Advanced Relevance Feedback Query Expansion Strategy for Information Retrieval in MEDLINE
外研版英语中考试卷及解答参考(2024年)
2024年外研版英语中考自测试卷及解答参考一、听力部分(本大题有20小题,每小题1分,共20分)1、What time does the girl usually get up on weekdays?A)6:00 amB)6:30 amC)7:00 amAnswer: B) 6:30 amExplanation:In the listening material, the girl mentions that she gets out of bed at half past six during the week to make sure she has enough time to prepare for school.2、Where are the speakers planning to meet this Saturday?A)At the libraryB)At the parkC)At the mallAnswer: C) At the mallExplanation:During the conversation, it’s clearly stated that they agree to meet at the shopping center because there are many stores and it’s a good place to hang out on the weekend.3、根据对话内容,Alice和Bob讨论了即将上映的新电影,并计划去看电影,因此答案是B. Go see a new movie。
4、在对话中,老师建议Sarah考虑工业革命期间的社会和经济变化,以帮助她的研究,因此答案是B. She should use a different keyword in the database。
5、What are the two friends planning to do on Saturday?A) Go to the movies.B) Visit a museum.C) Play sports at the park.Answer: B) Visit a museum.Explanation: In the dialogue, one friend mentions they have heard about an interesting exhibition opening this week at the city museum and suggests visiting it on Saturday. The other friend agrees, saying that sounds like a good idea.6、Where will the friends meet on Sunday morning?A) At the bus stop.B) At the coffee shop near the park.C) At the entrance of the sports center.Answer: C) At the entrance of the sports center.Explanation: For Sunday’s plan, they discuss meeting up early to play some basketball before it gets too crowded. They agree to meet at the entrance of the sports center where they can rent equipment.7、Listen to the following conversation and answer the question.M: Hey, Jane, how was your weekend?W: Oh, it was quite nice, actually. I went hiking with my friends.M: That sounds fun! Where did you go?W: We went to the mountains near our city.M: I wish I could have joined you. It must have been beautiful up there.W: It was. We had a great time exploring the trails and taking in the scenery.Question: What did Jane do over the weekend?A. She went shopping.B. She went hiking.C. She went swimming.D. She went camping.Answer: B解析:从对话中可以听到Jane提到她和她朋友去爬山,因此答案是B。
INSA de Lyon
Keywords: Text Extraction, image enhancement, binarization, OCR, video Indexing 1
1
Introduage Retrieval and its extension to videos is a research area which gained a lot of attention in the recent years. Various methods and techniques have been presented, which allow to query big databases with multimedia contents (images, videos etc.) using features extracted by low level image processing methods and distance functions which have been designed to resemble human visual perception as closely as possible. Nevertheless, query results returned by these systems do not always match the results desired by a human user. This is largely due to the lack of semantic information in these systems. Systems trying to extract semantic information from low level features have already been presented [10], but they are error prone and very much depend on large databases of pre-defined semantic concepts and their low level representation. Another method to add more semantics to the query process is relevance feedback, which uses interactive user feedback to steer the query process. See [20] and [8] for surveying papers on this subject. Systems mixing features from different domains (image and text) are an interesting alternative to mono-domain based features [4]. However, the keywords are not available for all images and are very dependent on the indexer’s point of view on a given image (the so-called polysemy of images), even if they are closely related to the semantic information of certain video sequences (see figure 1). In this paper we focus on text extraction and recognition in videos. The text is automatically extracted from the videos in the database and stored together with a link to the video sequence and the frame number. This is a complementary approach to basic keywords. The user submits a request by providing a keyword, which is robustly matched against the previously extracted text in the database. Videos containing the keyword are presented to the user. This can also be merged with image features like color or texture. <Figure 1 about here> Extraction of text from images and videos is a very young research subject, which nevertheless attracts a large number of researchers. The first algorithms, introduced by the document processing community for the extraction of text from 2
高级检索增强生成技术全面指南
高级检索增强生成技术全面指南全文共四篇示例,供读者参考第一篇示例:高级检索增强生成技术全面指南随着互联网的发展,信息的获取变得越来越容易,但由此带来的信息超载也成为了一个问题。
在这个信息时代,如何从海量的信息中准确快速地找到所需的信息变得愈发重要。
高级检索增强生成技术应运而生,为用户提供了更智能、更个性化的信息检索体验。
本文将全面介绍高级检索增强生成技术的原理、应用及未来发展趋势。
高级检索增强生成技术是一种结合了检索技术和生成技术的新型信息检索方法。
其基本原理是通过智能算法对用户所提供的查询条件进行分析和理解,从而精准地定位用户需求,再通过生成技术生成相关的信息或建议。
这种方法的核心在于提供更精准、更个性化的搜索结果,大大提高了用户的搜索效率和满意度。
在实际应用中,高级检索增强生成技术主要依靠以下几种关键技术:1. 自然语言处理技术(NLP):NLP技术是高级检索增强生成技术的基础之一。
通过自然语言处理技术,系统可以理解用户的查询意图、分析文本内容,并根据用户需求生成相应的搜索结果。
2. 机器学习技术:机器学习技术可以帮助系统不断学习用户的搜索习惯和偏好,从而提高搜索结果的精准度和个性化程度。
3. 文本生成技术:文本生成技术可以帮助系统根据用户的查询条件和需求生成相关的文本内容,帮助用户更快地获取所需信息。
高级检索增强生成技术在各个领域都有着广泛的应用。
以下是几个常见的应用场景:1. 搜索引擎:搜索引擎是高级检索增强生成技术应用最为广泛的领域之一。
通过智能算法的分析和处理,搜索引擎可以为用户提供更加精准和个性化的搜索结果,大大提高了信息检索的效率和准确性。
2. 智能助手:智能助手是高级检索增强生成技术在个人助手领域的应用。
通过NLP技术和机器学习技术,智能助手可以帮助用户更快地获取所需信息,提供个性化的服务和建议。
3. 内容推荐:内容推荐是高级检索增强生成技术在内容推荐系统中的应用。
通过分析用户的浏览历史和偏好,系统可以为用户推荐相关的内容,提高用户的浏览体验。
2024年研究生考试考研英语(一201)试题与参考答案
2024年研究生考试考研英语(一201)自测试题与参考答案一、完型填空(10分)Passage:Many people today believe that the world is becoming more and more competitive. This is particularly true in the fields of education and employment. The pressure to succeed in these areas has never been greater, and people are feeling the stress more than ever before.One of the reasons for this increased pressure is the rapid technological advancements we have seen in recent years. These advancements have led to a greater demand for skilled workers. Consequently, young people feel that they need to continuously upgrade their knowledge and abilities in order to stay competitive.In the realm of education, the competition starts from a very young age. Toddlers are sent to special schools to develop their language and cognitive skills. Children in primary school are enrolled in extra-curricular activities to enhance their extracurricular abilities. And in high school, students are expected to excel in their academic studies and participate in various competitions to showcase their talents.Besides education, the job market is also highly competitive. With the onsetof the digital age, many traditional jobs have been replaced by technology. This has led to a scarcity of certain kinds of jobs, making them even more sought after. As a result, candidates for these positions must possess not only knowledge but also certain soft skills, such as teamwork, problem-solving, and communication.Even in the field of sports, competition is intense. Athletes from all over the world compete at the highest level, pushing themselves to their limits. The desire to win and recognition often drives them to train harder and longer than ever before.Questions:While the pressure to succeed in education and employment is increasing, many argue that the advancements in technology have also created opportunities for personal and career growth. Pick the most appropriate word or phrase for each of the following blanks:1.The pressure to succeed in these areas has_______________never been greater.A) barelyB) certainlyC) perhapsD) rarely2.These advancements have_______________to a greater demand for skilled workers.A) ledB) resultedC) contributedD) impacted3.Toddlers are sent to special schools to_______________their language and cognitive skills.A) cultivateB) enhanceC) inhibitD) damage4.In primary school, children are enrolled in extra-curricular activities to_______________their extracurricular abilities.A) exploitB) refineC) diminishD) thwart5.And in high school, students are expected to_______________in their academic studies.A) relayB) augmentC) thriveD) wane6.This has led to a scarcity of certain kinds of jobs,which_______________them even more sought after.A) rendersB) signifiesC) ensuresD) manifests7.Candidates for these positions must possess not only knowledge but also certain_______________skills.A) fundamentalB) creativeC) tenderD) diverse8.Even in the field of sports, competition is _______________.A) uniformB) incrementalC) intenseD) adverse9.Athletes from all over the world compete at the highestlevel,_______________themselves to their limits.A) pushingB) pullingC) draggingD) resisting10.The desire to win and recognition often_______________them to trainharder and longer.A) inducementsB) motivesC) obstaclesD) pressuresAnswers:1.A) barely2.A) led3.A) cultivate4.B) enhance5.C) thrive6.A) renders7.A) fundamental8.C) intense9.A) pushing10.D) pressures二、传统阅读理解(本部分有4大题,每大题10分,共40分)First QuestionPassage:In recent years, the concept of resilience has gained significant traction across various sectors, including education, business, and mental health.Resilience, often defined as the capacity to recover quickly from difficulties, is now seen as a critical skill that can be developed and nurtured over time. The ability to bounce back after setbacks or failures is not just a personal asset but also a professional one, particularly in today’s rapidly changing world.Educators have begun to incorporate resilience-building activities into their curricula, recognizing that academic success is not solely dependent on intelligence or hard work. Instead, it is increasingly acknowledged that emotional intelligence, adaptability, and the willingness to take risks play crucial roles in achieving long-term goals. For instance, students who are taught to view failure as a learning opportunity rather than a personal shortcoming are more likely to persist through challenges and ultimately succeed.In the business world, resilience is equally important. Companies that can adapt to market changes and overcome obstacles tend to outperform those that cannot. Leaders who demonstrate resilience inspire confidence in their teams and foster a culture of perseverance and innovation. Moreover, resilient organizations are better equipped to manage crises, such as economic downturns or unexpected disruptions, by leveraging their agility and flexibility.Mental health professionals also emphasize the importance of resilience. They argue that building resilience can help individuals cope with stress, anxiety, and depression. Techniques such as mindfulness, positive thinking, andsocial support are effective tools in developing this trait. By cultivating these practices, individuals can improve their mental well-being and lead more fulfilling lives.Despite the growing recognition of resilience, there are still challenges in its implementation. For example, some critics argue that the emphasis on resilience may overlook systemic issues that contribute to adversity. Others point out that not everyone has equal access to resources that promote resilience, such as quality education or supportive communities. Therefore, while resilience is a valuable trait, it is essential to address broader societal factors that affect individuals’ ability to thrive.Questions:1、According to the passage, what is the primary definition of resilience?•A) The ability to avoid difficulties.•B) The capacity to recover quickly from difficulties.•C) The willingness to take risks.•D) The skill to adapt to market changes.•Answer: B2、How do educators incorporate resilience into their teaching?•A) By focusing solely on intelligence and hard work.•B) By discouraging students from taking risks.•C) By teaching students to view failure as a learning opportunity.•D) By emphasizing the importance of avoiding challenges.•Answer: C3、What advantage do resilient companies have in the business world?•A) They are less likely to face market changes.•B) They tend to outperform less adaptable companies.•C) They avoid taking any risks.•D) They rely solely on traditional methods.•Answer: B4、Which of the following is NOT mentioned as a technique for building resilience in mental health?•A) Mindfulness.•B) Positive thinking.•C) Social support.•D) Physical exercise.•Answer: D5、What challenge is mentioned regarding the implementation of resilience?•A) The concept of resilience is too new to be understood.•B) There is a lack of interest in developing resilience.•C) Some people may not have equal access to resources that promote resilience.•D) Resilience is only beneficial for personal, not professional, development.•Answer: CSecond QuestionPassage:The traditional view of the relationship between women and technology has been one of conflict and resistance. Historically, women have been underrepresented in the fields of science, technology, engineering, and mathematics (STEM). This underrepresentation can be attributed to various factors, including societal biases, stereotypes, and discrimination. However, recent studies and initiatives have highlighted the significant contributions women have made to technological advancements, challenging the notion that women are naturally less capable or interested in technology.In the late 19th century, Ada Lovelace, an English mathematician, is often cited as the first computer programmer for her insights into Charles Babbage’s early mechanical general-purpose computer, the Analytical Engine. Lovelace not only programmed the machine but also foresaw its potential for future applications, including what could be considered modern computing. Her detailed notes on the Analytical Engine are considered the first algorithm written for a machine.During the 20th century, women like Grace Hopper continued to make groundbreaking contributions. As a naval reserve officer in the U.S. Navy, Hopper developed the first compiler to translate code written in English into machine language, which helped to simplify programming. She also coined the term “debugging,” coined from the removal of a moth that was jamming an earlycomputer. Her contributions were significant, paving the way for modern programming languages.In more recent times, women like propName (a pseudonym to protect her privacy) have been challenging gender biases and stereotypes within tech companies. PropName, a software engineer, has shared her experiences and insights on how to create more inclusive workplace cultures. Through interviews, articles, and public speaking engagements, PropName has advocated for equal opportunities and supported initiatives that aim to increase female representation in tech.Despite these advances, challenges remain. Intersectional factors such as race, socioeconomic status, and personal identity continue to influence the experiences of women in technology. For instance, women of color often face additional barriers due to systemic inequalities and lack of role models. Nonetheless, the narrative is shifting as more women come forward with their stories and the tech industry begins to recognize the importance of diversity and inclusion.1、Who is Ada Lovelace considered to be in the history of computing?1、Ada Lovelace is considered the first computer programmer.2、What is Grace Hopper known for contributing to the tech industry?2、Grace Hopper is known for developing the first compiler and coining the term “debugging.”3、What is the pseudonym of the software engineer who advocated for equal opportunities and supported diversity initiatives?3、The pseudonym of the software engineer is propName.4、What additional barriers do women of color face in the tech industry, according to the passage?4、Women of color face additional barriers due to systemic inequalities anda lack of role models.5、What is the significance of the changing narrative in the tech industry according to the passage?5、The significance of the changing narrative is that the tech industry is recognizing the importance of diversity and inclusion.第三题For this part, you will read a passage. After reading the passage, you must complete the table below with the information given in the passage. Some of the information may be given in the passage; other information you will have to write in your own words.P了个G is an entertainment company based in Los Angeles. It specializes in pop musiccontracts and record producing. The company was founded in 1964 by Terry Melcher, who wanted to create a recording contract that would give artists the opportunity to keep more of their earnings and retain better control over their music. Over the years, P了个G has become one of the most successful entertainment companies, working with some of the biggest pop stars in the world.The company’s business model is centered on its contracts. These contrac ts are designed to help artists achieve financial success while giving them asignificant share of the profits from their music. The contracts also provide artistic freedom for the artists, allowing them to have creative control over their work.1、What is the main focus of P了个G’s company?A. Book publishingB. Film productionC. Pop music contracts and record producingD. Fashion design2、Who founded P了个G?A. Barry MelcerB. Terry MelcherC. Bob MelcerD. Jim Melcer3、What is one of the key benefits of the contracts offered by P了个G?A. Higher salaryB. Creative controlC. Exclusive merchandise sales rightsD. More opportunities for international exposure4、Why was P了个G founded?A. To give artists the opportunity to keep more of their earnings and retain better control over their musicB. To specialize in book publishingC. To produce filmsD. To design clothing5、How has P了个G become successful?A. By working with independent book publishersB. By producing high-quality filmsC. By specializing in pop music contracts and record producingD. By designing trendy fashionAnswers:1、C2、B3、B4、A5、C第四题Read the following passage and answer the questions that follow.In recent years, the rise of social media has had a significant impact on the way we communicate and share information. Platforms like Facebook, Twitter, and Instagram have become integral parts of our daily lives, allowing us to connect with friends and family across the globe, share our thoughts and experiences, and even influence public opinion. However, this shift in communication has also raised concerns about the impact on traditional reading habits.The decline in reading traditional books and newspapers has been a topic of discussion among educators and researchers. Many argue that the ease of accessing information online has led to a decrease in deep reading and critical thinking skills. While online content is often concise and easy to digest, it lacks the depth and complexity that printed materials provide. This has raised questions about the future of literacy and the importance of reading for personal and intellectual development.One study conducted by researchers at the University of California, Irvine, found that students who spent more time on social media were less likely to engage in deep reading activities. The researchers noted that the constant stream of information and the need to keep up with the latest posts created a sense of urgency and distraction that hindered their ability to focus on longer, more complex texts. Moreover, the study suggested that the superficial nature of much online content contributed to a decline in overall literacy skills.Despite these concerns, some argue that social media can also be a valuable tool for promoting reading. Platforms like Goodreads and Book Riot have gained popularity, allowing book lovers to share recommendations, discuss favorite titles, and even organize virtual book clubs. These communities have the potential to inspire individuals to pick up a book and delve into a new story or topic.1、What is the main topic of the passage?A) The benefits of social mediaB) The decline of traditional reading habitsC) The impact of social media on educationD) The rise of online communities2、According to the passage, what has been a concern regarding the rise of social media?A) The increase in online communitiesB) The decline in reading traditional books and newspapersC) The decrease in critical thinking skillsD) The rise in book sales3、What study mentioned in the passage found about students using social media?A) They spent more time on deep reading activities.B) They were more likely to engage in critical thinking.C) They were less likely to engage in deep reading activities.D) They preferred online content over printed materials.4、How does the passage suggest social media can be a valuable tool for promoting reading?A) By providing concise and easy-to-digest information.B) By encouraging superficial reading habits.C) By allowing book lovers to share recommendations and discuss titles.D) By creating a sense of urgency and distraction.5、What is the overall tone of the passage regarding the impact of socialmedia on reading?A) NegativeB) PositiveC) NeutralD) AmbiguousAnswers:1、B) The decline of traditional reading habits2、B) The decline in reading traditional books and newspapers3、C) They were less likely to engage in deep reading activities.4、C) By allowing book lovers to share recommendations and discuss titles.5、D) Ambiguous三、阅读理解新题型(10分)PassageArtificial Intelligence: A Path to Future Innovation and ChallengesArtificial intelligence (AI) has been a key buzzword in recent years. With the rapid advancement in machine learning algorithms and the increasing availability of big data, AI is transforming nearly every industry and field. AI systems can now perform tasks that were once thought to require human intelligence, such as natural language processing, image recognition, and decision-making. These capabilities are largely due to the development of deep learning neural networks, which enable AI to learn from vast datasets and improveover time.However, as AI continues to grow, it also raises significant ethical and societal concerns. For example, AI could be used to discriminate against certain groups, leading to unfair hiring practices or biased decision-making. Privacy concerns are another major issue, as AI may collect and analyze large amounts of personal data without proper oversight. As AI becomes more integrated into our daily lives, it is crucial for society to address these challenges through a combination of technological advances and policy measures.In this changing landscape, the role of researchers and policymakers is more important than ever. Academics and experts need to continue developing AI technologies that are robust and fair, while policymakers must ensure that AI is used ethically and for the betterment of society.Questions1.What is the primary reason AI is transforming nearly every industry and field?A. The rapid advancement in machine learning algorithms.B. The decreasing cost of big data storage.C. The development of new types of computer processors.D. The improvement in user interface and interaction design.Answer: A. The rapid advancement in machine learning algorithms.2.Which of the following is NOT mentioned as a concern related to the use of AI?A. Discrimination against certain groups.B. Privacy concerns.C. Job displacement.D. Unfair hiring practices.Answer: C. Job displacement. (Not explicitly mentioned in the passage.)3.What capability has AI demonstrated in recent years?A. Predicting stock market trends.B. Performing tasks requiring human intelligence, such as natural language processing.C. Designing new molecular compounds.D. Creating complex artworks.Answer: B. Performing tasks requiring human intelligence, such as natural language processing.4.What is the role of policymakers in addressing the challenges posed by the integration of AI into society?A. To ensure ethical use of AI.B. To develop AI technologies.C. To collect and analyze personal data.D. To promote the use of AI in industries.Answer: A. To ensure ethical use of AI.5.What is the significance of the role of researchers and experts in this changing landscape?A. To address technological challenges.B. To develop robust and fair AI technologies.C. To control the distribution of AI tools.D. To manage AI-related privacy concerns.Answer: B. To develop robust and fair AI technologies.This passage and the associated questions are designed to test the examinee’s comprehension and analytical skills regarding the topic of artificial intelligence, including its benefits, challenges, and the roles of various stakeholders.四、翻译(本大题有5小题,每小题2分,共10分)第一题中文:Translate the following passage into English.随着互联网的普及,人们获取信息的渠道日益多样化。
gpt学术优化指令-概述说明以及解释
gpt学术优化指令-概述说明以及解释1.引言1.1 概述GPT(Generative Pre-trained Transformer)是一种基于Transformer架构的大规模无监督学习模型,由OpenAI研发。
该模型在自然语言处理领域取得了巨大成功,能够生成高质量的文本,理解语言逻辑并作出合理推理。
然而,由于GPT模型的复杂性和参数众多,对于学术写作和研究领域的使用存在一定挑战。
为了解决这一问题,我们提出了GPT学术优化指令,旨在帮助研究人员和学术写作者更好地利用GPT模型进行学术研究和写作。
本文将详细介绍这一新颖的概念,并探讨其在学术领域的潜在应用和优势。
通过学习和应用GPT学术优化指令,研究人员将能够更高效地利用GPT模型,提升研究成果的质量和产出效率。
文章结构部分的内容如下:1.2 文章结构本文分为引言、正文和结论三个部分。
在引言部分,我们会对GPT学术优化指令进行概述,并说明本文的目的和意义。
在正文部分,我们将介绍GPT模型的基本情况,定义学术优化指令的概念,并探讨GPT学术优化指令在实际应用中的作用。
最后,在结论部分,我们将对本文进行总结,展望未来研究方向,并进行一些结束性的陈述。
通过这样清晰的文章结构,读者将更容易理解本文的内容和逻辑框架。
1.3 目的本文旨在探讨GPT(生成式预训练模型)在学术领域中的优化应用,特别是针对学术写作任务的优化指令。
通过详细介绍GPT模型的基本原理和学术优化指令的定义,我们将探讨如何利用GPT模型为学术写作提供更好的支持和指导。
同时,通过实际案例分析和应用实践,我们将展示学术优化指令在提升学术写作效率和质量方面的潜力和优势。
最终,我们旨在为学术界提供一种全新的、高效的学术写作工具和方法,从而促进学术研究的进步和交流。
2.正文2.1 GPT模型介绍GPT(Generative Pre-trained Transformer)模型是一种基于Transformer架构的预训练语言模型,由OpenAI团队于2018年提出。
IBM Cognos Transformer V11.0 用户指南说明书
广告调查常用语简录
广告调查常用语简录AApplied research -------------------------------------应用型调查Attitude----------------------------------------------态度Allowable sampling error------------------------------允许抽样误差Analysis of variance (ANOVA)------------------------方差分析Attention span----------------------------------------注意力集中A priori segmentation---------------------------------先期市场细分Ad positioning statement tests------------------------广告定位宣传测试Ad concept testing------------------------------------广告概念测试Audience rating---------------------------------------收视率Ad tracking research----------------------------------广告跟踪调查BBasic research----------------------------------------基础性调查Balanced scales---------------------------------------平衡量表Bivariate techniques----------------------------------二元变量法Bivariate regression analysis-------------------------二元变量回归分析CConsumer orientation----------------------------------消费者导向Custom, or Ad hoc, marketingresearch firms----------------------------------------定制市场调查公司Causal studies----------------------------------------因果性研究Concomitant variation---------------------------------相随变化Cartoon tests-----------------------------------------漫画测试法Consumer drawings-------------------------------------消费者绘图Computer-assisted telephoneinterviewing(CATI)----------------------------------电脑辅助电话调查Content analysis--------------------------------------内容分析Causal research---------------------------------------因果调查Concomitant variation---------------------------------相关关系Contamination-----------------------------------------干扰Comparative scales------------------------------------比较性量表Constant sum scales-----------------------------------固定总数量表Closed-ended questions--------------------------------封闭式问题Call record sheets------------------------------------通话纪录单Census------------------------------------------------普查Cluster samples---------------------------------------整群抽样Convenience samples-----------------------------------便利抽样Central limit theorem---------------------------------中心极限定理Confidence level--------------------------------------置信度Coding------------------------------------------------编码Crosstablulation--------------------------------------交互分组表Coefficient of determination--------------------------可决系数Correlation analysis----------------------------------相关分析Collinearity------------------------------------------共线性Causation---------------------------------------------因果关系Cluster analysis--------------------------------------聚类分析Conjoint analysis-------------------------------------联合分析Consumer Satisfaction---------------------------------消费者满意度Communication-----------------------------------------沟通DDescriptive function----------------------------------描述功能Diagnostic function-----------------------------------诊断功能Descriptive studies-----------------------------------描述性研究Dependent variable------------------------------------因变量Database marketing------------------------------------数据库营销Database management system----------------------------数据库管理系统Discussion guide--------------------------------------讨论提纲Depth interview---------------------------------------深度访谈法Door-to-door interviewing-----------------------------入户访问Direct computer interviewing--------------------------电脑直接访问Disguised observation---------------------------------掩饰观察Dichotomous questions---------------------------------二项式问题Discriminate score------------------------------------判别分Discriminate coefficient------------------------------判别系数Downward communication--------------------------------下行沟通EExploratory research----------------------------------试探性调查Experiments-------------------------------------------实验Evaluative research-----------------------------------评估性调查Executive interviewing--------------------------------经理访谈Experiment--------------------------------------------实验法External validity-------------------------------------外在有效性Editing-----------------------------------------------编辑Error check routines----------------------------------错误检查程序Executive summary-------------------------------------执行性摘要Ethics------------------------------------------------伦理Field service firms----------------------------------实地调查公司Focus group interview(FGI)-------------------------焦点小组访谈法Focus group facility---------------------------------焦点小组测试室Focus group moderator--------------------------------焦点访谈主持人Frame error------------------------------------------抽样框误差Finite population correction factor------------------有限总体修正指数Factor analysis--------------------------------------因子分析Factor loadings--------------------------------------因子载荷GGoal orientation-------------------------------------目标导向Group dynamics---------------------------------------群体动力HHypothesis-------------------------------------------假设Humanistic inquiry-----------------------------------人文调查IIndependent variable---------------------------------自变量Internal database -----------------------------------内部数据库Interviewer error------------------------------------访问员误差Incidence rate---------------------------------------发生率Interval scales--------------------------------------等距量表Itemized rating scales-------------------------------列举评比量表Interviewer's instructions---------------------------调查员说明Interval estimates-----------------------------------区间估计Intelligent data entry-------------------------------智能数据录入JJudgment samples-------------------------------------判断抽样LLongitudinal study-----------------------------------纵向研究Likert scales----------------------------------------利克特量表Low ball pricing-------------------------------------虚报价格Marketing--------------------------------------------营销;行销Marketing concept------------------------------------市场营销观念Marketing mix----------------------------------------营销组合Marketing research-----------------------------------市场调查Marketing strategy-----------------------------------营销战略Marketing research problem---------------------------市场调查问题Marketing research objective-------------------------市场调查目标Management decision problem--------------------------管理决策问题Measurement------------------------------------------测量Measurement error------------------------------------测量误差Measurement instrument error-------------------------测量工具误差Mall intercept interviewing--------------------------街上拦截法Mail panels------------------------------------------固定邮寄样本调查Multidimensional scaling-----------------------------多维量表Multi-choice question--------------------------------多项选择题Machine cleaning of data-----------------------------数据自动清理Marginal Report--------------------------------------边际报告Mean-------------------------------------------------均值Median-----------------------------------------------中位数Mode-------------------------------------------------众数Multivariate analysis--------------------------------多变量分析Multiple regression analysis-------------------------多元回归分析Market segmentation----------------------------------市场细分NNonprobability samples-------------------------------非随机样本Nonresponses bias------------------------------------拒访误差Nominal scales---------------------------------------类别量表Nonbalanced scales-----------------------------------非平衡量表Normal distribution----------------------------------正态分布Noise------------------------------------------------噪音OObservation research---------------------------------观察调查法Open observation-------------------------------------共开观察One-way mirror observation---------------------------单向镜观察法Ordinal scales---------------------------------------顺序量表Open-ended questions---------------------------------开放式问题Optical scanning-------------------------------------光学扫描录入One-way frequency table------------------------------单向频数表On-air testing---------------------------------------实际播放测试PPredictive function----------------------------------预测功能Programmatic research--------------------------------计划性调查Probability samples----------------------------------随机样本Primary data-----------------------------------------原始资料Projective techniques--------------------------------投射法Photo sort-------------------------------------------照片归类法Population specification error-----------------------调查对象范围误差Processing error-------------------------------------处理过程误差People reader----------------------------------------阅读器Pupil meter------------------------------------------测瞳仪Purchase intent scales-------------------------------购买意向量表Paired comparison scales-----------------------------配对比较量表Pretest----------------------------------------------预先测试Population-------------------------------------------总体Proportional allocation------------------------------按比例分配Point estimates--------------------------------------点估计Population standard deviation------------------------总体的标准差Presentation software--------------------------------提案软件Profession-------------------------------------------职业Professionalism--------------------------------------专业水平Product positioning research-------------------------产品定位调查Post hoc segmentation--------------------------------后期市场细分Product prototype tests------------------------------产品原型测试Product pricing research-----------------------------产品定价研究Packaging tests--------------------------------------包装测试Product concept testing------------------------------产品概念测试QQualitative research---------------------------------定性调查Quantitative research--------------------------------定量调查Questionnaire----------------------------------------问卷Quota samples----------------------------------------配额抽样RResearch request-------------------------------------调查申请Response bias----------------------------------------回答误差Random error(random sampling error)----------------随机(抽样)误差Ratio scales-----------------------------------------等比量表Rule-------------------------------------------------规则Rank-order scales------------------------------------等级顺序量表Random digit dialing---------------------------------随机数字拨号Range------------------------------------------------全距Regression coefficients------------------------------回归系数Research management----------------------------------调查管理Reengineering----------------------------------------再造SSystem orientation-----------------------------------系统导向Syndicated service research firms--------------------辛迪加服务调查公司Strategic partnering---------------------------------战略伙伴关系Spurious association---------------------------------虚假联系Survey research--------------------------------------询问调查Selective research-----------------------------------选择性调查Secondary data---------------------------------------二手资料Sentence and story completion------------------------句子与故事完成法Self-administered questionnaire----------------------自我管理问卷Systematic error-------------------------------------系统误差Selection error--------------------------------------抽选误差Structured observation-------------------------------结构性观察Shopper patterns-------------------------------------购买者模式Shopper behavior research----------------------------购买者行为研究Simulated Test Marketing(STM)----------------------模拟市场测试Scaling----------------------------------------------量表Semantic difference----------------------------------语意差别法Staple scales----------------------------------------中心量表Survey objectives------------------------------------询问目标Screeners--------------------------------------------过滤性问题Scaled-response question-----------------------------量表式问题Supervisor's instructions----------------------------管理这说明Sample-----------------------------------------------样本Sample frame-----------------------------------------抽样框Simple random sampling-------------------------------简单随机抽样Systematic sampling----------------------------------等距抽样(系统抽样)Snowball samples-------------------------------------滚雪球抽样Stratified samples-----------------------------------分层抽样Sample distribution----------------------------------样本分布Sampling distribution of the sample mean-------------样本平均数的抽样分布Standard error of the mean---------------------------平均数的标准误差Sampling distribution of the population--------------比例抽样分布Standard normal distribution-------------------------标准正态分布Standard deviation-----------------------------------标准差Skip pattern------------------------------------------跳跃方式Selective perception----------------------------------选择性知觉Single-number research--------------------------------单一调查数据TTemporal sequence-------------------------------------时间序列Telephone focus groups--------------------------------电话焦点访谈法Two-way focus groups----------------------------------双向焦点访谈法Third-person techniques-------------------------------第三人称法UUnstructured observation------------------------------非结构性观察Unidimensional scaling--------------------------------一维量表Upward communication----------------------------------上行沟通Unstructured segmentation-----------------------------随意细分VVariable----------------------------------------------变量Variance ---------------------------------------------方差Validation--------------------------------------------确认WWord association tests--------------------------------语句联想法。
SIMATIC Energy Manager PRO V7.2 - Operation Operat
2 Energy Manager PRO Client................................................................................................................. 19
2.1 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.5.1 2.1.5.2 2.1.6
Basics ................................................................................................................................ 19 Start Energy Manager ........................................................................................................ 19 Client as navigation tool..................................................................................................... 23 Basic configuration ............................................................................................................ 25 Search for object................................................................................................................ 31 Quicklinks.......................................................................................................................... 33 Create Quicklinks ............................................................................................................... 33 Editing Quicklinks .............................................................................................................. 35 Help .................................................................................................................................. 38
Chapter 5 Relevance Feedback and Query Expansion 现代信息检索 第二版 第5章 相关度反馈 查询扩展
• 关联聚类、距离聚类和标量聚类
聚族基本பைடு நூலகம்想
a:association clusters关联聚类(族)
关联聚类(族)
• 关联聚集是基于文档内词干同时发生的情 况。这种思想的依据是:如果一些词条常 常同时出现在文档中,则这些同时出现的 词条具有同义性关系。 • Keyword-based local clustering and stem local clustering. • 此聚类包括关键词聚类和词干聚类。
点击第一条三倍以上
交换
5.4.3 Clicks as a Metric of Preferences
连续迭代
5.5 implicit feedback through Local Analysis
5.5.1Implicit Feedback through Local Clustering
• 相关性反馈可以一次或多次迭代进行
例子:Initial Query /
Results for Initial Query
Relevance Feedback
Results after Relevance Feedback
5.4 Explicit Feedback Through Clicks
• • • • •
难点与重点 1. query reformulation(重构) 2. User Relevance Feedback 3. Local Analysis 4. Global Analysis
• • • •
query reformulation 查询重构 query expansion 查询扩展 term reweighting 语词重新加权 User Relevance Feedback用户相关反 馈
ranking algorithm名词解释
ranking algorithm名词解释Ranking Algorithm什么是ranking algorithm?Ranking algorithm(排名算法)是一种用于根据特定规则对项目、结果或实体进行排序的数学算法。
它被广泛应用于搜索引擎、社交媒体平台、电子商务网站以及各种需要根据相关性或重要性对内容进行排序的应用程序中。
相关名词以下是与ranking algorithm相关的一些常用名词及其简单解释:1.Relevance(相关性):指衡量两个或多个事物之间关联度的程度。
在搜索引擎的ranking algorithm中,相关性用于衡量网页或内容的与搜索查询的匹配程度。
示例:在一次搜索中,搜索引擎通过比较网页的内容与搜索查询的关键词来确定相关性,并将最相关的网页排在前面。
2.PageRank:是Google搜索引擎中最早采用的ranking algorithm之一。
PageRank根据网页之间的链接关系以及它们的相对重要性对网页进行排序。
示例:当许多其他网页链接到某个特定网页时,该网页的PageRank得分会相应提高。
3.Quality Score(质量得分):是搜索引擎广告平台中使用的一种ranking algorithm。
该算法通过衡量广告的相关性、点击率和目标页面质量等因素来决定广告的显示顺序和成本。
示例:广告主可以通过提高广告的质量得分来提高广告的展示并降低点击成本。
4.Collaborative Filtering(协同过滤):是一种常见的推荐系统ranking algorithm。
协同过滤使用用户行为数据(如喜好、评分或历史记录)来预测用户可能喜欢的内容,并进行相应的排序。
示例:Netflix使用协同过滤算法根据用户观看历史和评分来为用户推荐电影和电视节目。
5.TF-IDF:是一种用于文本相关性计算的ranking algorithm。
它根据词频-逆向文件频率(Term Frequency-Inverse Document Frequency)来衡量一个词对文档的重要性。
利用Temu卖家工具分析顾客反馈提升服务质量
利用Temu卖家工具分析顾客反馈提升服务质量引言:在当今竞争激烈的电商市场中,提供优质的产品和服务对于卖家来说尤为重要。
顾客的反馈是衡量服务质量的重要指标之一。
而利用TEMU卖家工具来分析顾客反馈,则成为提升服务质量的有力助手。
本文将介绍TEMU卖家工具的基本原理、使用方法以及分析顾客反馈的方式,以期帮助卖家提升服务质量,满足顾客需求。
第一部分:TEMU卖家工具的基本原理TEMU(Top Earning Merchants University)卖家工具是一个专门为电商卖家设计的工具,集成了多种功能,旨在帮助卖家提升销售业绩和服务质量。
主要包括以下几个方面:1. 数据收集和分析:TEMU卖家工具能够收集并整理卖家店铺内的各项数据,包括订单数据、顾客评价、退货数据等。
通过对这些数据进行分析,卖家可以更好地了解自己的服务状况和顾客需求。
2. 评估指标和报表生成:TEMU卖家工具提供了一系列的评估指标和报表,用于帮助卖家评估自己的店铺表现和服务质量。
比如,卖家可以通过TEMU工具查看店铺的评分、交易成功率、退货率等指标,从而及时发现问题并采取相应的改进措施。
3. 反馈管理和优化建议:基于数据分析和评估结果,TEMU卖家工具还会为卖家提供相应的反馈管理和优化建议。
通过TEMU工具,卖家可以快速回复顾客的评价和投诉,并及时调整店铺运营策略,以提升服务质量和客户满意度。
4. 自动化运营和智能推荐:TEMU卖家工具具备智能化的运营功能,能够根据卖家店铺的经营情况和顾客反馈,自动进行商品推荐、价格调整等操作,以提高销售额和服务水平。
第二部分:TEMU卖家工具的使用方法TEMU卖家工具使用简便,以下是使用TEMU工具的基本步骤:1. 登录TEMU卖家工具:首先,卖家需要登录TEMU卖家工具的官方网站,输入自己的账号和密码,以便使用TEMU工具的各项功能。
2. 数据导入与分析:在登录后,卖家可以将自己店铺内的数据导入TEMU卖家工具中。
gpt 学术插件 研究综述-概述说明以及解释
gpt 学术插件研究综述-概述说明以及解释1.引言1.1 概述GPT学术插件是基于GPT(Generative Pre-trained Transformer)模型的一种应用,该模型是近年来人工智能领域的重要突破之一。
GPT学术插件的出现为学术界提供了一个全新的工具,可以帮助研究人员更高效地进行学术研究和创新。
GPT学术插件借助深度学习技术,可以分析大量的学术文献资料,并生成高质量的文本内容。
这种自动化的文本生成方式能够大大提高学术研究的效率,帮助研究人员快速获取相关领域的知识和发展动态。
与传统的学术搜索引擎相比,GPT学术插件具有更高的智能化和个性化,能够根据用户的需求和偏好,为其提供更加准确和有针对性的信息。
同时,GPT学术插件还支持多种语言的输入和输出,使得全球范围内的研究者都能够方便地使用该插件进行学术交流和合作。
然而,虽然GPT学术插件在学术研究中具有广泛的应用前景,但也存在一些限制和挑战。
首先,由于GPT模型的训练需要大量的计算资源和数据集,对于一些普通的研究机构和个人而言,使用该插件可能会面临一定的困难。
其次,GPT学术插件的文本生成过程是基于模型的预测,可能存在一定的误差和不确定性。
因此,在使用该插件时需要对生成的结果进行谨慎评估和判断。
未来,随着技术的不断进步和数据的不断积累,GPT学术插件有望实现更加精准和智能的文本生成。
同时,对于GPT学术插件的优化和改进也是一个重要的方向,例如结合专家判断和人工编辑,提高插件生成文本的质量和可靠性。
此外,GPT学术插件还可以与其他学术工具和平台进行集成,促进学术界的合作和交流。
总的来说,GPT学术插件作为一种新兴的智能化工具,在学术研究中发挥着越来越重要的作用。
通过提供高效、准确的文本生成和智能化的学术搜索功能,它将帮助学术界实现更快速、更高质量的研究成果,推动学术界的发展和进步。
1.2 文章结构文章结构部分的内容如下:本文主要分为引言、正文和结论三个部分。
通过自然语言处理技术解读客户反馈
通过自然语言处理技术解读客户反馈近年来,随着互联网的发展和全民化使用,用户对于产品和服务的要求越来越高,用户在使用产品和服务过程中所遇到的问题和需求也日益复杂化。
如今,客户反馈对于企业的重要性越来越明显,而且影响范围越来越广。
为此,很多公司开始关注并投入大量的精力在客户反馈分析上,于是一个新兴领域也得以诞生——自然语言处理技术解读客户反馈。
一、客户反馈对于企业的重要性企业经营过程中,客户反馈是非常重要的一环。
首先,客户反馈可以帮助企业了解用户的需求和关注点,以便企业有针对性地改进产品和服务。
其次,客户反馈可以帮助企业及时发现产品中的问题,以便向用户做出更好的解释和处理。
此外,客户反馈还能帮助企业发现可能存在的盲点和短板,以便企业能够更加全面地提升产品和服务的质量。
二、自然语言处理技术在客户反馈中的应用自然语言处理技术即 NLP,是指通过计算机对人类语言进行分析、理解、处理和生成的技术。
在客户反馈中,自然语言处理技术可以帮助企业快速准确地抓取大量的用户反馈文本,并对文本进行分析和处理,从而了解用户的真实诉求和情感。
1. 文本抓取在客户反馈分析中,最初的一步就是文本抓取。
文本抓取通常需要借助网络蜘蛛和爬虫技术来实现,相关技术可通过分析用户在网上发表的评论和帖子等信息,将相关的信息抓取到企业的数据库中供后续处理使用。
2. 情感分析在理解客户反馈的时候,情感分析是一个非常重要的环节。
通过情感分析,企业可以了解用户对产品和服务的评价,包括用户的满意度、不满意度以及其他负面或正面的评价,为企业的进一步优化提供了重要参考依据。
情感分析的基本思想是,将用户文本进行分析和评估,以得出一个结论,表明用户反馈的是正面的情感,还是负面的情感,还是没有情感。
目前市面上已有许多情感分析工具和技术供企业使用。
3. 文本分类根据用户反馈的不同性质和问题,企业需要对反馈文本进行分类。
通过文本分类,可以将相似反馈归类为一个类别,为企业对问题作出集中处理提供有力参考。
帆软birfm指标 -回复
帆软birfm指标-回复帆软birfm指标是一种数据分析和业务调查框架,它包含了五个关键指标,分别是效用(Benefit)、影响(Impact)、资源(Resources)、风险(Risk)和变化(Change)。
效用(Benefit)是指项目或业务活动所带来的实际收益或利益。
在使用帆软birfm指标时,我们需要确定并量化项目或业务活动所带来的效益,这有助于评估项目的价值和回报。
影响(Impact)是指项目或业务活动对所关注领域的变化程度。
它可以是积极的,例如提高效率、降低成本;也可以是消极的,例如增加风险或引起破坏。
通过衡量影响,我们可以更好地了解项目的绩效和可能产生的结果。
资源(Resources)是指项目或业务活动所需要的各种资源,包括人力、物力、财力等。
拥有足够的资源可以支持项目的顺利进行,并确保项目能够实现预期目标。
风险(Risk)是指项目或业务活动所面临的不确定性和潜在问题。
通过评估风险,我们可以有效地制定风险管理策略,并采取相应的措施来降低风险对项目或业务的负面影响。
变化(Change)是指项目或业务活动所带来的组织内外的变化。
这些变化可能涉及人员、流程、系统或文化等方面。
了解这些变化有助于我们更好地规划和管理项目,并确保变革的成功实施。
帆软birfm指标的使用过程可以分为以下几个步骤:第一步,明确项目或业务活动的目标和关键结果。
确保目标具体、可衡量,并与组织的战略目标相一致。
在这个阶段,需要定义清晰的指标和评估标准。
第二步,评估效益和影响。
使用适当的数据收集方法和分析工具,量化项目或业务活动所带来的实际效益和影响。
这可以包括问卷调查、访谈、成本效益分析等。
第三步,估算所需资源。
确定项目或业务活动所需要的各种资源,并评估其可行性和可获得性。
这可以通过成本估算、人力资源规划等方法来完成。
第四步,评估风险。
识别与项目或业务活动相关的潜在风险,并对其进行评估和管理。
这可能涉及到风险识别、风险分析和制定相应的风险管理计划。
分析跨境电商产品的用户反馈数据
分析跨境电商产品的用户反馈数据在跨境电商行业中,用户反馈数据是非常重要的资源。
通过分析这些数据,我们可以了解用户对产品的满意度、挑选偏好和需求,从而优化产品设计、改进营销策略,提升用户体验,进一步推动企业的发展。
本文将从几个方面对跨境电商产品的用户反馈数据进行分析。
一、用户反馈数据的来源和类型用户反馈数据主要来自于用户在购买、使用产品的过程中产生的数据。
这些数据可以通过多种渠道获取,包括但不限于在线调查、评价评论、社交媒体、客户服务记录等。
根据数据的形式和内容,可以将用户反馈数据分为定量数据和定性数据。
定量数据一般是指用户对产品的评分、销售额、访问量等数据,通过对这些数据进行统计和分析,可以得出一些客观的结论。
定性数据则是用户对产品的评价、意见、建议等文字描述,这些数据可以帮助企业了解用户的主观感受和需求。
二、用户反馈数据的分析方法1. 定量数据分析:通过对定量数据的统计和分析,可以获取一些关键指标,比如产品的平均评分、最高评分、销售额增长率等。
这些指标可以帮助企业了解产品的整体表现和市场竞争情况。
同时,还可以通过对这些指标的对比和趋势分析,发现产品在不同市场、不同时间段的表现差异,为企业的战略决策提供数据支持。
2. 定性数据分析:对于定性数据的分析,需要借助文本挖掘和情感分析等技术手段。
文本挖掘可以帮助企业提取用户反馈中的关键词和短语,从而了解用户对产品的关注点和评价维度。
情感分析则可以对用户的情感倾向进行判断,比如用户对产品的喜好程度、满意度和不满意的原因等。
这些分析结果可以为企业提供改进产品设计和提升用户体验的指导意见。
三、用户反馈数据的应用1. 产品改进:通过分析用户反馈数据,企业可以了解到产品的优点和不足之处。
对于产品的优点,可以进一步加强宣传和营销;对于不足之处,可以及时改进产品设计和功能,提升用户体验。
此外,还可以根据用户的需求和喜好,开发适合不同市场和群体的产品版本,提高产品的竞争力。
机器翻译中的自适应和增量学习方法
机器翻译中的自适应和增量学习方法自适应和增量学习是机器翻译中常用的方法,它们可以帮助机器翻译模型更好地适应不同的语言对和数据集。
本文将重点介绍自适应方法和增量学习方法,并分析它们在机器翻译中的应用和效果。
一、自适应方法自适应方法是指在机器翻译系统中根据新语料的特点和需求进行调整和优化,以提高翻译质量和性能。
常见的自适应方法包括:领域自适应、词汇自适应和输入自适应。
1. 领域自适应领域自适应是指根据翻译任务的具体领域特点进行模型优化。
对于不同的领域,由于术语、语法等方面的差异,常规的机器翻译模型往往不能直接适用。
因此,根据新的领域语料,可以通过训练和微调模型来使其更好地适应该领域的翻译任务。
例如,可以使用领域相关的并行语料对模型进行预训练,或者使用领域内的单语语料对模型进行微调。
2. 词汇自适应词汇自适应是指根据不同语言对的词汇特点进行翻译模型的优化。
不同语言对的词汇差异往往是机器翻译中的难点之一,因为某些词汇在不同的语言中可能有不同的表达方式。
为了解决这个问题,可以使用词汇自适应方法。
常见的词汇自适应方法包括:词表扩展、词汇替换和词汇重排序。
通过将新的词汇引入到模型中,或者调整词汇表中各个词汇的权重,可以达到更好的翻译效果。
3. 输入自适应输入自适应是指根据输入句子的特点进行机器翻译模型的优化。
不同句子的结构、长度和语法结构往往会对机器翻译的翻译质量产生影响。
因此,通过在模型中引入输入句子的特征,并根据这些特征进行模型调整,可以提高模型在不同输入句子上的翻译性能。
常见的输入自适应方法包括:句子长度控制、句子结构调整和输入注意力调整。
二、增量学习方法增量学习是指通过利用已有模型的知识,对新的数据进行学习和优化的方法。
它可以快速适应新的数据,而无需重新进行训练。
在机器翻译中,增量学习可以帮助模型适应新的语言对和数据集,提高翻译质量和效率。
常见的增量学习方法包括:联合训练、知识蒸馏和序列化模型。
1. 联合训练联合训练是指在已有模型的基础上,对新的数据进行联合训练和优化的方法。
词嵌入评价方法
词嵌入评价方法
词嵌入(Word Embedding)是一种将词或短语从词汇表映射到向量空间的技术,通常用于自然语言处理任务。
词嵌入的评价方法主要分为两种:外部评价(Extrinsic Evaluation)和内部评价(Intrinsic Evaluation)。
1. 外部评价:外部评价通常将词嵌入作为下游任务的输入,通过比较使用词嵌入前后的任务性能变化来评估词嵌入的质量。
这种方法关注的是词嵌入在实际应用中的效果,因此评估结果更具实际意义。
常见的外部评价任务包括文本分类、情感分析、命名实体识别等。
2. 内部评价:内部评价直接对词语之间的语法、语义关系进行测试,通常在预选的查询集上进行。
内部评价的方法包括词类比(Word Analogy)任务、词向量相似度(Word Vector Similarity)任务等。
词类比任务要求模型能够正确完成类似“男人:女人::国王:?”这样的类比推理,而词向量相似度任务则通过计算两个词向量之间的余弦相似度来衡量它们的语义相似性。
需要注意的是,外部评价和内部评价各有优缺点。
外部评价更能反映词嵌入在实际应用中的效果,但受到下游任务选择和数据集质量的影响;而内部评价虽然简单直观,但可能无法完全反映词嵌入在实际应用中的性能。
因此,在实际应用中,通常需要结合两种评价方法来全面评估词嵌入的质量。
通过GA自定义报告简化PPC工作流程
通过GA自定义报告简化PPC工作流程最近看到Justin的一篇博客文章,说的通过GA自定义报告简化SEO(搜索引擎优化)工作流程,有感于此文,本文将阐述如何通过GA自定义报告来简化PPC(付费搜索广告)工作流程。
我们知道付费广告主要分为搜索广告和内容网络广告,搜索广告的主要元素在GA报告中就是关键词,而内容广告的主要表现则是展示位置(域名或网址)。
作为PPC管理优化人员来说,花费最多时间的便是寻找关键词和展示位置了,因此如何快速有效地进行这两项工作也决定了一个SEM的工作效率。
关键词的匹配方式,在GA报告中来说,就只有3种形式:完全匹配、词组匹配、广泛匹配。
而展示位置的话,则分为系统推荐的展示位置和自选展示位置。
我们账户内存在的关键词和展示位置,有广泛和词组的,一般来说是测试之用的,系统推荐的是待选的,而完全匹配则是我们最想重点投放的,我们需要找准哪些关键词的效果不错,然后添加其为完全匹配;同样,系统推荐的展示位置是我们待选的展示位置,如果表现不错,我们可能需要对这个域名或者网址进行重点投放。
以上应用的是一种非常简单易操作且很管用的广告投放策略。
这个PCC策略在我之前的博客文章中也已经介绍过了,简而言之,就是按照匹配方式进行广告系列划分,完全匹配专卖投放那些ROI高的词,广泛匹配和词组匹配主要用来做长尾关键词挖掘或者效果评测之用。
展示位置的话,也类似,关键词定位找网址,好网址单独添加进行展示位置定位。
如果你使用的正是这种投放策略,那么恭喜你,你看完本文之后,会节省至少一半的时间,你只需要重点关注3个自定义报告,基本就可以完成80%的账户操作。
第一个报告(完全匹配关键词报告)中的关键词调整出价。
第二个报告(词组/广泛匹配关键词报告)中查找表现好的词,添加到对应的完全匹配广告系列中,对不相关的或者ROI太差的添加到共享库中进行否定。
第三个报告(系统推荐的展示位置报告)中查找表现好的添加为展示位置定位,表现差的否定。
高级检索增强生成技术全面指南
高级检索增强生成技术全面指南引言高级检索增强生成技术是一项前沿的人工智能技术,通过有效的检索和生成算法,为用户提供更准确、更个性化的信息服务。
本文将全面介绍高级检索增强生成技术的原理、应用以及未来发展方向,以帮助读者深入了解该领域的最新研究进展。
1. 高级检索增强技术的概述高级检索增强技术是一种基于自然语言处理和机器学习的技术,旨在提高信息检索的准确性和个性化程度。
通过分析用户的查询意图和上下文信息,系统能够更好地理解用户需求,并提供更有针对性的搜索结果。
2. 高级检索增强技术的原理高级检索增强技术主要基于以下原理实现:a. 自然语言处理:通过对自然语言进行分词、词性标注、句法分析等处理,系统能够更好地理解用户的查询意图和文本语义。
b. 机器学习:通过构建训练集和使用机器学习算法,系统能够学习用户的偏好和上下文信息,从而提供更加个性化的搜索结果。
c. 深度学习:利用深度神经网络模型,系统能够进行更精确的语义理解和信息匹配,提升搜索结果的准确性。
3. 高级检索增强技术的应用领域高级检索增强技术在各个领域都有广泛的应用,包括但不限于以下几个方面:a. 互联网搜索引擎:通过提供更加准确的搜索结果,满足用户对信息的个性化需求。
b. 电子商务平台:通过分析用户的购物行为和历史数据,为用户推荐更符合其偏好的商品。
c. 在线教育平台:根据学生的学习习惯和知识水平,为其提供更加精准的学习资源。
d. 金融行业:通过分析用户的投资偏好和市场信息,为其提供更好的投资建议。
4. 高级检索增强技术的未来发展方向高级检索增强技术在未来有着广阔的发展前景,以下几个方向值得关注:a. 多模态信息检索:结合语音、图像等多种形式的信息,提供更加全面的检索服务。
b. 个性化推荐系统:通过分析用户的兴趣和行为,为其提供更加个性化的推荐服务。
c. 自动问答系统:利用自然语言处理和知识图谱等技术,实现智能问答功能。
d. 情感分析与情感生成:通过对用户情感的理解和生成,提供更加人性化的搜索结果和回答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
Introduction
Relevance feedback is a classic information retrieval (IR) technique that reformulates a query based on documents selected by the user as relevant [10]. Relevance feedback techniques have been recently an active research area in IR. We experimented with the MEDLINE database maintained by the National Library of Medicine, which is widely used in medical research. It contains ca. 12 million abstracts on biology and medicine collected from 4,600 international biomedical journals. To each document in this database, keywords called MeSH (Medical Subject Headings) are manually added to describe its content for indexing in a uniform manner. This is a specific features of MEDLINE that other databases do not have [5]. In this paper we suggest new a retrieval technique for MEDLINE based on relevance feedback using modulating MeSH terms in query expansion. We show that our technique gives 16% improvement in the quality of retrieval over the best currently known system. The paper is organized as follows. Section 2 explains the MEDLINE database and MeSH indexing, as well as the vector space model and the relevance feedback
technique. Section 3 discusses related work. Section 4 describes the proposed technique to modulate the MeSH terms’ weights in relevance feedback-based query expansion. Section 5 presents our experimental results, and Section 6 draws conclusions.
Abstract. MEDLINE is a very large database of abstracts of research papers in medical domain, maintained by the National Library of Medicine. Documents in MEDLINE are supplied with manually assigned keywords from a controlled vocabulary called MeSH terms, classified for each document into major MeSH terms describing the main topics of the document and minor MeSH terms giving more details on the document's topic. To search MEDLINE, we apply a query expansion strategy through automatic relevance feedback, with the following modification: we assign greater weights to the MeSH terms, with different modulation of the major and minor MeSH terms' weights. With this, we obtain 16% of improvement of the retrieval quality over the best known system.
+ *
Corresponding author. The third author is currently on Sabbatical leave at Chung-Ang University.
K. Shin, S.-Y. Han, A. Gelbukh, J. Park. Advanced Relevance Feedback Query Expansion Strategy for Information Retrieval in MEDLINE. In: A. Sanfeliu, J. F. Martínez Trinidad, J. A. Carrasco Ochoa (Eds.) Progress in Pattern Recognition, Image Analysis and Applications (CIARP 2004). Lecture Notes in Computer Science, N 3287, Springer-Verlag, 2004, p. 425–431.
The vector space model has the advantage over the Boolean model (used currently in the search engine provided with MEDLINE) in that it provides relevance ranking of the documents: unlike the Boolean model which can only distinguish relevant documents from irrelevant ones, the vector space model can indicate that some documents are very relevant, others less relevant, etc. In the vector space model [8] the documents are represented as vectors with the coordinates usually proportional to the number of occurrences (term frequency) of
Advanced Relevance Feedback Query Expansion Strategy for Information Retrieval in MEDLINE
Kwangcheol Shin,1 Sang-Yong Han,1+ ቤተ መጻሕፍቲ ባይዱlexander Gelbukh,1,2* Jaehwa Park 1
School of Computer Science and Engineering, Chung-Ang University, 156-756, Seoul, Korea kcshin@archi.cse.cau.ac.kr, {hansy,jaehwa}@cau.ac.kr
1 2 Center for Computing Research, National Polytechnic Institute, Zacatenco 07738 DF, Mexico
2
2.1
Background
MEDLINE and MeSH
MEDLINE, a premier bibliography database of National Library of Medicine (NLM, ), covers the fields of medicine, nursing, dentistry, veterinary medicine, the health care system, the preclinical sciences, and some other areas of the life sciences. It contains bibliographic citations and author abstracts from over 4,600 journals published in the United States and in 70 foreign countries. It has approximately 12 million records dating back to 1966 [5]. MeSH is the acronym for Medical Subject Headings. It is the authority list of the vocabulary terms used for subject analysis of biomedical literature at NLM [6]. The MeSH controlled vocabulary, a distinctive feature of MEDLINE, is used for indexing journal articles. It imposes uniformity and consistency to the indexing of biomedical literature. MeSH is an extensive list of medical terminology. It has a well-formed hierarchical structure. MeSH includes major categories such as anatomy/body systems, organisms, diseases, chemicals and drugs, and medical equipment. Expert annotators of the NLM databases, based on indexed content of documents, assign subject headings to each document for the users to be able to effectively retrieve the information that explains the same concept with different terminology [5]. MeSH terms are subdivided into MeSH Major headings and MeSH Minor headings. MeSH Major headings are used to describe the primary content of the document, while MeSH Minor headings are used to describe its secondary content. On average, 5 to 15 subject headings are assigned per document, 3 to 4 of them being major headings [6]. To use the current MEDLINE search engine, users give their keywords as a query to the system. The system automatically converts such a query to a Boolean query and retrieves data from the MeSH field of the documents. The current system does not use the full text of the documents. 2.2 Vector Space Model