. 33. √24. 无定义5. 1三、计算题1. (3 + √5)² = 9 + 6√5 + 5 = 14 + 6√52. 2x - 5 = 7 → 2x = 12 → x = 63. (-2)³ + √4 = -8 + 2 = -64. x² - 4x + 4 = (x - 2)² = 0 → x = 2四、解答题1. 实数可以分为有理数和无理数。
实数测试题及答案
实数测试题及答案一、选择题(每题2分,共10分)1. 实数集R中,最小的正整数是:A. 0B. 1C. 2D. 3答案:B2. 下列哪个数不是实数?A. πB. -√2C. √4D. 0.33333(无限循环)答案:无3. 若a, b, c是实数,且a > b,则下列哪个不等式一定成立?A. a + c > b + cB. a - c > b - cC. a × c > b × cD. a ÷ c > b ÷ c答案:A4. 实数x满足|x - 1| < 2,则x的取值范围是:A. -1 < x < 3B. -2 < x < 0C. 0 < x < 2D. 1 < x < 3答案:A5. 若实数x满足x² - 4x + 4 = 0,则x的值为:A. 2B. -2C. 0D. 4答案:A二、填空题(每题2分,共10分)1. 一个实数的绝对值等于它本身,那么这个实数一定是______。
答案:非负数2. 若实数x满足x² = 1,则x的值是______。
答案:±13. 实数-3的相反数是______。
答案:34. 若实数a和b满足a² + b² = 0,则a和b的值分别是______。
答案:05. 一个实数的平方根是它本身,那么这个实数只能是______。
答案:1或0三、解答题(每题10分,共20分)1. 已知实数a和b满足a² - 4a + 4 = 0,求a的值。
答案:由于(a - 2)² = 0,所以a = 2。
2. 证明:对于任意实数x,x² ≥ 0。
答案:设x² = y,由于平方总是非负的,所以y ≥ 0,即x² ≥0。
四、综合题(每题15分,共30分)1. 已知实数x和y满足x² + y² = 1,求证x + y ≤ √2。
(完整版)七年级数学下册名校课堂训练:实数测试(一)解析
一、选择题1.按如图所示的程序计算,若开始输入的值为25,则最后输出的y 值是( )A .5B .5±C .5D .5±2.定义一种新运算“*”,即()*23m n m n =+⨯-,例如()2*322339=+⨯-=.则()6*3-的值为( ) A .12B .24C .27D .30 3.若29x =,|y |=7,且0x y ->,则x +y 的值为( ) A .﹣4或10 B .﹣4或﹣10 C .4或10 D .4或﹣10 4.如示意图,小宇利用两个面积为1 dm 2的正方形拼成了一个面积为2 dm 2的大正方形,并通过测量大正方形的边长感受了2dm 的大小. 为了感知更多无理数的大小,小宇利用类似拼正方形的方法进行了很多尝试,下列做法不能实现的是( )A .利用两个边长为2dm 8的大小B .利用四个直角边为3dm 18的大小C 2的正方形以及一个直角边为2dm 6dm 的大小D .利用四个直角边分别为1 dm 和3 dm 的直角三角形以及一个边长为2 dm 的正方形感知10的大小5.若225a =,3b =,则a b +所有可能的值为( )A .8B .8或2C .8或2-D .8±或2± 6.已知n 是正整数,并且n -1<326n ,则n 的值为( )A .7B .8C .9D .10 7.有下列说法:①在1和22,3②实数与数轴上的点一一对应;③两个无理数的积一定是无理数;④2π是分数.其中正确的为( ) A .①②③④B .①②④C .②④D .② 8.观察下列各等式: 231-+=-5-6+7+8=4-10-l1-12+13+14+15=9-17-18-19-20+21+22+23+24=16……根据以上规律可知第11行左起第11个数是()A.-130 B.-131 C.-132 D.-1339.如图,数轴上,A B两点表示的数分别为1,2--,点B关于点A的对称点为点C,则点C所表示的数是()A.12B21C.22D2210.有一个数阵排列如下:1 2 4 7 11 16 223 5 8 12 17 236 9 13 18 2410 14 19 2515 20 2621 2728则第20行从左至右第10个数为()A.425B.426C.427D.428二、填空题11.新定义一种运算,其法则为32a ca d bcb d=÷,则223x xx x--=__________12.若(a﹣1)21b+a2018+b2019=_____.13.观察下列各式:225-85425⨯25225-253310-27103910⨯3103310-31021nnn-+_____.14.若|x|=3,y2=4,且x>y,则x﹣y=_____.15.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简[x]+(x)+[x)的结果是_____.16.按一定规律排列的一列数依次为:2-,5,10-,17,26-,,按此规律排列下去,这列数中第9个数及第n个数(n为正整数)分别是__________.17.观察等式:2111==,21342+==,213593++==,21357164+++==,……猜想13572019++++⋅⋅⋅+=______.18.我们可以用符号f(a)表示代数式.当a是正整数时,我们规定如果a为偶数,f(a)=0.5a;如果a为奇数,f(a)=5a+1.例如:f(20)=10,f(5)=26.设a1=6,a2=f(a1),a3=f (a 2)…;依此规律进行下去,得到一列数:a 1,a 2,a 3,a 4…(n 为正整数),则2a 1﹣a 2+a 3﹣a 4+a 5﹣a 6+…+a 2013﹣a 2014+a 2015=_____.19.定义:如果将一个正整数a 写在每一个正整数的右边,所得到的新的正整数能被a 整除,则这个正整数a 称为“魔术数”.例如:将2写在1的右边得到12,写在2的右边得到22,……,所得到的新的正整数的个位数字均为2,即为偶数,由于偶数能被2整除,所以2是“魔术数”.根据定义,在正整数3,4,5中,“魔术数”为____________;若“魔术数”是一个两位数,我们可设这个两位数的“魔术数”为x ,将这个数写在正整数n 的右边,得到的新的正整数可表示为()100n x +,请你找出所有的两位数中的“魔术数”是_____________.20.已知M 是满足不等式a <N M N +的平方根为__________.三、解答题21.数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:39.众人感觉十分惊奇,请华罗庚给大家解读其中的奥秘.你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试:①31000100==,又1000593191000000<<,10100∴,∴能确定59319的立方根是个两位数.②∵59319的个位数是9,又39729=,∴能确定59319的立方根的个位数是9. ③如果划去59319后面的三位319得到数59,34<<,可得3040<<,由此能确定59319的立方根的十位数是3因此59319的立方根是39.(1)现在换一个数195112,按这种方法求立方根,请完成下列填空.①它的立方根是_______位数.②它的立方根的个位数是_______.③它的立方根的十位数是__________.④195112的立方根是________.(2)请直接填写....结果:=________.=________.22.阅读型综合题对于实数x y ,我们定义一种新运算(),L x y ax by =+(其中a b ,均为非零常数),等式右边是通常的 四则运算,由这种运算得到的数我们称之为线性数,记为(),L x y ,其中x y ,叫做线性数的一个数对.若实数 x y ,都取正整数,我们称这样的线性数为正格线性数,这时的x y ,叫做正格线性数的正格数对.(1)若(),3L x y x y =+,则()2,1L = ,31,22L ⎛⎫= ⎪⎝⎭;(2)已知(),3L x y x by =+,31,222L ⎛⎫= ⎪⎝⎭.若正格线性数(),18L x kx =,(其中k 为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由. 23.先阅读然后解答提出的问题:设a 、b 是有理数,且满足3=-a b a 的值.解:由题意得(3)(0-++=a b ,因为a 、b 都是有理数,所以a ﹣3,b+2也是有理数,a-3=0,b+2=0,所以a=3,b=﹣2, 所以3(2)8=-=-a b .问题:设x 、y 都是有理数,且满足2210x y -=+x+y 的值.24.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(-3)÷(-3)÷(-3)÷(-3)记作(-3)④,读作“-3的圈4次方”,一般地,把n aa a a a ÷÷÷⋯÷个 (a≠0)记作a ⓝ,读作“a 的圈 n 次方”. (初步探究)(1)直接写出计算结果:2③=___,(12)⑤=___;(2)关于除方,下列说法错误的是___A .任何非零数的圈2次方都等于1;B .对于任何正整数n ,1ⓝ=1;C .3④=4③;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(-3)④=___; 5⑥=___;(-12)⑩=___.(2)想一想:将一个非零有理数a 的圈n 次方写成幂的形式等于___;(3)算一算:212÷(−13)④×(−2)⑤−(−13)⑥÷33 25.阅读材料:求1+2+22+23+24+…+22017的值.解:设S=1+2+22+23+24+ (22017)将等式两边同时乘以2得:2S=2+22+23+24+…+22017+22018将下式减去上式得2S-S=22018-1即S=22018-1即1+2+22+23+24+…+22017=22018-1请你仿照此法计算:(1)1+2+22+23+…+29=_____;(2)1+5+52+53+54+…+5n (其中n 为正整数);(3)1+2×2+3×22+4×23+…+9×28+10×29.26.阅读材料,解答问题:如果一个四位自然数,十位数字是千位数字的2倍与百位数字的差,个位数字是千位数字的2倍与百位数字的和,则我们称这个四位数“依赖数”,例如,自然数2135,其中3=2×2﹣1,5=2×2+1,所以2135是“依赖数”.(1)请直接写出最小的四位依赖数;(2)若四位依赖数的后三位表示的数减去百位数字的3倍得到的结果除以7余3,这样的数叫做“特色数”,求所有特色数.(3)已知一个大于1的正整数m 可以分解成m =pq+n 4的形式(p≤q ,n≤b ,p ,q ,n 均为正整数),在m 的所有表示结果中,当nq ﹣np 取得最小时,称“m =pq+n 4”是m 的“最小分解”,此时规定:F (m )=q n p n++,例:20=1×4+24=2×2+24=1×19+14,因为1×19﹣1×1>2×4﹣2×1>2×2﹣2×2,所以F (20)=2222++=1,求所有“特色数”的F (m )的最大值. 27.对任意一个三位数n ,如果n 满足各数位上的数字互不相同,且都不为零,那么称这个数为“梦幻数”,将一个“梦幻数”任意两个数位上的数字对调后可以得到三个不同的新三数,把这三个新三位数的和与111的商记为K (n ),例如123n =,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213321132666++=,6661116÷=,所以()1236K =.(1)计算:()342K 和()658K ;(2)若x 是“梦幻数”,说明:()K x 等于x 的各数位上的数字之和;(3)若x ,y 都是“梦幻数”,且1000x y +=,猜想:()()K x K y +=________,并说明你猜想的正确性.28.据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗庚是怎样准确计算出的吗?请按照下面的问题试一试:(1)由33101000,1001000000==,因为1000327681000000<<______位数;(2)由32768的个位上的数是8________,划去32768后面的三位数768得到32,因为333=27,4=64_____________;(3)已知13824和110592-29.据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗庚是怎样准确计算出的吗?请按照下面的问题试一试:<<______位(1)由33101000,1001000000==,因为1000327681000000数;(2)由32768的个位上的数是8________,划去327683=27,4=64后面的三位数768得到32,因为33_____________-分别是两个数的立方,仿照上面的计算过程,请计算:(3)已知13824和110592=________30.阅读材料:求1+2+22+23+24+…+22017的值.解:设S=1+2+22+23+24+ (22017)将等式两边同时乘以2得:2S=2+22+23+24+…+22017+22018将下式减去上式得2S-S=22018-1即S=22018-1即1+2+22+23+24+…+22017=22018-1请你仿照此法计算:(1)1+2+22+23+…+29=_____;(2)1+5+52+53+54+…+5n(其中n为正整数);(3)1+2×2+3×22+4×23+…+9×28+10×29.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据已知进行计算,并判断每一步输出结果即可得到答案.【详解】解:∵25的算术平方根是5,5不是无理数,∴再取5的平方根,而5的平方根为∴输出值y=故选:B.【点睛】本题考查实数分类及计算,判断每步计算结果是否为无理数是解题的关键.2.C解析:C【分析】根据新定义的公式代入计算即可.∵()*23m n m n =+⨯-,∴()6*3-=()623(3)27+⨯--=,故选C .【点睛】本题考查了新定义下的实数计算,准确理解新定义公式是解题的关键.3.B解析:B【分析】先根据平方根、绝对值运算求出,x y 的值,再代入求值即可得.【详解】解:由29x =得:3x =±, 由7y =得:7y =±,0x y ->,x y ∴>,37x y =-⎧∴⎨=-⎩或37x y =⎧⎨=-⎩, 则3(7)10x y +=-+-=-或3(7)4x y +=+-=-,故选:B .【点睛】本题考查了平方根、绝对值等知识点,熟练掌握各运算法则是解题关键.4.C解析:C【分析】在拼图的过程中,拼前,拼后的面积相等,所以我们只需要分别计算拼前,拼后的面积,看是否相等,就可以逐一排除.【详解】A :222=8⨯,2=8,不符合题意;B :4×(3×3÷2)=18,2=18,不符合题意;C :22224+⨯÷=,26=,符合题意;D :24(132)210⨯⨯÷+=,210=,不符合题意.故选:C .【点睛】本题考查了利用二次根式计算面积,解题的关键是在拼图的过程中,拼前,拼后的面积相等.5.D解析:D先求出a 、b 的值,再计算即可.【详解】解:∵225a =,∴a =±5, ∵3b =,∴b =±3,当a =5,b =3时,8a b +=;当a =5,b =-3时,2a b +=;当a =-5,b =3时,2a b +=-;当a =-5,b =-3时,8a b +=-;故选:D .【点睛】本题考查了绝对值、平方根和有理数加法运算,解题关键是分类讨论,准确计算. 6.C解析:C【分析】根据实数的大小关系比较,得到56,从而得到n 的值.【详解】解:∵56, ∴8<9,∴n =9.故选:C .【点睛】7.D解析:D【分析】根据无理数的定义与运算、实数与数轴逐个判断即可得.【详解】①在1和2之间的无理数有无限个,此说法错误;②实数与数轴上的点一一对应,此说法正确;③两个无理数的积不一定是无理数,如2=-,此说法错误; ④2π是无理数,不是分数,此说法错误; 综上,说法正确的为②,故选:D .本题考查了无理数的定义与运算、实数与数轴,熟练掌握运算法则和定义是解题关键. 8.C解析:C【分析】通过观察发现:每一行等式右边的数就是行数的平方,故第n 行右边的数就是n 的平方,而左起第一个数的绝对值比右侧的数大1,并且左边的项数是行数的2倍,前一半的符号为负,后一半的符号为正.【详解】解:第一行:211=;第二行:224=;第三行:239=;第四行:2416=;……第n 行:2n ;∴第11行:211121=.∵左起第一个数的绝对值比右侧的数大1,并且左边的项数是行数的2倍,前一半的符号为负,后一半的符号为正.∴第11行左起第1个数是-122,第11个数是-132.故选:C .【点睛】此题主要考查探索数与式的规律,正确找出规律是解题关键.9.D解析:D【分析】设点C 的坐标是x ,根据题意列得12x =-,求解即可. 【详解】解:∵点A 是B ,C 的中点.∴设点C 的坐标是x ,则12x =-,则2x =-∴点C 表示的数是2-.故选:D.【点睛】此题考查数轴上两点的中点的计算公式:两点的中点所表示的数等于两点所表示的数的平均数,正确掌握计算公式是解题的关键.10.B解析:B【解析】试题解析:寻找每行数之间的关系,抓住每行之间的公差成等差数列,便知第20行第一个数为210,而每行的公差为等差数列,则第20行第10个数为426,故选B.二、填空题11.【分析】按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得.【详解】故答案为:【点睛】本题考查定义新运算,解题关键是根据题干定义的运算规则,转化为我们熟知的形式进行求解解析:3x【分析】按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得.【详解】222322333()()x x x x x x x x x--=-⋅÷-⋅= 故答案为:3x【点睛】本题考查定义新运算,解题关键是根据题干定义的运算规则,转化为我们熟知的形式进行求解.12.0【分析】根据相反数的概念和非负数的性质列出方程,求出a 、b 的值,最后代入所求代数式计算即可.【详解】解:由题意得,(a ﹣1)2+=0,则a ﹣1=0,b+1=0,解得,a =1,b =﹣1,解析:0【分析】根据相反数的概念和非负数的性质列出方程,求出a、b的值,最后代入所求代数式计算即可.【详解】解:由题意得,(a﹣1)20,则a﹣1=0,b+1=0,解得,a=1,b=﹣1,则a2018+b2019=12018+(﹣1)2019=1+(﹣1)=0,故答案为:0.【点睛】本题考查了相反数的性质和算术平方根非负性的性质,正确运用算术平方根非负性的性质是解答本题的关键.13.n.【分析】根据已知等式,可以得出规律,猜想出第n个等式,写出推导过程即可.【详解】解:=n.故答案为:n.【点睛】此题主要考查了平方根的性质,利用已知得出数字之间的规律是解决问题的关解析:【分析】根据已知等式,可以得出规律,猜想出第n个等式,写出推导过程即可.【详解】故答案为:【点睛】此题主要考查了平方根的性质,利用已知得出数字之间的规律是解决问题的关键.14.1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x与y的值,代入原式计算即可得到结果.【详解】解:根据题意得:x=3,y=2或x=3,y=﹣2,则x﹣y=1或5.故答案为1解析:1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x与y的值,代入原式计算即可得到结果.【详解】解:根据题意得:x=3,y=2或x=3,y=﹣2,则x﹣y=1或5.故答案为1或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.15.﹣2或﹣1或0或1或2.【分析】有三种情况:①当时,[x]=-1,(x)=0,[x)=-1或0,∴[x]+(x)+[x)=-2或-1;②当时,[x]=0,(x)=0,[x)=0,∴[x]解析:﹣2或﹣1或0或1或2.【分析】有三种情况:①当10-<<时,[x]=-1,(x)=0,[x)=-1或0,x∴[x]+(x)+[x)=-2或-1;x=时,[x]=0,(x)=0,[x)=0,②当0∴[x]+(x)+[x)=0;③当01<<时,[x]=0,(x)=1,[x)=0或1,x∴[x]+(x)+[x)=1或2;综上所述,化简[x]+(x)+[x)的结果是-2或﹣1或0或1或2.故答案为-2或﹣1或0或1或2.点睛:本题是一道阅读理解题.读懂题意并进行分类讨论是解题的关键.【详解】请在此输入详解!16.;【详解】观察这一列数,各项的符号规律是奇数项为负,偶数项为正,故有,又因为,,,,,所以第n个数的绝对值是,所以第个数是,第n 个数是,故答案为-82,.点睛:本题主要考查了有理数的混合运解析:82-;2(1)(1)n n -⋅+【详解】观察这一列数,各项的符号规律是奇数项为负,偶数项为正,故有(1)n -,又因为2211=+,2521=+,21031=+,21741=+,,所以第n 个数的绝对值是21n +,所以第9个数是92(1)(91)82-⋅+=-,第n 个数是2(1)(1)n n -⋅+,故答案为-82,2(1)(1)n n -⋅+.点睛:本题主要考查了有理数的混合运算,规律探索问题通常是按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律,揭示的式子的变化规律,常常把变量和序列号放在一起加以比较,就比较容易发现其中的规律.17.【分析】观察给出的等式得到:从1开始的连续2个奇数和是22,连续3个奇数和是32,连续4个,5个奇数和分别为42,52…根据规律即可猜想从1开始的连续n 个奇数的和,据此可解.【详解】解:∵从解析:【分析】观察给出的等式得到:从1开始的连续2个奇数和是22,连续3个奇数和是32,连续4个,5个奇数和分别为42,52…根据规律即可猜想从1开始的连续n 个奇数的和,据此可解.【详解】解:∵从1开始的连续2个奇数和是22,连续3个奇数和是32,连续4个,5个奇数和分别为42,52…;∴从1开始的连续n 个奇数的和:1+3+5+7+…+(2n-1)=n 2;∴2n-1=2019;∴n=1010;∴1+3+5+7…+2019=10102;故答案是:10102.【点睛】此题主要考查学生对规律型题的掌握,关键是要对给出的等式进行仔细观察分析,发现规律,根据规律解题.18.7【分析】本题可以根据代数式f (a )的运算求出a1,a2,a3,a4,a5,a6 ,a7的值,根据规律找出部分an 的值,进而发现数列每7个数一循环,根据数的变化找出变化规律,依照规律即可得出结论解析:7【分析】本题可以根据代数式f (a )的运算求出a 1,a 2,a 3,a 4,a 5,a 6 ,a 7的值,根据规律找出部分a n 的值,进而发现数列每7个数一循环,根据数的变化找出变化规律,依照规律即可得出结论.【详解】解:观察,发现规律:a 1=6,a 2=f (a 1)=3,a 3=f (a 2)=16,a 4=f (a 3)=8,a 5=f (a 4)=4,a 6=f (a 5)=2,a 7=f (a 6)=1,a 8=f (a 7)=6,…,∴数列a 1,a 2,a 3,a 4…(n 为正整数)每7个数一循环,∴a 1-a 2+a 3-a 4+…+a 13-a 14=0,∵2015=2016-1=144×14-1,∴2a 1-a 2+a 3-a 4+a 5-a 6+…+a 2013-a 2014+a 2015=a 1+a 2016+(a 1-a 2+a 3-a 4+a 5-a 6+…+a 2015-a 2016)=a 1+a 7=6+1=7.故答案为7.【点睛】本题考查了规律型中的数字的变化类以及代数式求值,解题的关键是根据数的变化找出变换规律,并且巧妙的借助了a 1-a 2+a 3-a 4+…+a 13-a 14=0来解决问题.19.10、20、25、50.【分析】①由“魔术数”的定义,分别对3、4、5三个数进行判断,即可得到5为“魔术数”;②由题意,根据“魔术数”的定义通过分析,即可得到答案.【详解】解:根据解析:10、20、25、50.【分析】①由“魔术数”的定义,分别对3、4、5三个数进行判断,即可得到5为“魔术数”; ②由题意,根据“魔术数”的定义通过分析,即可得到答案.【详解】解:根据题意,①把3写在1的右边,得13,由于13不能被3整除,故3不是魔术数;把4写在1的右边,得14,由于14不能被4整除,故4不是魔术数;把5写在1的右边,得15,写在2的右边得25,……由于个位上是5的数都能被5整除,故5是魔术数;故答案为:5;②根据题意,这个两位数的“魔术数”为x ,则1001001n x n x x+=+,∴100n x为整数, ∵n 为整数, ∴100x为整数, ∴x 的可能值为:10、20、25、50; 故答案为:10、20、25、50.【点睛】本题考查了新定义的应用和整数的特点,解题的关键是熟练掌握新定义进行解题. 20.±3【分析】先通过估算确定M 、N 的值,再求M+N 的平方根.【详解】解:∵,∴,∵,∴,∵,∴,∴a 的整数值为:-1,0,1,2,M=-1+0+1+2=2,∵,∴,N=7解析:±3【分析】先通过估算确定M 、N 的值,再求M+N 的平方根.【详解】解:∵< ∴221, ∵∴23<,∵a <∴23a -<<,∴a 的整数值为:-1,0,1,2,M=-1+0+1+2=2, ∵∴78<,N=7,M+N=9,9的平方根是±3;故答案为:±3.【点睛】本题考查了算术平方根的估算,用“夹逼法”估算算术平方根是解题关键.三、解答题21.(1)①两;②8;③5;④58;(2)①24;②56.【分析】(1)①根据例题进行推理得出答案;②根据例题进行推理得出答案;③根据例题进行推理得出答案;④根据②③得出答案;(2)①先判断它的立方根是几位数,再判断个位、十位上的数字,即可得到结论;②先判断它的立方根是几位数,再判断个位、十位上的数字,即可得到结论.【详解】<<,(1)①31000100=,10001951121000000∴<<,10100∴能确定195112的立方根是一个两位数,故答案为:两;②∵195112的个位数字是2,又∵38512=,∴能确定195112的个位数字是8,故答案为:8;③如果划去195112后面三位112得到数195,<∴<,56可得5060<,由此能确定195112的立方根的十位数是5,故答案为:5;④根据②③可得:195112的立方根是58,故答案为:58;(2)①13824的立方根是两位数,立方根的个位数是4,十位数是2,∴13824的立方根是24,故答案为:24;②175616的立方根是两位数,立方根的个位数是6,十位数是5,∴175616的立方根是56,故答案为:56.【点睛】此题考查立方根的性质,一个数的立方数的特点,正确理解题意仿照例题解题的能力,掌握一个数的立方数的特点是解题的关键.22.(1)5,3;(2)有正格数对,正格数对为()26L ,【分析】(1)根据定义,直接代入求解即可;(2)将31,222L ⎛⎫= ⎪⎝⎭代入(),3L x y x by =+求出b 的值,再将(),18L x kx =代入(),3L x y x by =+,表示出kx ,再根据题干分析即可.【详解】解:(1)∵(),3L x y x y =+∴()2,1L =5,31,22L ⎛⎫= ⎪⎝⎭3 故答案为:5,3;(2)有正格数对. 将31,222L ⎛⎫= ⎪⎝⎭代入(),3L x y x by =+, 得出,1111323232L b ⎛⎫=⨯+⨯= ⎪⎝⎭,, 解得,2b =,∴()32L x y x y =+,,则()3218L x kx x kx =+=, ∴1832x kx -= ∵x ,kx 为正整数且k 为整数∴329k +=,3k =,2x =,∴正格数对为:()26L ,. 【点睛】本题考查的知识点是实数的运算,理解新定义是解此题的关键.23.7或-1.【分析】根据题目中给出的方法,对所求式子进行变形,求出x 、y 的值,进而可求x+y 的值.【详解】解:∵2210x y -=+∴()22100x y --+-=, ∴2210x y --=0-=0∴x=±4,y=3当x=4时,x+y=4+3=7当x=-4时,x+y=-4+3=-1∴x+y 的值是7或-1.【点睛】本题考查实数的运算,解题的关键是弄清题中给出的解答方法,然后运用类比的思想进行解答.24.初步探究:(1)12,8;(2)C ;深入思考:(1)213,415,82;(2)21n a -;(3)-5. 【分析】初步探究:(1)根据除方运算的定义即可得出答案;(2)根据除方运算的定义逐一判断即可得出答案;深入思考:(1)根据除方运算的定义即可得出答案;(2)根据(1)即可总结出(2)中的规律;(3)先按照除方的定义将每个数的圈n 次方算出来,再根据有理数的混合运算法则即可得出答案.【详解】解:初步探究:(1)2③=2÷2÷2=12 (12)⑤=11111822222÷÷÷÷= (2)A :任何非零数的圈2次方就是两个相同数相除,所以都等于1,故选项A 错误; B :因为多少个1相除都是1,所以对于任何正整数n ,1ⓝ都等于1,故选项B 错误;C :3④=3÷3÷3÷3=19,4③=4÷4÷4=14,3④≠4③,故选项C 正确; D :负数的圈奇数次方,相当于奇数个负数相除,则结果是负数;负数的圈偶数次方,相当于偶数个负数相除,则结果是正数,故选项D 错误;故答案选择:C.深入思考:(1)(-3)④=(-3)÷(-3)÷(-3) ÷(-3)=213 5⑥=5÷5÷5÷5÷5÷5=415 (-12)⑩=8111111111122222222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-÷-÷-÷-÷-÷-÷-÷-÷-÷-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)a ⓝ=a÷a÷a…÷a=21n a -(3)原式=()4252621111442711233---÷⨯-÷-⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭ =1144981278⎛⎫÷⨯--÷ ⎪⎝⎭=23--=-5【点睛】本题主要考查了除方运算,运用到的知识点是有理数的混合运算,掌握有理数混合运算的法则是解决本题的关键.25.(1)210-1;(2)n 1514+-;(3)9×210+1. 【分析】(1)根据题目中材料可以得到用类比的方法得到1+2+22+23+…+29的值;(2)根据题目中材料可以得到用类比的方法得到1+5+52+53+54+…+5n 的值.(3)根据题目中的信息,运用类比的数学思想可以解答本题.【详解】解:(1)设S=1+2+22+23+ (29)将等式两边同时乘以2得:2S=2+22+23+24+…+29+210,将下式减去上式得2S-S=210-1,即S=210-1,即1+2+22+23+…+29=210-1.故答案为210-1;(2)设S=1+5+52+53+54+…+5n ,将等式两边同时乘以5得:5S=5+52+53+54+55+…+5n +5n+1,将下式减去上式得5S-S=5n+1-1,即S=n 1514+-, 即1+5+52+53+54+…+5n =n 1514+-; (3)设S=1+2×2+3×22+4×23+…+9×28+10×29,将等式两边同时乘以2得:2S=2+2×22+3×23+4×24+…+9×29+10×210,将上式减去下式得-S=1+2+22+23+…+29+10×210,-S=210-1-10×210,S=9×210+1,即1+2×2+3×22+4×23+…+9×28+10×29=9×210+1.【点睛】本题考查有理数的混合运算、数字的变化类,解题的关键是明确题意,发现数字的变化规律.26.(1)1022;(2)3066,2226;(3)6736【分析】 (1)由于千位不能为0,最小只能取1;根据题目得出相应的公式:十位=2×千位﹣百位,个位=2×千位+百位,分别求出十位和个位,即可求出最小的四位依赖数;(2)设千位数字是x ,百位数字是y ,根据“依赖数”定义,则有:十位数字是(2x ﹣y ),个位数字是(2x+y ),依据题意列出代数式然后表示为7的倍数加余数形式,然后求出x 、y 即可,从而求出所有特色数;(3)根据最小分解的定义可知: n 越小,p 、q 越接近,nq ﹣np 才越小,才是最小分解,此时F (m )=q n p n ++,故将(2)中特色数分解,找到最小分解,然后将n 、p 、q 的值代入F (m )=q n p n++,再比较大小即可. 【详解】解:(1)由题意可知:千位一定是1,百位取0,十位上的数字为:2×1-0=2,个位上的数字为:2×1+0=2则最小的四位依赖数是1022;(2)设千位数字是x ,百位数字是y ,根据“依赖数”定义,则有:十位数字是(2x ﹣y ),个位数字是(2x+y ),根据题意得:100y+10(2x ﹣y )+2x+y ﹣3y =88y+22x =21(4y+x )+(4y+x ), ∵21(4y+x )+(4y+x )被7除余3,∴4y+x =3+7k ,(k 是非负整数)∴此方程的一位整数解为:x=4,y=5(此时2x+y >10,故舍去);x =3,y =7(此时2x ﹣y <0,故舍去);x =3,y =0;x =2,y =2;x =1,y =4(此时2x ﹣y <0,故舍去); ∴特色数是3066,2226.(3)根据最小分解的定义可知: n 越小,p 、q 越接近,nq ﹣np 才越小,才是最小分解,此时F (m )=q n p n ++, 由(2)可知:特色数有3066和2226两个,对于3066=613×5+14=61×50+24∵1×613-1×5>2×61-2×50,∴3066取最小分解时:n=2,p=50,q=61∴F (3066)=61263=50252++ 对于2226=89×25+14=65×34+24,∵1×89-1×25>2×65-2×34,∴2226取最小分解时:n=2,p=34,q=65∴F (2226)=6365267=342++ ∵63675236<故所有“特色数”的F (m )的最大值为:6736. 【点睛】 此题考查的是新定义类问题,理解题意,并根据新定义解决问题是解决此题的关键. 27.(1)(342)9,(658)19K K ==;(2)见解析;(3)28【分析】(1)根据K 的定义,可以直接计算得出;(2)设x abc =,得到新的三个数分别是:acb cba bac ,,,这三个新三位数的和为100()10()()111()a b c a b c a b c a b c ++++++++=++,可以得到:()K x a b c =++; (3)根据(2)中的结论,猜想:()()28K x K y +=.【详解】解:(1)已知342n =,所以新的三个数分别是:324,243,432,这三个新三位数的和为324243342999++=,(342)9K ∴=;同样658n =,所以新的三个数分别是:685,568,856,这三个新三位数的和为6855688562109++=,(658)19K ∴=.(2)设x abc =,得到新的三个数分别是:acb cba bac ,,,这三个新三位数的和为100()10()()111()a b c a b c a b c a b c ++++++++=++,可得到:()K x a b c =++,即()K x 等于x 的各数位上的数字之和.(3)设,x abc y mnp ==,由(2)的结论可以得到:()()()()K x K y a b c m n P +=+++++,1000x y +=,100()10()()1000a m b n c p ∴+++++=,根据三位数的特点,可知必然有:10,9,9c p b n a m +=+=+=,()()()()28K x K y a b c m n p ∴+=+++++=,故答案是:28.【点睛】此题考查了多位数的数字特征,每个数字是10以内的自然数且不为0,解题的关键是:结合新定义,可以计算出问题的解,注意把握每个数字都会出现一次的特点,区别数字与多为数的不同.28.(1)两;(2)2,3;(3)24,﹣48;【分析】(1)由题意可得10100<,进而可得答案;(2)由只有个位数是2的数的立方的个位数是8333=27,4=64可得27<32<64,进而可确定3040<上的数,进而可得答案;(3)仿照(1)(2)两小题中的方法解答即可.【详解】解:(1)因为1000327681000000<<,所以10100<,故答案为:两;(2)因为只有个位数是2的数的立方的个位数是8,2,划去32768后面的三位数768得到32,因为333=27,4=64,27<32<64,所以3040<,3;故答案为:2,3;(3)由103=1000,1003=1000000,1000<13824<1000000,∴10100, ∴∵只有个位数是4的数的立方的个位数是4, ∴4, 划去13824后面的三位数824得到13,∵8<13<27,∴2030. ∴;由103=1000,1003=1000000,1000<110592<1000000,∴10100, ∴∵只有个位数是8的数的立方的个位数是2, ∴8,划去110592后面的三位数592得到110,∵64<110<125,∴4050, ∴48=; ∴﹣48.【点睛】本题考查了立方根和立方数的规律探求,具有一定的难度,正确理解题意、确定所求的数的个位数字和十位数字是解题的关键.29.(1)两;(2)2,3;(3)24,-48.【分析】(1)根据题中所给的分析方法先求出这32768的立方根都是两位数;(2)继续分析求出个位数和十位数即可;(3)利用(1)(2)中材料中的过程进行分析可得结论.【详解】解:(1)由103=1000,1003=1000000,∵1000<32768<100000,∴10100,∴故答案为:两;(2)∵只有个位数是2的立方数是个位数是8,∴2划去32768后面的三位数768得到32,因为33=27,43=64,∵27<32<64,∴3040.∴3.故答案为:2,3;(3)由103=1000,1003=1000000,1000<13824<1000000,∴10100,∴∵只有个位数是4的立方数是个位数是4,∴4划去13824后面的三位数824得到13,因为23=8,33=27,∵8<13<27,∴2030.∴;由103=1000,1003=1000000,1000<110592<1000000,∴10100,∴∵只有个位数是8的立方数是个位数是2,∴8,划去110592后面的三位数592得到110,因为43=64,53=125,∵64<110<125,∴4050.∴;故答案为:24,-48.【点睛】此题考查立方根,解题关键在于理解一个数的立方的个位数就是这个数的个位数的立方的个位数.30.(1)210-1;(2)n1514+-;(3)9×210+1.【分析】(1)根据题目中材料可以得到用类比的方法得到1+2+22+23+…+29的值;(2)根据题目中材料可以得到用类比的方法得到1+5+52+53+54+…+5n的值.(3)根据题目中的信息,运用类比的数学思想可以解答本题.【详解】解:(1)设S=1+2+22+23+ (29)将等式两边同时乘以2得:2S=2+22+23+24+…+29+210,将下式减去上式得2S-S=210-1,即S=210-1,即1+2+22+23+…+29=210-1.故答案为210-1;(2)设S=1+5+52+53+54+…+5n,将等式两边同时乘以5得:5S=5+52+53+54+55+…+5n+5n+1,将下式减去上式得5S-S=5n+1-1,即S=n1514+-,即1+5+52+53+54+…+5n=n1514+-;(3)设S=1+2×2+3×22+4×23+…+9×28+10×29,将等式两边同时乘以2得:2S=2+2×22+3×23+4×24+…+9×29+10×210,将上式减去下式得-S=1+2+22+23+…+29+10×210,-S=210-1-10×210,S=9×210+1,即1+2×2+3×22+4×23+…+9×28+10×29=9×210+1.【点睛】本题考查有理数的混合运算、数字的变化类,解题的关键是明确题意,发现数字的变化规律.。
实数运算单元测试题及答案
实数运算单元测试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是实数?A. πB. iC. -1/3D. √22. 实数a和b满足a < b,那么下列哪个不等式是正确的?A. a + 1 > bB. a + 1 < bC. a + 1 ≥ bD. a + 1 ≤ b3. 如果x^2 = 4,那么x的值是:A. 2B. -2C. 2 或 -2D. 没有实数解4. 计算下列表达式的值:(-3) × (-2) =A. 6B. 9C. -6D. -95. 绝对值|-5|等于:A. 5B. -5C. 0D. 106. 下列哪个数是有理数?A. πB. √3C. 0.33333...D. √2π7. 计算下列表达式的结果:√(9^2) =A. 3B. 9C. 81D. 368. 如果x - 2 = 5,那么x的值是:A. 3B. 7C. -3D. 29. 计算下列表达式的值:(-2)^3 =A. -8B. 8C. -2D. 210. 下列哪个数是无理数?A. 1/3B. 1/7C. √2D. 0.5二、填空题(每题2分,共20分)11. 计算√16 的结果是______。
12. 如果一个数的平方是25,那么这个数是______。
13. 绝对值 |-7| 等于______。
14. 将 -3.5 转换为分数是______。
15. 计算 (-1)^4 的结果是______。
16. 如果x^2 + 6x + 9 = 0,那么x的值是______。
17. 计算√(-1)^2 的结果是______。
18. 一个数的立方是-8,这个数是______。
19. 计算1/√2 的结果是______。
20. 如果一个数的倒数是-2,那么这个数是______。
三、解答题(每题10分,共60分)21. 解方程:2x + 5 = 11。
22. 计算下列表达式的值:(3 + √5) × (3 - √5)。
实数简单练习题及答案
实数简单练习题及答案一.选择题1.下列说法不正确的是A.1是1的平方根 B.-1是1的平方根 C.±1是1的平方根D.1的平方根是1 .9的平方根是A.±B.±3C.9D.3.4的算术平方根是A.± B. C.±D.24.下列各数:π,2,-∣-3∣,-,π-3.14,2,0,-1,其中有平方根的有A.3个B.4个C.5个 D.6个.下列几种说法:①任何数的平方根都有两个②只有正数才有平方根;③因为负数没有平方根,所以平方根不可能为负;④不是正数的数都没有平方根. 其中正确的有A.3个B.2个C.1个 D.0个.下列计算正确的是A.2=B.0.1?0.01 C.5=?5D.?2??2.一个正整数的算术平方根是a,则比这个正整数大2的数的算术平方根是A.a+2B. a2? C. a2?D. a?2.已知?n是正整数,则整数n的最大值为 A.1 B.11 C.D.319.下列各数中,-2,0.3,,72,-π,无理数的个数是A.2个B.3个 C.4个D.5个10.下列说法正确的是 A.无理数都是实数,实数都是无理数B.无限小数都是无理数; C.无理数是无限小数 D.两个无理数的和一定是无理数二.填空题1.平方根等于本身的数是,算术平方根等于本身的数是 .立方根等于它本身的数是.2.一个数的平方是49,这个数是,它叫做49的 .2=992开平方的结果是,的平方根是,64643.13是m的一个平方根,则m的另一个平方根是,m= ..的整数部分为,小数部分为 ..若x+1是36的算术平方根,那么x=..∣?517∣的平方根是2的算术平方根是1697.绝对值最小的实数是,a和它的相反数的差是 ..若无理数a满足2 1.求下列各数的平方根: 1412 10.062416-0.001383.计算:??5.027??π?23?四.问答题1.某农场有一块长30米,宽为20米的场地,要在这块场地上建一个鱼池为正方形,使它的面积为场地面积的一半,问能否建成?若能建成,鱼池的边长为多少?2.若球的半径为R,则球的体积V与R的关系式为V=4πR.已知一个足球的体积为31;223.6280cm3,试计算足球的半径.3.已知一个正方体的体积是1000cm3,现在要在它的8个角上分别截取8个大小相同的小正方体,使截后余下的体积是488cm3,问截得的每个小正方体的棱长是多少?答案; 一、选择题1、D; 、B; 、B; 、D; 、D; 、A; 、B; 、B; 、A; 10、C;二、填空题1.0; 0,1; 0,1,-1;3932、①、±7;平方根;②、2=;±;③、±5;86483、-13;169;、5;-5;、5或﹣7;956、±;;437、0;2a;、;4;、a=3;b=4; 10、371三、1①、=±12;②=±;③.0625=0.25;④;0.1;⑤;-4;24⑥;﹣9;⑦;±5;⑧;0; 162、①、﹣0.1;②、1.5;③、﹣64;、计算:1、10;2、≈11.5;3、4;实数练习题二一.选择题11.下列说法不正确的是A.0是整数 B.0是有理数 C.0是无理数 D.0是实数 512.?,?2,?,-π/2四个数中,最大的数是3A.? B.-2C.?D.-π/13.下列说法正确的是 A.带根号的数是无理数53B.无限小数是无理数 C.分数都不是无理数D.不能在数轴上表示的数是无理数 14.2的相反数是A. B.-6C. D.-15.设?a,则下列结论正确的是A.4.5 16.下列四个结论:①绝对值等于它本身的实数只有零;②相反数等于它本身的实数只有零;③算术平方根等于它本身的实数只有1;④倒数等于它本身的实数只有1.其中正确的有A.0个 B.1个 C.2个 D.3个 17.下列说法正确的是A.一个数的立方根有两个,它们互为相反数B.负数没有立方根 D.一个数有立方根,它也有平方根 D.立方根的符号与被开立方数的符号相同 18.下列计算不正确的是A.2?? B.33??C..001?0.1 D.3??19.下列说法正确的是A.一个数总大于它的立方根 B.非负数才有立方根C.任何数和它的立方根的符号相同 D.任何数都有两个立方根0.下列各式:3?,?3??27,31?1,64??4,计算正确的有 82644实数练习题一、判断题1.是9的算术平方根. 0的平方根是0,0的算术平方根也是023.的平方根是? . -0.5是0.25的一个平方根. a是a的算术平方根6.4的立方根是?4. -10是1000的一个立方根. -7是-343的立方根.无理数也可以用数轴上的点表示出来10.有理数和无理数统称实数二、选择题 11.列说法正确的是 A 、1是0.5的一个平方根 B、正数有两个平方根,且这两个平方根之和等于02C、的平方根是D、负数有一个平方根 12.如果y?0.25,那么y的值是A、 0.062B、 ?0.5C、 0.5D、?0.13.如果x是a 的立方根,则下列说法正确的是 A、?x也是a的立方根 B、?x 是?a的立方根 C、x是?a的立方根 D、等于a 14.?、322?可,无理数的个数是、?、、3.1416、0.37A 、1个 B、个 C、个 D、个 15.与数轴上的点建立一一对应的是 A、0 B、正实数 C、0和1 D 、1三、填空题2.100的平方根是,10的算术平方根是。
实数单元测试题及答案
实数单元测试题及答案一、选择题(每题2分,共20分)1. 以下哪个数是实数?A. √2B. -πC. iD. √(-1)2. 实数集R中,以下哪个数是最小的?A. 0B. -1C. -∞D. 13. 若x^2 = 4,x的值是:A. 2B. -2C. 2或-2D. 44. 以下哪个表达式不是实数?A. 1/3B. √3C. 1/0D. √45. 两个负数相除的结果是:A. 正数B. 负数C. 0D. 无法确定6. 以下哪个数是无理数?A. 1B. 1/2C. √2D. 27. 绝对值 |-5| 等于:A. 5B. -5C. 0D. 18. 以下哪个数不是有理数?A. 3.1415926B. -√2C. 1/2D. 09. 两个正数相加的结果:A. 总是正数B. 可能是正数或负数C. 总是负数D. 无法确定10. 以下哪个数是实数的平方根?A. √16B. √(-4)C. -√4D. √(-1)二、填空题(每题2分,共20分)11. √9 = _______。
12. 一个数的立方根是-2,这个数是 _______。
13. 两个相反数的和是 _______。
14. 一个数的绝对值是它本身,这个数是 _______ 或 _______。
15. 两个数相除,如果商是-3,那么这两个数的符号 _______。
16. 一个数的相反数是它自己,这个数是 _______。
17. 一个数的平方是16,这个数可以是 _______ 或 _______。
18. 绝对值不大于3的整数有 _______ 个。
19. 两个数的乘积为正数,说明这两个数 _______ 同号。
20. 一个数的倒数是1/2,这个数是 _______。
三、解答题(共60分)21. 证明:对于任意实数a和b,有|a + b| ≤ |a| + |b|。
(10分)22. 解方程:x^2 - 4x + 4 = 0。
(10分)23. 计算:(-2)^3 + √(81) - 1/3。
《实数》单元测试题及答案
《实数》单元测试题及答案一、选择题(每题3分,共15分)1. 下列数中,不是实数的是()A. πB. -2C. √2D. i2. 若a > 0,b < 0,且|a| > |b|,则a + b()A. 一定大于0B. 一定小于0C. 一定等于0D. 无法确定3. 以下哪个数是无理数?()A. 3.1415B. √3C. 0.33333D. 1/34. 实数x满足|x - 1| < 2,x的取值范围是()A. -1 < x < 3B. -2 < x < 2C. 0 < x < 2D. 1 < x < 35. 若x² = 4,x的值是()A. 2B. -2C. 2或-2D. 无解二、填空题(每题2分,共10分)6. 一个数的相反数是它自己,这个数是________。
7. 绝对值最小的实数是________。
8. 一个数的平方根是2,这个数是________。
9. √16的算术平方根是________。
10. 若a = -3,则|a| = ________。
三、解答题(每题5分,共20分)11. 证明:对于任意实数x,都有|x| ≥ 0。
12. 解不等式:2x + 5 > 3x - 2。
13. 证明:√2是一个无理数。
14. 已知x² - 4x + 4 = 0,求x的值。
四、综合题(每题10分,共20分)15. 某工厂需要生产一批零件,每件零件的成本是c元,销售价格是p 元。
如果工厂希望获得的利润率是20%,求p和c之间的关系。
16. 一个圆的半径是r,求圆的面积和周长。
五、附加题(每题5分,共5分)17. 一个数的立方根是它自己,这个数有几个?分别是多少?答案:一、选择题1. D2. A3. B4. A5. C二、填空题6. 07. 08. 49. 410. 3三、解答题11. 证明:对于任意实数x,|x|定义为x与0之间的距离,因此|x|总是非负的,即|x| ≥ 0。
人教版第六章实数测试卷1(含答案)
第六章实数测试卷一、单选题1 ( )A .B .C .±3D .32.下列实数中的无理数是( )A B C D .2273.下列各组数中,两个数相等的是 ( )A .-2B .-2与-12C .-2D .|-2|与-2 4.8的相反数的立方根是( )A .2B .12C .﹣2D .12-5.比较2的大小,正确的是( )A .2<B .2<C 2<D 26.实数a 在数轴上的位置如图所示,则下列说法不正确的是( )A .a 的相反数大于2B .a 的相反数是2C .|a|>2D .2a <07.有一个数值转换器原理如下:当输入x =16时,输出的数是 ( )A .8B .2C D8是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,1的值( )A .在1.1和1.2之间B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间9 ( )A .4至5之间B .5至6之间C .6至7之间D .4至6之间10.计算:12-的结果是( ) A .1B .2C .0D .-1 第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题11.____.12122-+-=______.132(1)-=_______.14.______,|1=_______________.15a ,小数部分为b ,则a -b =____.16.观察分析下列数据,寻找规律:0,3…,那么第13个数据是______.三、解答题17.已知数-34,-1.••42,π,3.1416,23,0,42,(-1)2,-1.424224222…. (1)写出所有有理数;(2)写出所有无理数;(3)把这些数按由小到大的顺序排列起来,并用符号“<”连接.18.求下列各式的值.15(3)|a -π|+-a a <π).(精确到0.01)19.如图所示,在△ABC 中,∠B =90°,AB ,BC 边足够长,点P 从点B 开始沿BA 边向点A 以1厘米/秒的速度移动,同时,点Q 也从点B 开始沿BC 边向点C 以2厘米/秒的速度移动,几秒后,△BPQ 的面积为36平方厘米?20.已知2a-1的算术平方根是3,3a+b+4的立方根是2,求3a+b的平方根.21.求下列各式中x的值:(1)2x2-32=0;(2)(x+4)3+64=0.22.(1)已知2a-1的平方根是±3,2是3a+b-1的立方根,求a+2b的值.(2)设x,y,试求x,y的值与x-1的算术平方根.23.已知实数a,b|2b+1|=0,求的值.24.某地气象资料表明:当地雷雨持续的时间t(h)可以用下面的公式来估计:t2=3900d,其中d(km)是雷雨区域的直径.(1)如果雷雨区域的直径为9km,那么这场雷雨大约能持续多长时间?(2)如果一场雷雨持续了1h,那么这场雷雨区域的直径大约是多少(结果精确到0.1km)?参考答案:1.D【解析】【详解】∠33=27,3=.故选D.2.C【解析】【详解】分析: 分别根据无理数、有理数的定义即可判定选择项.详解:,,227是有理数,是无理数,故选C.点睛:此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π0.8080080008…(每两个8之间依次多1个0)等形式.3.C【解析】【分析】根据算术平方根的定义,立方根的定义以及绝对值的性质对各选项分析后利用排除法求解.【详解】解:A、,∠-2B、-2与-12不相等,故本选项错误;C、,∠-2D、∠|-2|=2,∠|-2|与-2不相等,故本选项错误.故选C.【点睛】本题主要考查了算术平方根,立方根的定义,对各选项正确化简是解题的关键.4.C【解析】【详解】【分析】根据相反数的定义、立方根的概念计算即可.【详解】8的相反数是﹣8,﹣8的立方根是﹣2,则8的相反数的立方根是﹣2,故选C .【点睛】本题考查了实数的性质,掌握相反数的定义、立方根的概念是解题的关键. 5.C【解析】【分析】先分别求出这三个数的六次方,然后比较它们的六次方的大小,即可比较这三个数的大小.【详解】解:∠26=64,362125⎡⎤==⎢⎥⎣⎦,26349⎡⎤==⎢⎥⎣⎦,而49<64<125∠6662<<2<故选C .【点睛】此题考查的是无理数的比较大小,根据开方和乘方互为逆运算将无理数化为有理数,然后比较大小是解决此题的关键.6.B【解析】【详解】试题分析:由数轴可知,a <-2,A 、a 的相反数>2,故本选项正确,不符合题意;B 、a 的相反数≠2,故本选项错误,符合题意;C 、a 的绝对值>2,故本选项正确,不符合题意;D 、2a <0,故本选项正确,不符合题意.故选B .考点:实数与数轴.7.D【解析】【分析】把16代入数值转换器,根据要求进行计算,得到输出的数值.【详解】解:,4是有理数,∠继续转换,=2,2是有理数,∠继续转换,∠2,是无理数,∠符合题意,故选D.【点睛】本题考查的是算术平方根的概念和性质,掌握一个正数的正的平方根是这个数的算术平方根是解题的关键,注意有理数和无理数的区别.8.B【解析】【分析】根据4.84<5<5.29,可得答案.【详解】∠4.84<5<5.29,,,故选B.【点睛】是解题关键.9.B【解析】【分析】【详解】解:∠5 ²=25,6 ²=36,25<32<36,∠56,故选B.【点睛】关键.10.C【解析】【分析】根据有理数的运算性质,先化简再求值.【详解】解:原式=12-12=0.【点睛】掌握有理数的相关运算性质是解答本题的关键. 11.3,【解析】【详解】-(∠乘积为1的数互为倒数,∠3得倒数为.12..【解析】【详解】原式=13222-+-=52,故答案为52.13.4【解析】【分析】按顺序先分别进行算术平方根和平方运算,然后再进行减法运算即可.【详解】2(1)514-=-=,故答案为:4.【点睛】本题考查了实数的运算,熟练掌握运算法则是解题的关键.14. 1 ±3【解析】【分析】直接利用相反数的定义得出答案;结合绝对值的定义得出答案;,再根据绝对值的性质即可求出.【详解】解:(2) |1|1;(3)∠绝对值为3的数为±3.1; ±3.【点睛】本题主要考查相反数,绝对值的定义以及立方根,关键在于熟练掌握运用相关的性质定理,认真的进行计算.15.【解析】【分析】a,b的值,进而得出答案.【详解】解:∠45,a=4,小数部分为.∠a-b=4-)故答案为【点睛】16.6【解析】【详解】被开方数依次为0,3,6,9,12,15,18,…,每两数相差3,所以第13 6.故答案为6.点睛:本题是数字规律探究题,观察题目找出规律被开方数依次增加3是解题的关键..17.(1)-34,-1.••42,3.1416,23,0,42,(-1)2.(2)π,-1.424224222…;(3)见解析.【解析】【分析】(1)按照有理数的定义解答,特别要注意无限循环小数是有理数;(2)根据无理数的定义解答,即无限不循环小数是无理数;(3)根据实数比较大小的法则把各数进行比较,并用“<”连接起来.【详解】解:(1)-34,-1.••42,3.1416,23,0,42,(-1)2.(2)π,-1.424224222….(3)-1.··42<-1.424224222…<-34<0<23<(-1)2<π<3.1416<42.【点睛】本题考查的是有理数、无理数的定义及实数的大小比较,熟知有理数、无理数的定义及实数的大小比较法则是解答此题的关键.18.(1)35;(2)-1.7;(3)1.73.【解析】【分析】(1)先把计算根号的加减运算,然后利用二次根式的性质化简后进行乘法运算;(2)首先进行二次根式的化简,然后合并即可;(3)先根据实数a的取值范围,判断出a-πa的符号,根据绝对值的性质进行解答即可.【详解】解:(1)=7×5=35.(2)13×0.6-15×30=92-0.2-6=-1.7.a<π,∠a-π<0-a<0,∠|a-π|+a|=(π-a)+(a)=π-a+a=π≈3.142-1.414=1.728≈1.73.【点睛】本题考查了二次根式的计算,实数的运算,先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式,属于基础题.19.6秒【解析】【分析】设x秒钟后,△PBQ的面积等于36cm2,根据直角三角形的面积公式和路程=速度×时间进行求解即可.【详解】解:设x秒后,△BPQ的面积是36平方厘米,根据题意得PB=x厘米,QB=2x厘米,因此12x×2x=36,所以x2=36,解得x=6(x=-6舍去),所以6秒后,△BPQ的面积是36平方厘米.【点睛】此题考查了一元二次方程的应用,找到关键描述语“△PBQ的面积等于36cm2”,找到等量关系是解决问题的关键.20.3a+b的平方根为±2.【解析】【详解】试题分析:先按照题意求出a、b的值,然后再代入即可得解.试题解析:∠2a-1的算术平方根是3,∠2a-1=9 ,∠a=5 ,又∠3a+b+4的立方根是2,∠3a+b+4=8,∠3×5+b+4=8,∠b=-11,∠3a+b=4,∠3a+b的平方根为±2.21.(1)x﹦±4,(2)x﹦﹣8.【解析】【分析】(1)通过求平方根解方程;(2)通过求立方根解方程.【详解】解:(1)2x2﹣32=02x2﹦32x2﹦16x﹦±4,∠x1=4,x2=﹣4;(2)(x+4)3+64=0(x+4)3﹦﹣64x+4﹦﹣4x﹦﹣8.【点睛】本题考核知识点:运用开方知识解方程. 解题关键点:熟练进行开方运算.22.(1)-7;(2【解析】【分析】(1)根据平方根、算术平方根、立方根的定义进行运算即可;(2介于哪两个整数之间,从而找到整数部分,小数部分让原数减去整数部分,然后代入求值即可.【详解】解:(1)依题意得2a-1=9,3a+b-1=8,解得a=5,b=-6.所以a+2b=-7.(2)即所以的整数部分是4.由题意知x=4,y-2,则x-1=3,所以x-1【点睛】本题考查了实数的运算,涉及了平方根、立方根、倒数及相反数的知识,无理数的估算能力,解题关键是估算出整数部分后,然后即可得到小数部分.23.1 4 -【解析】【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【详解】解:根据题意,得10,4 210, ab⎧-=⎪⎨⎪+=⎩解得1412ab⎧=⎪⎪⎨⎪=-⎪⎩,,则=1-2⎛⎫⎪⎝⎭14.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.24.(1)0.9h(2)9.7km【解析】【分析】(1)根据t2=3900d,其中d=9(km)是雷雨区域的直径,开立方,可得答案;(2)根据t2=3900d,其中t=1h是雷雨的时间,开立方,可得答案.【详解】(1)当d=9时,则t2=3900d,因此t0.9.答:如果雷雨区域的直径为9km,那么这场雷雨大约能持续0.9h.(2)当t=1时,则3900d=12,因此d答:如果一场雷雨持续了1h,那么这场雷雨区域的直径大约是9.7km.【点睛】本题考查了立方根,注意任何数都有立方根.。
(必考题)初中数学八年级数学上册第二单元《实数》测试(有答案解析)(1)
一、选择题 1.16的平方根是( ) A .4 B .4± C .2± D .-2 2.若用我们数学课本上采用的科学计算器进行计算,其按键顺序如图,则输出结果应为( )A .8B .4C .12D .14 3.81的平方根是( )A .81B .9-C .9D .9±4.下列计算中,正确的是( )A .()()()22253532-=-= B .()3710101010+⨯=⨯= C .()()a b a c a bc +-=- D .()()3232321+-=-= 5.下列各式中,正确的是( ) A .93±= B .93=± C .()233-=- D .()233-=6.若a 化成最简二次根式后,能与2合并,则a 的值不可以是( )A .12B .8C .18D .287.实数a ,b 在数轴上对应点的位置如图所示,则化简代数式2-a b a +的结果是( ).A .-bB .2aC .-2aD .-2a-b8.1x -x 的取值范围是( )A .x <1B .x >1C .x≥1D .x≤19.已知:23-,23+,则a 与b 的关系是( ) A .相等 B .互为相反数 C .互为倒数 D .平方相等 10.下面有四个命题:①两条直线被第三条直线所截,同位角相等;②0.1的算术平方根是0.01;③3323)=5;④如果点P (3-2n ,1)到两坐标轴的距离相等,那么n =1,其中假命题的有( )A .1个B .2个C .3个D .4个11.下列计算正确的是( )A +=B =C 4=D 3=- 12.下列说法正确的是( )A .4的平方根是2B ±4C .-36的算术平方根是6D .25的平方根是±5二、填空题13.+|2x ﹣y |=0,那么x ﹣y =_____.14.对于任意非零实数a ,b ,定义运算“※”如下:“a b ※”a b ab-=,则12233420202021++++※※※※的值为__________.15.定义:如果将一个正整数a 写在每一个正整数的右边,所得到的新的正整数能被a 整除,则这个正整数a 称为“魔术数”.例如:将2写在1的右边得到12,写在2的右边得到22,……,所得到的新的正整数的个位数字均为2,即为偶数,由于偶数能被2整除,所以2是“魔术数”.根据定义,在正整数3,4,5中,“魔术数”为____________;若“魔术数”是一个两位数,我们可设这个两位数的“魔术数”为x ,将这个数写在正整数n 的右边,得到的新的正整数可表示为()100n x +,请你找出所有的两位数中的“魔术数”是_____________.16.的整数部分a=_____,小数部分b=__________.17.已知3y x =+,当x 分别取1,2,3,,2020⋯时,所对应的y 值的总和是_________.18.在实数π,87,0中,无理数的个数是________个.19.若代数式x 有意义,则实数x 的取值范围是_________. 20.已知:15-=m m,则221m m -=_______. 三、解答题21.(123-+.(2)先化简,再求值:()()()2212352x y x y x y y x ⎛⎫⎡⎤+-+--÷- ⎪⎣⎦⎝⎭,其中4x =,2y =.22.设a 为正整数,对于一个四位正整数,若千位与百位的数字之和等于a ,十位与个位的数字之和等于1a -,则称这样的数为“a 级收缩数”.例如在正整数2634中,因为268+=,34781+==-,所以2634是“8级收缩数”,其中8a =.(1)直接写出最小的“6级收缩数”和最大“7级收缩数”;(2)若一个“6级收缩数”的千位数字与十位数字之积为6,求这个“6级收缩数”.⋅=,且c是有理数,则称a与b是关于c的共23.定义:若两个二次根式a、b满足a b c轭二次根式.(1)若a4的共轭二次根式,则a=;(2)若2+4+是关于2的共轭二次根式,求m的值.24.计算.(1(2.25.(1)计算:;).(2)解方程:①4(x-1)2-9 =0;②8x3+125=0.26.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先计算16的算术平方根a,再计算a的平方根即可.【详解】∵4=,∴4的平方根为±2.故选C.【点睛】本题考查了实数的算术平方根,平方根,准确掌握这两个基本概念是解题的关键.2.D解析:D【分析】根据2ndf键是功能转换键列算式,然后解答即可.【详解】1==.4故选:D.【点睛】本题考查了利用计算器进行数的开方,是基础题,要注意2ndf键的功能.3.D解析:D【分析】根据平方根的定义求解.【详解】∵2±=81,(9)∴81的平方根是9±,故选:D.【点睛】此题考查平方根的定义,熟记定义并掌握平方计算是解题的关键.4.D解析:D【分析】根据二次根式的性质逐一判断即可;【详解】222=-=-A错误;8=B错误;=a C错误;=-=,故D正确;321故答案选D.【点睛】本题主要考查了二次根式的性质,结合平方差公式和完全平方公式计算是解题的关键.5.D解析:D【分析】根据二次根式的性质化简判断.【详解】A 、3=±,故该项不符合题意;B 3=,故该项不符合题意;C 3=,故该项不符合题意;D 3=,故该项符合题意;故选:D .【点睛】此题考查二次根式的化简,正确掌握二次根式的性质是解题的关键.6.D解析:D 【分析】是否为同类二次根式即可. 【详解】是同类二次根式,当a=122=是同类二次根式,故该项不符合题意;当a=8=是同类二次根式,故该项不符合题意;当a=18=是同类二次根式,故该项不符合题意;当a=28=不是同类二次根式,故该项符合题意;故选:D .【点睛】此题考查最简二次根式的定义,同类二次根式的定义,化简二次根式,正确化简二次根式是解题的关键.7.A解析:A【分析】根据数轴得b<a<0,判断a+b<0,即可化简绝对值及二次根式,计算加减法即可得到答案.【详解】由数轴得b<a<0,∴a+b<0,∴a b +=-a-b+a=-b ,故选:A .【点睛】此题考查数轴与数的表示,利用数轴比较数的大小,化简绝对值,化简二次根式,依据数轴化简绝对值及二次根式是解题的关键.8.C解析:C【分析】直接利用二次根式有意义的条件分析得出答案.【详解】∵∴x−1≥0,解得:x≥1.故选:C .【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.9.C解析:C【解析】 因为1a b ⨯==,故选C. 10.D解析:D【分析】利用平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质分别判断后即可确定正确的选项.【详解】解:①两条平行线直线被第三条直线所截,同位角相等,故错误;②0.01的算术平方根是0.1,故错误;③=17322+=,故错误; ④如果点P (3-2n ,1)到两坐标轴的距离相等,则n=1或n=2,故错误,故选D .【点睛】本题考查了命题与定理的知识,解题的关键是熟悉平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质,难度一般.11.B解析:B【分析】由二次根式的乘法、除法,二次根式的性质,分别进行判断,即可得到答案.【详解】解:A A错误;B=,故B正确;C==C错误;D3=,故D错误;故选:B.【点睛】本题考查了二次根式的乘法、除法,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.12.D解析:D【分析】根据平方根和算术平方根的定义判断即可.【详解】解:A. 4的平方根是±2,故错误,不符合题意;±2,故错误,不符合题意;C. -36没有算术平方根,故错误,不符合题意;D. 25的平方根是±5,故正确,符合题意;故选:D.【点睛】本题考查了平方根和算术平方根的概念,解题关键是熟悉相关概念,准确进行判断.二、填空题13.﹣3【分析】先根据非负数的性质列出方程组求出xy的值进而可求出x﹣y 的值【详解】解:∵+|2x﹣y|=0∴解得所以x﹣y=3﹣6=﹣3故答案为:-3【点睛】本题考查了二次根式的非负性绝对值的非负性根解析:﹣3【分析】先根据非负数的性质列出方程组,求出x、y的值,进而可求出x﹣y的值.【详解】解:∵+|2x﹣y|=0,∴3020xx y-=⎧⎨-=⎩,解得36 xy=⎧⎨=⎩.所以x﹣y=3﹣6=﹣3.故答案为:-3【点睛】本题考查了二次根式的非负性,绝对值的非负性,根据题意得到关于x 、y 的二元一次方程组,求出x 、y 的值是解题关键.14.【分析】根据已知将原式变形进而计算得出答案【详解】解:根据题意∵∴……∴=====故答案为:【点睛】此题主要考查了实数运算正确将原式变形是解题关键 解析:20202021-【分析】根据已知将原式变形进而计算得出答案.【详解】解:根据题意, ∵“a b ※”a b ab-=, ∴12※121(1)122-==--⨯,231123()2323-==--⨯※,……, ∴12233420202021++++※※※※ =122320202021122320202021---+++⨯⨯⨯ =11111(1)()()22320202021------- =111111(1)223320202021--+-+-+- =1(1)2021-- =20202021-. 故答案为:20202021-. 【点睛】此题主要考查了实数运算,正确将原式变形是解题关键. 15.10202550【分析】①由魔术数的定义分别对345三个数进行判断即可得到5为魔术数;②由题意根据魔术数的定义通过分析即可得到答案【详解】解:根据题意①把3写在1的右边得13由于13不能被3整除故3解析:10、20、25、50.【分析】①由“魔术数”的定义,分别对3、4、5三个数进行判断,即可得到5为“魔术数”; ②由题意,根据“魔术数”的定义通过分析,即可得到答案.【详解】解:根据题意,①把3写在1的右边,得13,由于13不能被3整除,故3不是魔术数;把4写在1的右边,得14,由于14不能被4整除,故4不是魔术数;把5写在1的右边,得15,写在2的右边得25,……由于个位上是5的数都能被5整除,故5是魔术数;故答案为:5;②根据题意,这个两位数的“魔术数”为x ,则1001001n x n x x+=+, ∴100n x为整数, ∵n 为整数, ∴100x为整数, ∴x 的可能值为:10、20、25、50; 故答案为:10、20、25、50.【点睛】本题考查了新定义的应用和整数的特点,解题的关键是熟练掌握新定义进行解题. 16.【分析】将已知式子分母有理数后先估算出的大小即可得到已知式子的整数部分与小数部分【详解】解:∵4<7<9∴2<<3即2+3<<3+3∴即实数的整数部分是则小数部分为故答案为:【点睛】本题考查了分母有解析:2 【分析】的大小即可得到已知式子的整数部分与小数部分.【详解】==, ∵4<7<9,∴2<3,即2+3<3+<3+3,∴532<<的整数部分是2a =,则小数部分为31222b =-=.故答案为:2,【点睛】本题考查了分母有理化,以及估算无理数的大小,熟练掌握估算无理数大小的方法是解题的关键.17.2022【分析】将原式化简为然后根据x 的不同取值求出y 的值最后把所有的y 值加起来即可【详解】解:当时当时当时∴当分别取时所有值的总和是:故答案是:2022【点睛】本题考查二次根式的化简解题的关键是掌解析:2022【分析】 将原式化简为23y x x =--+,然后根据x 的不同取值,求出y 的值,最后把所有的y 值加起来即可.【详解】解:3323y x x x x =+=+=--+,当2x ≥时,231y x x =--+=,当2x <时,2352y x x x =--+=-,当1x =时,523y =-=,∴当x 分别取1,2,3,,2020⋯时,所有y 值的总和是:312019320192022+⨯=+=. 故答案是:2022.【点睛】本题考查二次根式的化简,解题的关键是掌握二次根式的性质进行化简.18.【分析】无理数就是无限不循环小数理解无理数的概念一定要同时理解有理数的概念有理数是整数与分数的统称即有限小数和无限循环小数是有理数而无限不循环小数是无理数由此即可判定选择项【详解】由无理数的定义可知 解析:2【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】由无理数的定义可知,π故答案为:2.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.19.且【分析】根据二次根式中的被开方数是非负数分式分母不为0列出不等式解不等式得到答案【详解】解:由题意得x+2≥0x≠0解得x≥-2且x≠0故答案为:x≥-2且x≠0【点睛】本题考查了二次根式有意义的解析:2x ≥-且0x ≠【分析】根据二次根式中的被开方数是非负数、分式分母不为0列出不等式,解不等式得到答案.【详解】解:由题意得,x+2≥0,x≠0,解得,x≥-2且x≠0,故答案为:x≥-2且x≠0.【点睛】本题考查了二次根式有意义的条件、分式有意义的条件,掌握二次根式中的被开方数是非负数、分式分母不为0是解题的关键.20.【分析】先利用完全平方差公式求出的值再利用完全平方和公式求出的值最后利用平方差公式即可得【详解】则故答案为:【点睛】本题考查了完全平方公式平方差公式平方根熟记公式是解题关键解析:±【分析】 先利用完全平方差公式求出221m m +的值,再利用完全平方和公式求出1m m+的值,最后利用平方差公式即可得.【详解】 15m m -=, 22221252271m m m m ⎛⎫-+=+= ⎪⎭∴⎝+=, 22212279122m m m m +⎛⎫∴+= =⎪+⎝=⎭+,1m m∴+=,则22111m m m m m m ⎛⎫-= ⎪⎛⎫+-=± ⎪⎭⎝⎭⎝故答案为:±【点睛】本题考查了完全平方公式、平方差公式、平方根,熟记公式是解题关键.三、解答题21.(1)1-+;(2)44x y -,8.【分析】(1)先计算算术平方根和立方根,在加减即可;(2)先按整式运算法则化简,再代入求值.【详解】解:(1)原式233(32)=-+-+1=-+(2)原式()222221443352x xy y x xy xy y y x =++--+--⎛⎫⎡⎤ ⎪⎣⎦⎝÷⎭-()222221443252x xy y x xy y y x ⎛⎫=++--+-÷- ⎪⎝⎭()2122442x xy x x y ⎛⎫=-+÷-=- ⎪⎝⎭把4x =代入,原式44428=⨯-⨯=.【点睛】本题考查了立方根和算术平方根,整式的化简求值,解题关键是熟练运用二次根式和整式运算法则进行计算.22.(1)最小的“6级收缩数”为:1505,最大的“7级收缩数”为:7060;(2)这个“6级收缩数”为:2432、3323或6014【分析】(1)根据“a 级收缩数”的定义可写出所有的可能性,进而即可确定最小的“6级收缩数”以及最大的“7级收缩数”;(2)在第(1)问的基础上,结合条件“一个“6级收缩数”的千位数字与十位数字之积为6”将所拥有的可能性进行分类讨论,即可得到答案.【详解】解:(1)∵千位与百位的数字之和等于6,十位与个位的数字之和等于5∴千位与百位上的数字可能是0和6、1和5、2和4、3和3、4和2、5和1、6和0,十位与个位上的数字可能是0和5、1和4、2和3、3和2、4和1、5和0∴最小的“6级收缩数”为:1505;同理,∵千位与百位的数字之和等于7,十位与个位的数字之和等于6∴最大的“7级收缩数”为:7060.(2)设这个“6级收缩数”千位上的数字为x ,十位上的数字为y ,则这个“6级收缩数”百位上的数字为6x -,个位上的数字为615y y --=-∵09x ≤<,069x ≤-≤,09y ≤≤,059y ≤-≤∴06x ≤<,05y ≤≤∵6xy =∴当1x =时,6y =,不合题意舍去;当2x =时,3y =,符合题意,此时,百位是4,个位是2,为2432;当3x =时,2y =,符合题意,此时,百位是3,个位是3,为3323;当4x =时,32y =,不合题意舍去; 当5x =时,65y =,不合题意舍去; 当6x =时,1y =,符合题意,此时,百位是0,个位是4,为6014∴这个“6级收缩数”为:2432、3323或6014.【点睛】本题考查了新定义问题以及分类讨论的数学思想,认真审题是解题的关键.23.(1)2)2m =-【分析】(1)根据共轭二次根式的定义列等式可得a 的值;(2)根据共轭二次根式的定义列等式可得m 的值.【详解】解:(1)a 2是关于4的共轭二次根式,4=,a ∴==(2)23+与4+是关于2的共轭二次根式,(2)2∴++=,4∴+==4=-2m ∴=-.【点睛】本题考查了新定义共轭二次根式的理解和应用,并会用二次根据的性质进行计算.24.(1)2)【分析】(1)先利用二次根式的乘除法则运算,然后化简后合并;(2)先把二次根式化为最简二次根式,然后合并即可.【详解】解:(1=﹣=(2)原式==【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.25.(1)①5;②6-;(2)52x=或12x=-;②52x=-.【分析】(1)①先把各二次根式化为最简二次根式,然后合并后进行二次根式的除法运算;②根据平方差公式计算即可;(2)①将方程移项,再整理为2x a=的的形式,再根据平方根定义求解即可;②将方程移项,再整理为3x a=根据立方根定义求解即可;【详解】解:(1)解:①原式==5=.②原式1218=-6=-.(2)解:①原方程可化为29(1)4 x-=则312x-=或312x-=-,解得,52x=或12x=-.②原方程可化为3125 8x=-,解得,52x=-.【点睛】本题考查了平方根、立方根及实数的运算,主要考查学生的运算能力,题目比较好,解题关键是理解平方根、立方根的意义.26.-4【分析】利用立方根的定义、二次根式的乘法法则及二次根式的性质进行化简,再合并化简结果即可.【详解】=-+--1342=-.4【点睛】此题考查了实数的混合运算,掌握立方根的定义、二次根式的乘法法则以及二次根式的性质是解题的关键.。
最新实数测试题及答案
最新实数测试题及答案一、选择题1. 实数集R中,最小的正整数是()。
A. 0B. 1C. 2D. 32. 下列哪个数不是实数?()A. πB. √2C. -1/3D. i3. 若a和b是实数,且a < b,那么a² < b²的前提是()。
A. a和b都为正数B. a和b都为负数C. a和b都非零D. a和b都为整数二、填空题4. 已知x是一个实数,若x² = 4,则x的值是_________。
5. 若实数a满足|a| < 1,那么a的取值范围是_________。
三、解答题6. 证明:对于任意实数x,x² ≥ 0。
7. 解不等式:2x + 5 > 3x - 2。
四、综合题8. 已知实数a和b满足a² + b² = 1,求证:(a + b)² ≤ 2。
9. 假设实数x满足方程x³ - 3x² + x - 3 = 0,求x的值。
答案:一、选择题1. B2. D3. A二、填空题4. ±25. -1 < a < 1三、解答题6. 证明:由于x²是非负的,所以对于任意实数x,x² ≥ 0。
7. 解:将不等式2x + 5 > 3x - 2化简,得x < 7。
四、综合题8. 证明:由于(a + b)² = a² + 2ab + b²,根据已知条件a² + b² = 1,所以(a + b)² = 1 + 2ab。
由于a和b的平方和为1,根据柯西-施瓦茨不等式,2ab ≤ 2(a² + b²) = 2,所以(a + b)² ≤ 1 + 2 = 2。
9. 解:由于x³ - 3x² + x - 3 = (x - 1)(x² - 2x + 3),而x²- 2x + 3没有实数解,所以x = 1。
实数测试1
实数测试1____________.2 1.414=, ==____________.3=____________;=__________=__________。
44=, 则m =______________1a =-, 则a 的取值范围是____________;52m =-, 则m 的取值范围是_________________.6a >, 则a 的取值范围是________________。
7、若2729x =, 则x =_________; 若()224x =-, 则x =____________.8、当x _时; 当x ____时x =;当x __时; 当x __时有意义.90.4858=, ( ).(A)4858 (B)485.8 (C) 48.58 (D) 4.85810、 “25的平方根是5±的数学表达式是( ).5=± 5= (C) 5=± 5=-11、下列语句及写成的式子正确的是( ).(A)8是64的平方根,8= (B)8±是64的平方根,8=(C) 8±是64的平方根,8=± (D)8是()28-的算术平方根,8= 12、下列判断正确的是( ).(A)若a b =, 则a b = (B)若a b >, 则22a b >(C)=则a b = (D)若2a =, 则a b =13、下列各组数中表示相同的一组数是( ).(A)a (B)a (C) a - (D) a -与14、已知一直角三角形的木版,三边的平方和为1800cm 2,则斜边长为( )(A )80cm (B )30cm (C )90cm (D )120cm15、若代数式21--x x 有意义,则x 的取值范围是( )(A ).1>x 且2≠x (B ).1≥x (C ).2≠x (D ).1≥x 且2≠x 16、若b a 、为实数,且满足022=-+-b a ,则a b -的值为( )(A ).2(B ).0 (C ).-2 (D ).以上都不对 17、833+-+-=x x y ,求y x 23+的算术平方根.18、已知9与9的小数部分分别是,a b , 求335a b --+得算数平方根.19、若c b a 、、是ABC ∆的三边,化简: ()()()()2222b ac a c b c b a c b a --------++.20、已知10a b +=若a 是整数, 且01b <<, 求a b -的相反数的值.21、已知y =求使y 有最大负整数的x 的最小整数值.221±, 求x 的值.23、已知a a a =-+-20052004,求22004-a 的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数测试一
1. 有下列说法:
(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;
(3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示。
其中正确的说法的个数是( )
A .1
B .2
C .3
D .4
2.()20.7-的平方根是( )
A .0.7-
B .0.7±
C .0.7
D .0.49
3.下列说法正确是( )
A. 25的平方根是5
B. 一2 2 的算术平方根是2
C. 0.8的立方根是0.2
D. 65是36
25的一个平方根 4.如果 25.0=y ,那么y 的值是( )
A. 0.0625
B. —0.5
C. 0.5 D .±0.5
5.下列说法错误的是( )
A . a 2与(—a )2 相等 B.
a 2与)(2a -互为相反数 C. 3a 与3a - 是互为相反数 D. a 与a - 互为相反数
6.下列说法错误的是( )
A. 1的平方根是1
B. –1的立方根是-1
C. 2是2的平方根
D. –3是2)3(-的平方根
7.a =-,则实数a 在数轴上的对应点一定在( )
A .原点左侧
B .原点右侧
C .原点或原点左侧
D .原点或原点右侧
8.下列说法中正确的是( )
A. 实数2a -是负数
B. a a =2
C. a -一定是正数
D. 实数a -的绝对值是a 9.25-的相反数是 ,绝对值是 。
16的算术平方根是( )、9
4的平方根是( ) 10.一个正方形的面积变为原来的m 倍,则边长变为原来的 倍;一个立方体的体积变为原来的n 倍,则棱长变为原来的 倍。
11.若y =x -3+3-x +10,则x y
12.若7160.03670.03=,542.1670.33=,则_____________3673=
13.比较下列实数的大小(在 填上 > 、< 或 =)
①-2; ②-2
15- -21; 14.求下列各数的平方根和算术平方根:
①256 ②0.0004 ③
8125
15.求下列各式的值:
①44.1; ②3027.0-; ③
649 ;
16.已知,a 、b 互为倒数,c 、d 互为相反数,求3a b
13+++-d c ab 的值。
17.观察例题:∵974<<,即372<<,
∴7的整数部分为2,小数部分为)27(-。
请你观察上述的规律后试解下面的问题: 如果2的小数部分为a ,3的小数部分为b ,求532-+b a 的值。
18.请在同一个数轴上用尺规作出 2-
和 5 的对应的点。