3.1不等关系与不等式
3.1.1不等关系与不等式
【分析】若要判断上述命题的真假,依据就是实数集 的基本性质和实数运算的符号法则及不等式的基本性质, 经过合理的逻辑推理即可判断.
【解析】(1)因为c的正、负或是否为零未知,因 而判断ac与bc的大小缺乏依据,故该命题是假命题. (2)由ac2>bc2,知c≠0,c2>0, ∴ 12 >0. 故该命题为真命题. (3)由
注意实际问题中关键性的文字语言与对应符号之间的正确转
换,这关系到能否正确地用不等式表示出不等关系. 常见的文字语言与数学符号之间的转换如下表:
ቤተ መጻሕፍቲ ባይዱ
文字 语言 大于
数学 符号 >
文字 语言
数学 符号 ≥
文字 语言 至多
数学 符号 ≤
文字 语言 不小于
数学 符号 ≥
大于 等于
小于 等于
小于
<
≤
至少
≥
不多于
3 2
当x=1时,x =x -x+1, 3 2 当x<1时,x <x -x+1.
例 4 比较(a+3)( a-5)与( a+2)(a-4) 的大小.
解: ∵ (a 3)(a 5) (a 2)(a 4)
(a 2 2a 15) (a 2 2a 8) 7 ∴ (a 3)(a 5) (a 2)(a 4) <0
-b的取值范围。
解:设9a-b=m(a-b)+n(4a-b) =(m+4n)a-(m+n)b, 令m+4n=9,-(m+n)=-1,解得, 5 8 m ,n 3 3 8 5 所以9a-b= (a-b)+ (4a-b) 3 3
由-4≤a-b≤-1,得
3.1不等关系与不等式(一)
生活中的不等关系:
实例1:某天的天气预报报道,最高气温 32℃,最低气温26℃.
实例2:对于数轴上任意不同的两点A、B, 若点A在点B的左边,则xA< xB. 实例3:若一个数是非负数,则这个数大 于或等于零.
生活中的不等关系:
实例4:两点之间线段最短.
实例5:三角形两边之和大于第三边,两 边之差小于第三边. 实例6:限速 40 km/h 的路标,指示司机 在前方路段行驶时,应使汽车速度 v 不超 过 40 km/h.
x 2.5 0.2 x 20 8 0.1
或 2.5 0.1n 8 0.2n 20
比较两种表示
例3 某钢铁厂要把长度为4000mm的钢管 截成500mm和600mm两种,按照生产的 要求,600mm钢管的数量不能超过500mm 钢管的3倍.怎样写出满足上述所有不等关 系的不等式呢?
3.1 不等关系与 不等式(一)
思考1:
回忆初中学过的不等式,比较“不 等关系”与“不等式”有何异同.
不等关系强调的是关系.用符号“<” “>” “≤” “≥ ”和“≠”表示. 不等式就是用不等号将两个代数式连结起 来所成的式子.如﹣7 <﹣5,3 + 4 > 1 + 4, 2x ≤ 6,a + 2 ≥ 0,3 ≠ 4,0 ≤ 5 等.
生活中的不等关系:
实例7:某品牌酸奶的质量检查规定,酸 奶中脂肪的含量 f 应不少于2.5%蛋白质 的含量 p 应不少于2.3%.
思考2:
如何用我们学过的知识来表示 这些不等关系?
应用示例
例1 设点A与平面的距离为d,B为 平面上的任意一点,则d ≤ |AB|.
例2 某种杂志原以每本2.5元的价格销售, 可以售出8万本.根据市场调若单价每提高 0.1元,销售量就可能相应减少2000本.若 把提价后杂志的定价设为 x 元,怎样用不 等式表示销售的总收入仍不低于20万元?
高中数学名师讲义:第三章 3.1 不等关系与不等式 Word版含答案
均值不等式[新知初探]1.均值定理 如果a ,b ∈R +当且仅当a =b 时,等号成立,以上结论通常称为均值不等式.对任意两个正实数a ,b ,数a +b2称为a ,b 的算术平均值(平均数),数ab 称为a ,b 的几何平均值(平均数).均值定理可叙述为:两个正实数的算术平均值大于或等于它的几何平均值.[点睛] (1)“a =b ”是a +b2≥ab 的等号成立的条件.若a ≠b ,则a +b2≠ab ,即a +b2>ab .(2)均值不等式a +b2≥ab 与a 2+b 2≥2ab 成立的条件不同,前者a >0,b >0,后者a ∈R ,b ∈R.2.利用均值不等式求最值(1)两个正数的积为常数时,它们的和有最小值; (2)两个正数的和为常数时,它们的积有最大值.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)对任意a ,b ∈R ,a 2+b 2≥2ab ,a +b ≥2ab 均成立( ) (2)若a ≠0,则a +4a≥2a ·4a=4( ) (3)若a >0,b >0,则ab ≤⎝⎛⎭⎪⎫a +b 22( )解析:(1)错误.任意a ,b ∈R ,有a 2+b 2≥2ab 成立,当a ,b 都为正数时,不等式a +b ≥2ab 成立.(2)错误.只有当a >0时,根据均值不等式,才有不等式a +4a≥2a ·4a=4成立. (3)正确.因为ab ≤a +b2,所以ab ≤⎝⎛⎭⎪⎫a +b 22.答案:(1)× (2)× (3)√2.已知f (x )=x +1x-2(x >0),则f (x )有( )A .最大值为0B .最小值为0C .最小值为-2D .最小值为2答案:B3.对于任意实数a ,b ,下列不等式一定成立的是( ) A .a +b ≥2ab B.a +b2≥abC .a 2+b 2≥2ab D.b a +a b≥2答案:C4.已知0<x <1,则函数y =x (1-x )的最大值是________. 答案:14[典例] (1)已知m =a +1a -2(a >2),n =22-b 2(b ≠0),则m ,n 之间的大小关系是( ) A .m >n B .m <n C .m =nD .不确定(2)若a>b>1,P=lg a·lg b,Q=12(lg a+lg b),R=lga+b2,则P,Q,R的大小关系是________.[解析] (1)因为a>2,所以a-2>0,又因为m=a+1a-2=(a-2)+1a-2+2,所以m ≥2a-1a-2+2=4,由b≠0,得b2≠0,所以2-b2<2,n=22-b2<4,综上可知m>n.(2)因为a>b>1,所以lg a>lg b>0,所以Q=12(lg a+lg b)>lg a·lg b=P;Q=12(lg a+lg b)=lg a+lg b=lg ab<lga+b2=R.所以P<Q<R.[答案] (1)A (2)P<Q<R[活学活用]已知a,b,c都是非负实数,试比较a2+b2+b2+c2+c2+a2与2(a+b+c)的大小.解:因为a2+b2≥2ab,所以2(a2+b2)≥(a+b)2,所以a2+b2≥22(a+b),同理b2+c2≥22(b+c), c2+a2≥22(c+a),所以a2+b2+b2+c2+c2+a2≥22[(a+b)+(b+c)+(c+a)],即a2+b2+b2+c2+c2+a2≥2(a+b+c),当且仅当a=b=c时,等号成立.[典例] 设a,b,c都是正数,求证:ab(a+b)+bc(b+c)+ca(c+a)≥6abc.[证明] 因为a,b,c都是正数,所以ab(a+b)+bc(b+c)+ca(c+a)=a2b+ab2+b2c+bc 2+c 2a +ca 2=(a 2b +bc 2)+(b 2c +ca 2)+(c 2a +ab 2)≥2a 2b 2c 2+2a 2b 2c 2+2a 2b 2c 2=6abc ,所以原不等式成立,当且仅当a =b =c 时,等号成立.[活学活用]已知a ,b ,c 为正实数, 且a +b +c =1,求证:⎝ ⎛⎭⎪⎫1a-1⎝ ⎛⎭⎪⎫1b-1⎝ ⎛⎭⎪⎫1c-1≥8.证明:因为a ,b ,c 为正实数,且a +b +c =1, 所以1a -1=1-a a =b +c a ≥2bca.同理,1b -1≥2ac b ,1c -1≥2ab c.上述三个不等式两边均为正,相乘得⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥2bc a ·2ac b ·2ab c =8,当且仅当a =b =c =13时,取等号.[典例] (1)(2)已知x >0,y >0,且2x +3y =6,求xy 的最大值. (3)已知x >0,y >0,1x +9y=1,求x +y 的最小值.[解] (1)由lg a +lg b =2可得lg ab =2, 即ab =100,且a >0,b >0,因此由均值不等式可得a +b ≥2ab =2100 =20, 当且仅当a =b =10时,a +b 取到最小值20. (2)∵x >0,y >0,2x +3y =6, ∴xy =16(2x ·3y )≤16·⎝ ⎛⎭⎪⎫2x +3y 22=16·⎝ ⎛⎭⎪⎫622=32, 当且仅当2x =3y ,即x =32,y =1时,xy 取到最大值32.(3)∵1x +9y=1,∴x +y =(x +y )·⎝ ⎛⎭⎪⎫1x +9y=1+9x y +y x +9=y x+9xy+10,又∵x >0,y >0, ∴y x +9xy+10≥2y x ·9xy+10=16, 当且仅当y x=9xy,即y =3x 时,等号成立. 由⎩⎪⎨⎪⎧y =3x ,1x +9y=1,得⎩⎪⎨⎪⎧x =4,y =12,即当x =4,y =12时,x +y 取得最小值16.[活学活用]1.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( )A .8B .7C .6D .5解析:选 C 由已知,可得6⎝ ⎛⎭⎪⎫2a +1b =1,∴2a +b =6⎝ ⎛⎭⎪⎫2a +1b ·(2a +b )=6⎝⎛⎭⎪⎫5+2a b+2b a≥6×(5+4)=54,当且仅当2ab=2ba时等号成立,∴9m≤54,即m≤6,故选C.2.若x>0,y>0,且x+4y=1,则xy的最大值为________.解析:1=x+4y≥24xy=4xy,∴xy≤116,当且仅当x=4y=12时等号成立.答案:1 16[典例] 某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:(1)仓库面积S的最大允许值是多少?(2)为使S达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?[解] (1)设铁栅长为x米,一堵砖墙长为y米,而顶部面积为S=xy,依题意得,40x +2×45y+20xy=3 200,由均值不等式得3 200≥240x×90y+20xy=120xy+20xy,=120S+20S.所以S+6S-160≤0,即(S-10)(S+16)≤0,故S≤10,从而S≤100,所以S的最大允许值是100平方米,(2)取得最大值的条件是40x=90y且xy=100,求得x=15,即铁栅的长是15米.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N +),求当每台机器运转多少年时,年平均利润最大,最大值是多少.解:每台机器运转x 年的年平均利润为y x=18-⎝ ⎛⎭⎪⎫x +25x ,而x >0,故y x≤18-225=8,当且仅当x =5时等号成立,此时年平均利润最大,最大值为8万元. 故当每台机器运转5年时,年平均利润最大,最大值为8万元.层级一 学业水平达标1.下列结论正确的是( )A .当x >0且x ≠1时,lg x +1lg x ≥2B .当x >0时,x +1x≥2C .当x ≥2时,x +1x的最小值为2D .当0<x ≤2时,x -1x无最大值解析:选B A 中,当0<x <1时,lg x <0,lg x +1lg x≥2不成立;由均值不等式知B 正确;C 中,由对勾函数的单调性,知x +1x 的最小值为52;D 中,由函数f (x )=x -1x 在区间(0,2]上单调递增,知x -1x 的最大值为32,故选B.2.下列各式中,对任何实数x 都成立的一个式子是( ) A .lg(x 2+1)≥lg(2x ) B .x 2+1>2x C.1x 2+1≤1 D .x +1x≥2解析:选C 对于A ,当x ≤0时,无意义,故A 不恒成立;对于B ,当x =1时,x 2+1=2x ,故B 不成立;对于D ,当x <0时,不成立.对于C ,x 2+1≥1,∴1x 2+1≤1成立.故选C. 3.设a ,b 为正数,且a +b ≤4,则下列各式中正确的一个是( ) A.1a +1b <1B.1a +1b ≥1C.1a +1b<2 D.1a +1b≥2解析:选B 因为ab ≤⎝⎛⎭⎪⎫a +b 22≤⎝ ⎛⎭⎪⎫422=4,所以1a +1b ≥21ab≥214=1. 4.四个不相等的正数a ,b ,c ,d 成等差数列,则( ) A.a +d2>bc B.a +d2<bc C.a +d2=bcD.a +d2≤bc解析:选A 因为a ,b ,c ,d 成等差数列,则a +d =b +c ,又因为a ,b ,c ,d 均大于0且不相等,所以b +c >2bc ,故a +d2>bc .5.若x >0,y >0,且2x +8y=1,则xy 有( )A .最大值64B .最小值164C .最小值12D .最小值64解析:选D 由题意xy =⎝ ⎛⎭⎪⎫2x +8y xy =2y +8x ≥22y ·8x =8xy ,∴xy ≥8,即xy 有最小值64,等号成立的条件是x =4,y =16.6.若a >0,b >0,且1a +1b=ab ,则a 3+b 3的最小值为________.解析:∵a >0,b >0,∴ab =1a +1b ≥21ab,即ab ≥2,当且仅当a =b =2时取等号,∴a 3+b 3≥2ab3≥223=42,当且仅当a =b =2时取等号,则a 3+b 3的最小值为4 2.答案:4 27.已知0<x <1,则x (3-3x )取得最大值时x 的值为________.解析:由x (3-3x )=13×3x (3-3x )≤13×⎝ ⎛⎭⎪⎫3x +3-3x 22=34,当且仅当3x =3-3x ,即x =12时等号成立. 答案:128.若对任意x >0,xx 2+3x +1≤a 恒成立,则a 的取值范围是________.解析:因为x >0,所以x +1x≥2.当且仅当x =1时取等号,所以有x x 2+3x +1=1x +1x+3≤12+3=15,即x x 2+3x +1的最大值为15,故a ≥15.答案:⎣⎢⎡⎭⎪⎫15,+∞9.(1)已知x <3,求f (x )=4x -3+x 的最大值; (2)已知x ,y 是正实数,且x +y =4,求1x +3y的最小值.解:(1)∵x <3, ∴x -3<0, ∴f (x )=4x -3+x =4x -3+(x -3)+3 =-⎣⎢⎡⎦⎥⎤43-x+-x +3≤-243-x-x +3=-1,当且仅当43-x =3-x ,即x =1时取等号, ∴f (x )的最大值为-1. (2)∵x ,y 是正实数,∴(x +y )⎝ ⎛⎭⎪⎫1x +3y =4+⎝ ⎛⎭⎪⎫y x +3x y ≥4+2 3.当且仅当y x=3xy,即x =2(3-1),y =2(3-3)时取“=”号. 又x +y =4, ∴1x +3y ≥1+32, 故1x +3y 的最小值为1+32. 10.设a ,b ,c 都是正数,试证明不等式:b +c a +c +a b +a +bc≥6. 证明:因为a >0,b >0,c >0, 所以b a +ab ≥2,c a +a c ≥2,b c +c b≥2,所以⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫b c +c b ≥6,当且仅当b a =a b ,c a =a c ,c b =b c, 即a =b =c 时,等号成立. 所以b +c a +c +a b +a +bc≥6. 层级二 应试能力达标1.a ,b ∈R ,则a 2+b 2与2|ab |的大小关系是( ) A .a 2+b 2≥2|ab | B .a 2+b 2=2|ab | C .a 2+b 2≤2|ab |D .a 2+b 2>2|ab |解析:选A ∵a 2+b 2-2|ab |=(|a |-|b |)2≥0,∴a 2+b 2≥2|ab |(当且仅当|a |=|b |时,等号成立).2.已知实数a ,b ,c 满足条件a >b >c 且a +b +c =0,abc >0,则1a +1b +1c的值( )A .一定是正数B .一定是负数C .可能是0D .正负不确定解析:选B 因为a >b >c 且a +b +c =0,abc >0,所以a >0,b <0,c <0,且a =-(b +c ), 所以1a +1b +1c =-1b +c +1b +1c ,因为b <0,c <0,所以b +c ≤-2bc , 所以-1b +c ≤12bc ,又1b +1c ≤-21bc, 所以-1b +c +1b +1c ≤12bc-21bc=-32bc<0,故选B.3.已知x >0,y >0,x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,则a +b2cd的最小值为( )A .0B .1C .2D .4解析:选 D 由题意,知⎩⎪⎨⎪⎧a +b =x +y ,cd =xy ,所以a +b2cd=x +y 2xy=x 2+y 2+2xy xy=x 2+y 2xy+2≥2+2=4,当且仅当x =y 时,等号成立. 4.设a ,b 是实数,且a +b =3,则2a+2b的最小值是( ) A .6B .4 2C .2 6D .8解析:选B ∵a ,b 是实数,∴2a>0,2b>0, 于是2a+2b≥2 2a·2b=2 2a +b=223=42,当且仅当a =b =32时取得最小值4 2.5.当x >1时,不等式x +1x -1≥a 恒成立,则实数a 的最大值为________. 解析:x +1x -1≥a 恒成立⇔⎝ ⎛⎭⎪⎫x +1x -1min ≥a ,∵x >1,即x -1>0, ∴x +1x -1=x -1+1x -1+1≥2x -1x -1+1=3, 当且仅当x -1=1x -1,即x =2时,等号成立. ∴a ≤3,即a 的最大值为3. 答案:36.若正数a ,b 满足a +b =1,则13a +2+13b +2的最小值为________. 解析:由a +b =1,知13a +2+13b +2=3b +2+3a +2a +b +=79ab +10,又ab ≤⎝ ⎛⎭⎪⎫a +b 22=14(当且仅当a =b =12时等号成立),∴9ab +10≤494,∴79ab +10≥47. 答案:477.某厂家拟在2016年举行某产品的促销活动,经调查,该产品的年销售量(即该产品的年产量)x (单位:万件)与年促销费用m (m ≥0)(单位:万元)满足x =3-km +1(k 为常数),如果不举行促销活动,该产品的年销售量是1万件.已知2016年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).(1)将2016年该产品的利润y (单位:万元)表示为年促销费用m 的函数; (2)该厂家2016年的促销费用为多少万元时,厂家的利润最大?解:(1)由题意,可知当m =0时,x =1,∴1=3-k ,解得k =2,∴x =3-2m +1, 又每件产品的销售价格为1.5×8+16xx元,∴y =x ⎝⎛⎭⎪⎫1.5×8+16x x-(8+16x +m )=4+8x -m=4+8⎝⎛⎭⎪⎫3-2m +1-m =-⎣⎢⎡⎦⎥⎤16m +1+m ++29(m ≥0). (2)∵m ≥0,16m +1+(m +1)≥216=8,当且仅当16m +1=m +1,即m =3时等号成立, ∴y ≤-8+29=21,∴y max =21.故该厂家2016年的促销费用为3万元时,厂家的利润最大,最大利润为21万元.8.已知k >16,若对任意正数x ,y ,不等式⎝ ⎛⎭⎪⎫3k -12x +ky ≥2xy 恒成立,求实数k 的最小值.解:∵x >0,y >0,∴不等式⎝ ⎛⎭⎪⎫3k -12x +ky ≥2xy 恒成立等价于⎝ ⎛⎭⎪⎫3k -12x y +k y x ≥2恒成立.又k >16, ∴⎝ ⎛⎭⎪⎫3k -12xy+k y x≥2k ⎝⎛⎭⎪⎫3k -12,∴2k ⎝⎛⎭⎪⎫3k -12≥2,解得k ≤-13(舍去)或k ≥12,∴k min =12.。
3.1不等关系与不等式
3.1不等关系与不等式1.用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题;2.理解不等式(组)对于刻画不等关系的意义和价值;一、新课导学※探索新知现实世界和日常生活中,既有相等关系,又存在着大量的不等关系,如:1、今天的天气预报说:明天早晨最低温度为14℃,明天白天的最高温度23℃;2、三角形ABC的两边之和大于第三边;3、a是一个非负实数。
4、右图是限速40km/h的路标,指示司机在前方路段行驶时,应使汽车的速度v不超过40km/h ,写成不等式是:_________5、某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%,用不等式可以表示为:()A. f≥2.5%或p≥2.3%B.f≥2.5%且p≥2.3%1.不等式的定义:2.2≥2,这样写正确吗?“≥“的含义是什么?a≥b、a≤b表示什么?题型1.建立不等关系例1 某钢铁厂要把长度为4000mm的钢管截成500mm和600mm两种,按照生产的要求,600mm钢管的数量不能超过500mm钢管的3倍。
怎样写出满足上述所有不等关系的不等式呢?【解题思路】设出变量,将文字语言转化为数学符号.4吨、硝酸盐18吨;生产1车皮乙种肥料需要的主要原料是磷酸盐1吨、硝酸盐15吨。
现有库存磷酸盐10吨、硝酸盐66吨,在此基础上进行生产。
请用不等式组把此实例中的不等关系表示出来。
题型2:比较法两个数的大小3.4.数轴上两点A、B有怎样的位置关系?两实数有怎样的大小关系?点的关系:数的关系:5.如何比较两数大小①作差法a b>a b=a b<②作商法: ;a b?.a b?如果p qÞ,同时pq⇒,则记为。
例2.比较x2-x和 x-2的大小变式:比较a mb m++与ab(其中0b a>>,0m>)的大小不等式的性质性质1:如果a>b,那么b<a;如果b<a,那么a>b.性质1表明,把不等式的左边和右边交换位置,所得不等式与原不等式异向,我们把这种性质称为不等式的对称性。
3.1不等关系与不等式(二)
(5) a b, c 0 ac bc ;
a b, c 0 ac bc
(6) a b 0, c d 0 ac bd
(7) a b 0, n N , n 1
a b , a
n n n n
*
b
(8) a b 0 a b 0 a0b
3 成立的有________个.
练习:
5. 若a、b、c∈R,a>b,则下列不等式 成立的是 ( C )
A. C. 1 a a c 1
2
1 b b c 1
2
B. a b
2
2
D. a c b c
练习:
6. 若、 满足 的取值范围是(
2
2
, 则
A. b a C. a b1 a 1 1 b b 1 a B. a D. 1 a 2a b a 2b a b b 1 b
练习:
4. 有以下四个条件: (1) b>0>a; (2) 0>a>b; (3) a>0>b; (4) a>b>0.
其中能使
1 a
1 b
1 b 1 b 1 a
1 a 1 a
0 0 1 b
0
讲解范例:
c c 例1. 已知 a b 0, c 0, 求证: . a b
讲解范例:
例2. 如果30<x<42,16<y<24,
求x+y,x-2y及
x y
的取值范围.
讲解范例:
例3. 已知
2
2
基本性质1 不等式两边都加上(或减去)同 一个数或同一个整式,不等号的方向不变.
3.1不等关系与不等式(两课时)
500x 600y 4000
y 3x
x≥0,y≥0 上面三个不等关系,是“且”的关系,要同时满足的话, 用不等式组表示为:
数学应用
问题3.某钢铁厂要把长度为4000mm的钢管截成 500mm和600mm的两种规格。按照生产的要求, 600mm的钢管的数量不能超过500mm钢管的3倍, 写出满足上述所有不等关系的不等式.
数学应用
问题1:设点A与平面α的距离为d, B为平面α上任意一点,则
d与线段AB的关系?
A
d≤|AB|
d
B
数学应用
问题2.某种杂志原以每本2.5元的价格销售,可以 售出8万本。据市场调查,若单价每提高0.1元销售 量就可能相应减少2000本。若把提价后杂志的定价 设为x元,怎样用不等式表示销售的总收入仍不低 于20万元呢?
∴
(a b) (b c) 0
ac 0
∴
ac
由定理1,定理2可以表示为如果
c b且b a
那么
ca
不等式的性质
性质3.如果
a b,那么 a c b c
不等式的可加性
(即a b a c b c)
证明: ∵
∴
(a c) (b c) a b 0
证明:ac-bc=( a-b )c 因为 a >b 所以 a-b>0, 根据同号相乘得正,异号相乘得负,得 当c>0时,(a-b)c>0, 即 ac>bc 当c<0 时,(a-b)c<0, 即 ac<bc
不等式的性质
性质5: 如果
a b 且 c d ,那么
ac bd
不等式的同向可加性
高中数学第3章不等式3.1.1不等关系与不等式3.1.2不等式的性质新人教B版必修5
2.设 M=x2,N=-x-1,则 M 与 N 的大小关系是( )
A.M>N
B.M=N
C.M<N
D.与 x 有关
A [M-N=x2-(-x-1)=x2+x+1=x+122+34>0,故 M>N.]
a>b,b>c⇒_a_>_c_
性质 3(可加性)
a>b⇒_a_+__c_>_b_+__c_
推论 1 性质 3
推论 2
a+b>c⇒_a_>__c_-__b__ a>b,c>d⇒_a_+__c_>__b_+__d_
性质 4(可乘性) a>b,c>0⇒_a_c_>__b_c_;a>b,c<0⇒_a_c_<__b_c_
2.由-6<a<8,-4<b<2,两边分别相减得-2<a-b<6,你认为 正确吗?
[提示] 不正确.因为同向不等式具有可加性与可乘性.但不能 相减或相除,解题时要充分利用条件,运用不等式的性质进行等价变 形,而不可随意“创造”性质.
3.你知道下面的推理、变形错在哪吗? ∵2<a-b<4, ∴-4<b-a<-2. 又∵-2<a+b<2, ∴0<a<3,-3<b<0, ∴-3<a+b<3. 这怎么与-2<a+b<2 矛盾了呢?
1.利用不等式的性质证明不等式注意事项 (1)利用不等式的性质及其推论可以证明一些不等式.解决此类问 题一定要在理解的基础上, 记准、记熟不等式的性质并注意在解题 中灵活准确地加以应用. (2)应用不等式的性质进行推导时,应注意紧扣不等式的性质成立 的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则.
高二数学不等关系与不等式
的简报中医师名录听者莫不撕小纸片记录……。彷佛太平盛世就应该这样,每件事都跟昨天、前天没什么差别。一位迟到妈妈拉著尚未换穿球衣、头发睡歪一边的儿子小跑步而来,手上还捧著纸碗装蚵仔面线,由於限塑政策推行彻底,一支小汤匙只好含在嘴里,就这么快快快抵达树荫下,
立刻有几只妈妈手围上来替男孩剥衣换服下一秒钟他就像走出电话亭的超人,直接上场了。 ? 唉,在太平盛世的范围,早起算是相当痛苦的。 ? 你坐在布满粉紫草花的草地上,看这浮世一角看得趣味盎然,甚至还不想打开手中诗集。你不禁想,浮生之所以有趣,在於允许你隐身於安全
一粒吃又揣了一粒在口袋,再将它放回原处,装作啥事都不知晓。过不了几日,便会听到她的抱怨:“半包软糖仔那是你们阿姑买给我的,放在棉被堆里也给你们偷拿去呷。看看,剩三粒,比日本仔还野!夭鬼囡仔,我藏到无路啰!--喏,敏嫃,剩这粒给你。”
?我
的确是特权了,可以分享到阿嬷的卷仔饼,及她那个年代的甜处。于是,公事包里常常有些奇怪的东西:五条卷仔饼、一把纽仔饼、六粒龙眼球、两块爆米香、一块红龟仔果......我便拿着去普渡众生,遇到谁就给谁。回到家,阿嬷还要问食后心得:“好呷莫?”我说:“马马虎虎啦,
气息。扑蝶事件将成为他生命中的奇异点,此後因不断被引述、传诵而有了亮度。浮生甚暖,一陌生男孩抓到奇异光点时,你正好在现场。 ? 中场休息。孩子奔来,肥鸭们赶忙递水、擦汗、喂面包、抹驱蚊膏。你打开波兰女诗人辛波丝卡诗集,阳光捆著你的眼眸放在〈越南〉那页: ?
妇人,你叫什么名字?── 我不知道。 ? 你生於何时,来自何处?──我不知道。 ? 你为什么在地上挖洞?──我不知道。 ? 你在这里多久?」──我不知道。 ? 你看著树荫下十多个家庭的寻常早晨,相信太平盛世里所有的缺口都有办法弥补,即使「挖洞」这讨人厌的事,也能找
高中数学新人教A版必修5第三章 3.1 不等关系与不等式
不等关系与不等式预习课本P72~74,思考并完成以下问题 (1)如何用不等式(组)来表示不等关系?(2)比较两数(或式)的大小有哪些常用的方法?(3)不等式的性质有哪几条?[新知初探]1.不等式的概念我们用数学符号“≠”、“>”、“<”、“≥”、“≤”连接两个数或代数式,以表示它们之间的不等关系.含有这些不等号的式子叫做不等式.2.比较两个实数a ,b 大小的依据3.不等式的性质 (1)对称性:a >b ⇔b <a ; (2)传递性:a >b ,b >c ⇒a >c ; (3)可加性:a >b ⇒a +c >b +c ; 推论(同向可加性):⎭⎬⎫a >bc >d ⇒a +c >b +d ;(4)可乘性:⎭⎬⎫a >b c >0⇒ac >bc ;⎭⎬⎫a >bc <0⇒ac <bc ; 推论(同向同正可乘性):⎭⎬⎫a >b >0c >d >0⇒ac >bd ;(5)正数乘方性:a >b >0⇒a n >b n (n ∈N *,n ≥1); (6)正数开方性:a >b >0⇒n a >nb (n ∈N *,n ≥2).[点睛] (1)在应用不等式时,一定要搞清它们成立的前提条件.不可强化或弱化成立的条件.(2)要注意“箭头”是单向的还是双向的,也就是说每条性质是否具有可逆性.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)不等式x ≥2的含义是指x 不小于2( )(2)若a <b 或a =b 之中有一个正确,则a ≤b 正确( ) (3)若a >b ,则ac >bc 一定成立( ) (4)若a +c >b +d ,则a >b ,c >d ( )解析:(1)正确.不等式x ≥2表示x >2或x =2,即x 不小于2,故此说法是正确的. (2)正确.不等式a ≤b 表示a <b 或a =b .故若a <b 或a =b 中有一个正确,则a ≤b 一定正确.(3)错误.由不等式的可乘性知,当不等式两端同乘以一个正数时,不等号方向不变,因此由a >b ,则ac >bc 不一定成立,故此说法是错误的.(4)错误.取a =4,c =5,b =6,d =2,满足a +c >b +d ,但不满足a >b ,故此说法错误.答案:(1)√ (2)√ (3)× (4)×2.已知a +b >0,b <0,那么a ,b ,-a ,-b 的大小关系是( ) A .a >b >-b >-a B .a >-b >-a >b C .a >-b >b >-aD .a >b >-a >-b解析:选C 法一:∵A 、B 、C 、D 四个选项中,每个选项都是唯一确定的答案,∴可用特殊值法.令a =2,b =-1,则有2>-(-1)>-1>-2, 即a >-b >b >-a .法二:∵a +b >0,b <0,∴a >-b >0,-a <b <0, ∴a >-b >0>b >-a ,即a >-b >b >-a .3.设a ,b 是非零实数,若a <b ,则下列不等式成立的是( )A .a 2<b 2B .ab 2<a 2bC.1ab 2<1a 2bD.b a <a b解析:选C 因为a <b ,故b -a >0, 所以1a 2b -1ab 2=b -a a 2b 2>0,故1a 2b >1ab 2. 4.当m >1时,m 3与m 2-m +1的大小关系为________. 解析:∵m 3-(m 2-m +1)=m 3-m 2+m -1=m 2(m -1)+(m -1) =(m -1)(m 2+1).又∵m >1,故(m -1)(m 2+1)>0. 答案:m 3>m 2-m + 1用不等式(组)表示不等关系[典例] 某家电生产企业计划在每周工时不超过40 h 的情况下,生产空调、彩电、冰箱共120台,且冰箱至少生产20台.已知生产这些家电产品每台所需工时如下表:家电名称 空调 彩电 冰箱 工时(h)121314若每周生产空调x [解] 由题意,知x ≥0,y ≥0,每周生产冰箱(120-x -y )台.因为每周所用工时不超过40 h ,所以12x +13y +14(120-x -y )≤40,即3x +y ≤120;又每周至少生产冰箱20台, 所以120-x -y ≥20,即x +y ≤100. 所以满足题意的不等式组为⎩⎪⎨⎪⎧3x +y ≤120,x +y ≤100,x ≥0,x ∈N *,y ≥0,y ∈N *.1.将不等关系表示成不等式的思路 (1)读懂题意,找准不等式所联系的量.(2)用适当的不等号连接. (3)多个不等关系用不等式组表示.2.用不等式(组)表示不等关系时应注意的问题在用不等式(组)表示不等关系时,应注意必须是具有相同性质,可以进行比较时,才可用,没有可比性的两个(或几个)量之间不能用不等式(组)来表示.[活学活用]1.雷电的温度大约是28 000 ℃,比太阳表面温度的4.5倍还要高.设太阳表面温度为t ℃,那么t 应满足的关系式是________.解析:由题意得,太阳表面温度的4.5倍小于雷电的温度,即4.5t <28 000. 答案:4.5t <28 0002.一辆汽车原来每天行驶x km ,如果该汽车每天行驶的路程比原来多19 km ,那么在8天内它的行程将超过2 200 km ,用不等式表示为________.解析:因为该汽车每天行驶的路程比原来多19 km ,所以汽车每天行驶的路程为(x +19)km ,则在8天内它的行程为8(x +19)km ,因此,不等关系“在8天内它的行程将超过2 200 km ”可以用不等式8(x +19)>2 200来表示.答案:8(x +19)>2 200不等式的性质[典例] (1)已知b <2a,3d <c ,则下列不等式一定成立的是( ) A .2a -c >b -3d B .2ac >3bd C .2a +c >b +3dD .2a +3d >b +c(2)下列说法不正确的是( ) A .若a ∈R ,则(a 2+2a -1)3>(a -2)3 B .若a ∈R ,则(a -1)4>(a -2)4 C .若0<a <b ,则⎝⎛⎭⎫13a >⎝⎛⎭⎫13bD .若0<a <b ,则a 3<b 3[解析] (1)由于b <2a,3d <c ,则由不等式的性质得b +3d <2a +c ,故选C.(2)对于A ,因为(a 2+2a -1)-(a -2)=a 2+a +1=⎝⎛⎭⎫a +122+34>0,所以a 2+2a -1>a -2,则(a 2+2a -1)3>(a -2)3,故A 选项说法正确;对于B ,当a =1时,(a -1)4=0,(a -2)4=1,所以(a -1)4>(a -2)4不成立;对于C 和D ,因为0<a <b ,所以由指数函数与幂函数的性质知C 、D 选项说法正确,故选B.[答案] (1)C (2)B1.利用不等式判断正误的2种方法(1)直接法:对于说法正确的,要利用不等式的相关性质或函数的相关性质证明;对于说法错误的只需举出一个反例即可.(2)特殊值法:注意取值一定要遵循三个原则:一是满足题设条件;二是取值要简单,便于验证计算;三是所取的值要有代表性.2.利用不等式的性质证明不等式注意事项(1)利用不等式的性质及其推论可以证明一些不等式.解决此类问题一定要在理解的基础上,记准、记熟不等式的性质并注意在解题中灵活准确地加以应用.(2)应用不等式的性质进行推导时,应注意紧扣不等式的性质成立的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则.[活学活用]1.已知a >b >c ,且a +b +c =0,则下列不等式恒成立的是( ) A .ab >bc B .ac >bc C .ab >acD .a |b |>|b |c解析:选C 因为a >b >c ,且a +b +c =0,所以a >0,c <0,所以ab >ac . 2.若a >b >0,c <d <0,e <0,求证:e (a -c )2>e(b -d )2. 证明:∵c <d <0,∴-c >-d >0.又a >b >0,∴a -c >b -d >0,则(a -c )2>(b -d )2>0,即1(a -c )2<1(b -d )2. 又e <0,∴e (a -c )2>e(b -d )2.数式的大小比较[典例] (1)已知x <1,比较x 3-1与2x 2-2x 的大小; (2)已知a >0,试比较a 与1a 的大小. [解] (1)(x 3-1)-(2x 2-2x ) =(x -1)(x 2+x +1)-2x (x -1) =(x -1)(x 2-x +1)=(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34.∵x <1,∴x -1<0.又⎝⎛⎭⎫x -122+34>0, ∴(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34<0. ∴x 3-1<2x 2-2x .(2)因为a -1a =a 2-1a =(a -1)(a +1)a, 因为a >0,所以当a >1时,(a -1)(a +1)a >0,有a >1a ;当a =1时,(a -1)(a +1)a =0,有a =1a ; 当0<a <1时,(a -1)(a +1)a <0,有a <1a .综上,当a >1时,a >1a ; 当a =1时,a =1a ; 当0<a <1时,a <1a .1.作差法比较两个数大小的步骤及变形方法 (1)作差法比较的步骤:作差→变形→定号→结论.(2)变形的方法:①因式分解;②配方;③通分;④对数与指数的运算性质;⑤分母或分子有理化;⑥分类讨论.2.作商法比较大小的步骤及适用范围 (1)作商法比较大小的三个步骤. ①作商变形; ②与1比较大小; ③得出结论.(2)作商法比较大小的适用范围. ①要比较的两个数同号;②比较“幂、指数、对数、含绝对值”的两个数的大小时,常用作商法. [活学活用]若m >2,比较m m 与2m 的大小.解:因为m m 2m =⎝⎛⎭⎫m 2m ,又因为m >2,所以m 2>1,所以⎝⎛⎭⎫m 2m >⎝⎛⎭⎫m 20=1,所以m m >2m.用不等式性质求解取值范围 [典例] 已知1<a <4,2<b <8,试求2a +3b 与a -b 的取值范围. [解] ∵1<a <4,2<b <8,∴2<2a <8,6<3b <24. ∴8<2a +3b <32.∵2<b <8,∴-8<-b <-2.又∵1<a <4,∴1+(-8)<a +(-b )<4+(-2), 即-7<a -b <2.故2a +3b 的取值范围是(8,32),a -b 的取值范围是(-7,2).同向不等式具有可加性与可乘性,但是不能相减或相除,应用时,要充分利用所给条件进行适当变形来求范围,注意变形的等价性.1.在本例条件下,求ab 的取值范围. 解:∵2<b <8,∴18<1b <12,而1<a <4,∴1×18<a ·1b <4×12,即18<a b <2.故ab 的取值范围是⎝⎛⎭⎫18,2.不等式两边同乘以一个正数,不等号方向不变,同乘以一个负数,不等号方向改变,求解中,应明确所乘数的正负.2.已知-6<a <8,2<b <3,求ab 的取值范围. 解:∵-6<a <8,2<b <3. ∴13<1b <12, ①当0≤a <8时,0≤ab <4;②当-6<a <0时,-3<ab <0. 由①②得:-3<ab <4.故ab的取值范围为(-3,4). 利用不等式性质求范围,应注意减少不等式使用次数. 3.已知-1≤a +b ≤1,1≤a -2b ≤3,求a +3b 的取值范围.解:设a +3b =λ1(a +b )+λ2(a -2b )=(λ1+λ2)a +(λ1-2λ2)b ,解得λ1=53,λ2=-23.又-53≤53(a +b )≤53,-2≤-23(a -2b )≤-23,所以-113≤a +3b ≤1.故a +3b 的取值范围为⎣⎡⎦⎤-113,1.层级一 学业水平达标1.李辉准备用自己节省的零花钱买一台学习机,他现在已存60元.计划从现在起以后每个月节省30元,直到他至少有400元.设x 个月后他至少有400元,则可以用于计算所需要的月数x 的不等式是( )A .30x -60≥400B .30x +60≥400C .30x -60≤400D .30x +40≤400解析:选B x 月后他至少有400元,可表示成30x +60≥400. 2.若abcd <0,且a >0,b >c ,d <0,则( ) A .b <0,c <0 B .b >0,c >0 C .b >0,c <0D .0<c <b 或c <b <0解析:选D 由a >0,d <0,且abcd <0,知bc >0, 又∵b >c ,∴0<c <b 或c <b <0.3.已知:a ,b ,c ,d ∈R ,则下列命题中必成立的是( ) A .若a >b ,c >b ,则a >c B .若a >-b ,则c -a <c +b C .若a >b ,c <d ,则a c >bdD .若a 2>b 2,则-a <-b解析:选B 选项A ,若a =4,b =2,c =5,显然不成立,选项C 不满足倒数不等式的条件,如a >b >0,c <0<d 时,不成立;选项D 只有a >b >0时才可以.否则如a =-1,b =0时不成立,故选B.4.设α∈⎝⎛⎭⎫0,π2,β∈⎣⎡⎦⎤0,π2,则2α-β3的范围是( ) A.⎝⎛⎭⎫0,56π B.⎝⎛⎭⎫-π6,56π C.()0,πD.⎝⎛⎭⎫-π6,π 解析:选D 0<2α<π,0≤β3≤π6,∴-π6≤-β3≤0,由同向不等式相加得到-π6<2α-β3<π.5.已知M =2x +1,N =11+x 2,则M ,N 的大小关系为( )A .M >NB .M <NC .M =ND .不确定解析:选A ∵2x >0,∴M =2x +1>1,而x 2+1≥1, ∴11+x 2≤1,∴M >N ,故选A. 6.某校高一年级的213名同学去科技馆参观,租用了某公交公司的x 辆公共汽车.如果每辆车坐30人,则最后一辆车不空也不满.则题目中所包含的不等关系为________.解析:根据题意得:⎩⎪⎨⎪⎧30(x -1)<213,30x >213.答案:⎩⎪⎨⎪⎧30(x -1)<213,30x >2137.比较大小:a 2+b 2+c 2________2(a +b +c )-4. 解析:a 2+b 2+c 2-[2(a +b +c )-4] =a 2+b 2+c 2-2a -2b -2c +4=(a -1)2+(b -1)2+(c -1)2+1≥1>0, 故a 2+b 2+c 2>2(a +b +c )-4. 答案:>8.已知-1≤x +y ≤4,且2≤x -y ≤3,则z =2x -3y 的取值范围是________(用区间表示).解析:∵z =-12(x +y )+52(x -y ),-2≤-12(x +y )≤12,5≤52(x -y )≤152,∴3≤-12(x +y )+52(x -y )≤8,∴z 的取值范围是[3,8]. 答案:[3,8]9.两种药片的有效成分如下表所示:应满足怎样的不等关系?用不等式的形式表示出来.解:设提供A 药片x 片,B 药片y 片,由题意可得:⎩⎪⎨⎪⎧2x +y ≥12,5x +7y ≥70,x+6y ≥28,x ≥0,x ∈N ,y ≥0,y ∈N.10.(1)若a <b <0,求证:b a <a b ; (2)已知a >b ,1a <1b,求证:ab >0.证明:(1)由于b a -a b =b 2-a 2ab =(b +a )(b -a )ab, ∵a <b <0,∴b +a <0,b -a >0,ab >0, ∴(b +a )(b -a )ab <0,故b a <ab.(2)∵1a <1b ,∴1a -1b<0,即b -aab <0,而a >b ,∴b -a <0,∴ab >0.层级二 应试能力达标1.若x ∈R ,y ∈R ,则( ) A .x 2+y 2>2xy -1 B .x 2+y 2=2xy -1 C .x 2+y 2<2xy -1D .x 2+y 2≤2xy -1解析:选A 因为x 2+y 2-(2xy -1)=x 2-2xy +y 2+1=(x -y )2+1>0,所以x 2+y 2>2xy -1,故选A.2.已知a 1∈(0,1),a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =ND .M ≥N解析:选B ∵a 1∈(0,1),a 2∈(0,1),∴-1<a 1-1<0,-1<a 2-1<0,∴M -N =a 1a 2-(a 1+a 2-1)=a 1a 2-a 1-a 2+1=a 1(a 2-1)-(a 2-1)=(a 1-1)(a 2-1)>0,∴M >N ,故选B.3.若-1<α<β<1,则下列各式中恒成立的是( ) A .-2<α-β<0 B .-2<α-β<-1 C .-1<α-β<0D .-1<α-β<1解析:选A 由-1<α<1,-1<β<1,得-1<-β<1, ∴-2<α-β<2.又∵α<β,故知-2<α-β<0.4.某厂技术科组织工人参加某项技能测试,某职工参加完测试后对自己的成绩进行了如下估计:理论考试成绩x 超过85分,技能操作成绩y 不低于90分,答辩面试成绩z 高于95分,用不等式组表示为( )A.⎩⎪⎨⎪⎧ x >85y ≥90z ≥95B.⎩⎪⎨⎪⎧ x ≥85y >90z >95C.⎩⎪⎨⎪⎧ x >85y ≥90z >95D.⎩⎪⎨⎪⎧x ≥85y >90z ≥95 解析:选C x 超过85分表示为x >85,y 不低于90分表示为y ≥90,z 高于95分,表示为z >95,故选C.5.已知|a |<1,则11+a与1-a 的大小关系为________. 解析:由|a |<1,得-1<a <1.∴1+a >0,1-a >0.即11+a 1-a =11-a 2∵0<1-a 2≤1,∴11-a 2≥1, ∴11+a≥1-a . 答案:11+a ≥1-a 6.设a ,b 为正实数,有下列命题:①若a 2-b 2=1,则a -b <1;②若1b -1a=1,则a -b <1; ③若|a -b |=1,则|a -b |<1;④若|a 3-b 3|=1,则|a -b |<1.其中正确的命题为________(写出所有正确命题的序号).解析:对于①,由题意a ,b 为正实数,则a 2-b 2=1⇒a -b =1a +b⇒a -b >0⇒a >b >0,故a +b >a -b >0.若a -b ≥1,则1a +b≥1⇒a +b ≤1≤a -b ,这与a +b >a -b >0矛盾,故a -b <1成立.对于②,取特殊值,a =3,b =34,则a -b >1. 对于③,取特殊值,a =9,b =4时,|a -b |>1.对于④,∵|a 3-b 3|=1,a >0,b >0,∴a ≠b ,不妨设a >b >0.∴a 2+ab +b 2>a 2-2ab +b 2>0,∴(a -b )(a 2+ab +b 2)>(a -b )(a -b )2.即a 3-b 3>(a -b )3>0,∴1=|a 3-b 3|>(a -b )3>0,∴0<a -b <1,即|a -b |<1.因此正确.答案:①④7.已知a ,b ∈R ,x =a 3-b ,y =a 2b -a ,试比较x 与y 的大小. 解:因为x -y =a 3-b -a 2b +a =a 2(a -b )+a -b =(a -b )(a 2+1), 所以当a >b 时,x -y >0,所以x >y ;当a =b 时,x -y =0,所以x =y ;当a <b 时,x -y <0,所以x <y .8.已知x ,y 为正实数,且1≤lg(xy )≤2,3≤lg x y ≤4,求lg(x 4y 2)的取值范围.解:由题意,设a =lg x ,b =lg y ,∴lg(xy )=a +b ,lg x y =a -b ,lg(x 4y 2)=4a +2b .设4a +2b =m (a +b )+n (a -b ),∴⎩⎪⎨⎪⎧ m +n =4,m -n =2,解得⎩⎪⎨⎪⎧m =3,n =1. 又∵3≤3(a +b )≤6,3≤a -b ≤4,∴6≤4a +2b ≤10,∴lg(x 4y 2)的取值范围为[6,10].。
3.1不等式与不等关系课(共32张PPT)
探究点1
不等式的性质
(对称性) (1)a > b b < a; (传递性) (2)a > b,b > c a > c;
(可加性) (3) a > b a + c > b + c;
由性质(3)可得:
a + b > c a + b +( - b )> c +( - b ) a > c - b .
解:因为15 < b < 36,所以 - 36 < -b < -15. 又因为12 < a < 60,所以12 - 36 < a - b < 60 - 15, 所以 - 24 < a - b < 45. 1 1 1 12 a 60 因为 < < ,所以 < < , 36 b 15 36 b 15 1 a 所以 < < 4. 3 b
2.某品牌酸奶的质量检查规定,酸奶中脂肪的含量 f应不少于2.5% ,蛋白质的含量p应不少于2.3%,
f≥2.5% 写成不等式组为 p≥2.3% .
【即时练习】 某高速公路对行驶的各种车辆的最大限速为120km/h.
行驶过程中,同一车道上的车间距d不得小于10 m,用不
等式表示为( B )
A.v≤120 (km/h)或 d≥10 (m)
2.设M=x2,N=x-1,则M与N的大小关系为 ( A ) A.M>N C.M<N B.M=N D.与x有关
【解析】 ∵M-N=x2-(x-1)=x2-x+1 1 3 =x -x+ + 4 4
2
12 3 =(x- ) + >0. 2 4 ∴M>N.
3.1 不等关系与不等式
如果 a + b > c,那么 a > c-b (把两边都加上-b)
性质4:如果 a > b,且 c > d , 那么 a + c > b + d
推广 到任意有限个同向不等式两边分别相加, 所得不等式与原不等式同向.
性质5
如果 a > b ,且 c > 0,那么 ac > bc ; 如果 a > b,且 c < 0 ,那么ac < bc . 若a > b ,且 c >d,那么 ac > bd ?
a>b b<a
性质2:如果 a > b ,且 b > c ,那么 a > c .
a > b b > c a>c
等价命题是:
c<b, b<a c<a
请用<、>、=填空: 4___3;4+1___3+1;4+(-2)____3+(-2) 性质3:如果 a > b,那么 a + c > b + c。
(1) 等价命题:如果 a < b,那么 a + c < b + c (2) 移项法则:
表示不等关系的式子叫做不等式。
(1) a与b的和是非负数;
(2)在飞云江大桥上:
(3)某种杂志原以每本2.5元的价格销售,可以售出 8万本。根据市场调查,若单价每提高0.1元,销售 量就可能相应减少2000本。若把提价后杂志的定价 设为x元,怎样用不等式表示销售的总收入仍不低 于20万元?
(4)某钢铁厂要把长度为4000mm的钢管截成 500mm 和600mm两种。按照生产要求, 600mm钢管的数量不能超过500mm钢管 的3倍.怎样写出满足上述所有不等关系的 不等式呢?
3.1-不等关系与不等式
不等式的基本性质
a+c>b+d (5)加法法则:a>b,c>d⇒_____________.
(6)乘法法则:a>b>0,c>d>0⇒_______. ac>bd
(7)乘方法则:a>b>0⇒______________ a n bn 0 (n∈N,n≥2).
n (8)开方法则:a>b>0⇒ ______________( a n b 0 n∈N,n≥2).
∴ (a 3)(a 5) (a 2)(a 4)
作差法的一般步骤:
变形
确定大小
结论
作差
变形
判断
因式分解、配方、 通分等手段
作差法比较的一般步骤 第一步:作差; 第二步:变形,常采用配方、因式分解等恒等变形手 段,将“差”化成“积”; 第三步:定号,就是确定是大于0,等于0,还是小于0. (不确定的要分情况讨论) 最后得结论.
1.用不等式(组)来表示不等关系
2.不等式基本原理
a-b>0 ⇔ a>b a-b=0 ⇔ a=b a-b<0 ⇔ a<b 3.作差比较法
步骤:作差,变形,定号
关键是变形,变形的目的在于便于判断正负.常见的变
形有因式分解、配方等.
例 1 比较 (a+ 3)(a- 5)与 (a+ 2)(a- 4)的大小.
解: ∵ (a 3)(a 5) (a 2)(a 4)
(a 2a 15) (a 2a 8)
2 2
作差
7 ∴ (a 3)(a 5) (a 2)(a 4) <0 定符号
不等式与不等关系
1、了解不等式(组)的实际背景.
2、掌握比较两个实数大小的方法.
3、掌握不等式的八条性质.
高中数学第三章不等式3.1不等关系与不等式第1课时不等关系与不等式的性质课件新人教A版必修5-推荐ppt版本
• 单击此处编辑母版文本样式
– 第二级
• 第三级<
=
– 第四级
» 第五级
大 >
不等式
<
• 单击此处编>辑母版文本样式
– 第二级<
• 第三级
>
– 第四>级
» 第五级
>
(4)性质4:①如果a>b,c>0那么ac___>___bc. ②如果a>b,c<0,那么ac___<___bc. (5)性质5:如果a>b,c>d,那么a+c___>___b+d. (6)性质6:如果a>b>0,c>d>0,那么ac___>___bd. (7)性质7:如果a>b>0,那么an__>____bn,(n∈N,n≥2).
(8)性质8:如果a>b>0,那么n a___>___n b,(n∈N,n≥2).
• 单击此处编辑母版文本样式
A
– 第二级
• 第三级
[解析] M-– N第=四x2级+x+1=(x+12)2+34>0, ∴M>N,故选A».第五级
• 单击此处编辑母版文本样式 C – 第二级
• 第三级
– 第四级 » 第五级
命题方向3 ⇨不等式性质的应用
例题 3 对于实数a、b、c,有下列结论:
①若a>b,则ac<bc;
②若ac2>bc2,则a>b;
③若a<b<0,则a2>ab>b2;
④若c>a>b>0,则c-a a>c-b b;
⑤若a>b,1a>1b,则a>0,b<0.
其中正确结论的个数
A.2
B.3
C.4
2020版数学人教A版必修5学案:第三章 3.1 不等关系与不等式 Word版含解析
§3.1 不等关系与不等式学习目标 1.能用不等式(组)表示实际问题的不等关系.2.初步学会作差法、作商法比较两实数的大小.3.掌握不等式的基本性质,并能运用这些性质解决有关问题.知识点一 不等关系现实世界中存在大量的不等关系.试用不等式表示下列关系:(1)a大于b a>b(2)a小于b a<b(3)a不大于b a≤b(4)a不小于b a≥b知识点二 作差法作差法的理论依据:a>b⇔a-b>0;a=b⇔a-b=0;a<b⇔a-b<0.思考 x2+1与2x两式都随x的变化而变化,其大小关系并不显而易见.你能想个办法,比较x2+1与2x的大小,而且具有说服力吗?答案 作差:x2+1-2x=(x-1)2≥0,所以x2+1≥2x.知识点三 不等式的基本性质不等式性质:(1)a>b⇔b<a(对称性);(2)a >b ,b >c ⇒a >c (传递性);(3)a >b ⇒a +c >b +c (可加性);(4)a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc ;(5)a >b ,c >d ⇒a +c >b +d ;(6)a >b >0,c >d >0⇒ac >bd ;(7)a >b >0,n ∈N ,n ≥1⇒a n >b n ;(8)a >b >0,n ∈N ,n ≥2⇒>.n a n b1.2≥1.( √ )2.>1⇒a >b .( × )a b3.a >b ⇔a +c >b +c .( √ )4.Error!⇔a +c >b +d .( × )题型一 用不等式(组)表示不等关系例1 某套试卷原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本.若把提价后试卷的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解 提价后销售的总收入为x 万元,(8-x -2.50.1×0.2)那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式(8-x -2.50.1×0.2)x ≥20(x ≥2.5).反思感悟 数学中考查的能力之一就是抽象概括能力,即能用数学语言表示出实际问题中的数量关系.用不等式(组)表示实际问题中的不等关系时(1)要先读懂题,设出未知量;(2)抓关键词,找到不等关系;(3)用不等式表示不等关系.思维要严密、规范.跟踪训练1 某次数学智力测验,共有20道题,答对一题得5分,答错一题得-2分,不答得零分.某同学有一道题未答,设这个学生至少答对x题,成绩才能不低于80分,列出其中的不等关系:.(不用化简)答案 5x-2(19-x)≥80,x∈N*解析 这个学生至少答对x题,成绩才能不低于80分,即5x-2(19-x)≥80,x∈N*.题型二 比较大小命题角度1 作差法比较大小例2 已知a,b均为正实数.试利用作差法比较a3+b3与a2b+ab2的大小.解 ∵a3+b3-(a2b+ab2)=(a3-a2b)+(b3-ab2)=a2(a-b)+b2(b-a)=(a-b)(a2-b2)=(a-b)2(a+b).当a=b时,a-b=0,a3+b3=a2b+ab2;当a≠b时,(a-b)2>0,a+b>0,a3+b3>a2b+ab2.综上所述,a3+b3≥a2b+ab2.引申探究1.若a>0,b>0,a5+b5与a3b2+a2b3的大小关系又如何?解 (a5+b5)-(a3b2+a2b3)=a5-a3b2+b5-a2b3=a3(a2-b2)+b3(b2-a2)=(a2-b2)(a3-b3)=(a -b )2(a +b )(a 2+ab +b 2).∵a >0,b >0,∴(a -b )2≥0,a +b >0,a 2+ab +b 2>0.∴a 5+b 5≥a 3b 2+a 2b 3.2.对于a n +b n ,你能有一个更具一般性的猜想吗?解 若a >0,b >0,n >r ,n ,r ∈N *,则a n +b n ≥a r b n -r +a n -r b r .反思感悟 比较两个实数的大小,可以求出它们的差的符号.作差法比较实数的大小的一般步骤是:差→恒等变形→判断差的符号→下结论.作差后变形是比较大小的关键一步,变形的方向是化成几个完全平方数和的形式或一些易判断符号的因式积的形式.跟踪训练2 已知x <1,试比较x 3-1与2x 2-2x 的大小.解 ∵(x 3-1)-(2x 2-2x )=x 3-2x 2+2x -1=(x 3-x 2)-(x 2-2x +1)=x 2(x -1)-(x -1)2=(x -1)(x 2-x +1)=(x -1),[(x -12)2+34]又∵2+>0,x -1<0,(x -12)34∴(x -1)<0,∴x 3-1<2x 2-2x .[(x -12)2+34]命题角度2 作商法比较大小例3 若0<x <1,a >0且a ≠1,试比较|log a (1-x )|与|log a (1+x )|的大小关系.解 ==,|log a (1-x )||log a (1+x )||log a (1-x )log a (1+x )||log (1+x )(1-x )|∵0<x <1,∴=-log (1+x )(1-x )=log (1+x ),|log (1+x )(1-x )|11-x∵1-x 2=(1+x )(1-x )<1,且1-x >0,∴1+x <,11-x∴log (1+x )>1,11-x即>1,|log a (1-x )||log a (1+x )|∴|log a (1+x )|<|log a (1-x )|.反思感悟 作商法的依据:若b >0,则>1⇔a >b .a b跟踪训练3 若a >b >0,比较a a b b 与a b b a 的大小.解 =a a -b b b -a =a -b ,a a b b a b b a (a b)∵a >b >0,∴>1,a -b >0,a b∴a -b >1,即>1,(a b )a a b ba b b a又∵a >b >0,∴a a b b >a b b a .题型三 不等式的基本性质例4 已知a >b >0,c <0,求证:>.c a c b证明 因为a >b >0,所以ab >0,>0.1ab于是a ×>b ×,即>.由c <0,得>.1ab 1ab 1b 1a c a c b反思感悟 有关不等式的证明,最基本的依据是不等式的8条基本性质,在解不等式时,对不等式进行有关变形的依据也是8条基本性质.跟踪训练4 如果a >b >0,c >d >0,证明:ac >bd .证明Error!⇒ac >bd .用好不等式性质,确保推理严谨性典例 已知12<a <60,15<b <36,求的取值范围.a b[错解] ∵12<a <60,15<b <36,∴<<,1215a b 6036∴<<.45a b 53[点拨] 在确保条件的前提下,同向不等式可以相乘,但同向不等式没有相除的性质,不能臆造.确需相除,可转化为相乘.[正解] ∵15<b <36,∴<<,又12<a <60,1361b 115∴<<,∴<<4,1236a b 601513a b即的取值范围是.a b (13,4)[素养评析] 逻辑推理讲究言必有据.在不等式这一章,我们要对不等式进行大量的运算、变形,而运算、变形的依据就是不等式的性质.通过考问每一步是否有依据,整个推理过程是否有条理,可以使我们的理性精神和交流能力得到提升.1.某校对高一美术生划定录取分数线,专业成绩x 不低于95分,文化课总分y 高于380分,体育成绩z 超过45分,用不等式表示就是( )A.Error!B.Error!C.Error!D.Error!答案 D解析 “不低于”即“≥”,“高于”即“>”,“超过”即“>”,∴x ≥95,y >380,z >45.2.已知a +b >0,b <0,那么a ,b ,-a ,-b 的大小关系是( )A .a >b >-b >-aB .a >-b >-a >bC .a >-b >b >-aD .a >b >-a >-b答案 C 解析 由a +b >0,知a >-b ,∴-a <b <0.又b <0,∴-b >0,∴a >-b >b >-a .3.已知a ,b ,c ∈R ,则下列命题正确的是( )A .a >b ⇒ac 2>bc 2B.>⇒a >b a c b cC.Error!⇒>D.Error!⇒>1a 1b1a 1b 答案 C解析 当c =0时,A 不成立;当c <0时,B 不成立;当ab <0时,a >b ⇒<,即>,C 成a ab b ab 1a 1b 立.同理可证D 不成立.4.若a >b >0,c <d <0,则一定有( )A.>B.<a d b ca dbc C.> D.<a c b da cb d 答案 B解析 因为c <d <0,所以-c >-d >0,即>>0.1-d 1-c 又a >b >0,所以>,a -d b -c从而有<.a d b c5.比较(a +3)(a -5)与(a +2)(a -4)的大小.解 ∵(a+3)(a-5)-(a+2)(a-4)=(a2-2a-15)-(a2-2a-8)=-7<0,∴(a+3)(a-5)<(a+2)(a-4).1.比较两个实数的大小,只要求出它们的差就可以了.a-b>0⇔a>b;a-b=0⇔a=b;a-b<0⇔a<b.2.作差法比较大小的一般步骤第一步:作差;第二步:变形,常采用配方、因式分解等恒等变形手段,将“差”化成“和”或“积”;第三步:定号,就是确定是大于0,等于0,还是小于0(不确定的要分情况讨论);最后得结论.概括为“三步一结论”,这里的“定号”是目的,“变形”是关键.3.不等式的性质是不等式变形的依据,每一步变形都要严格依照性质进行,并注意不等式推导所需条件是否具备.一、选择题1.设x<a<0,则下列不等式一定成立的是( )A.x2<ax<a2B.x2>ax>a2C.x2<a2<ax D.x2>a2>ax答案 B解析 ∵x2-ax=x(x-a)>0,∴x2>ax.又ax-a2=a(x-a)>0,∴ax>a2,∴x2>ax>a2.2.已知a <0,b <-1,则下列不等式成立的是( )A .a >> B.>>aa b ab 2a b 2a b C.>a > D.>>aa b ab 2a b ab 2答案 D解析 取a =-2,b =-2,则=1,=-∴>>a .a b a b 212a b ab 23.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是( )A.< B .a 2>b 21a 1b C.> D .a |c |>b |c |a c 2+1bc 2+1答案 C解析 对于A ,若a >0>b ,则>0,<0,1a 1b 此时>,∴A 不成立;1a 1b 对于B ,若a =1,b =-2,则a 2<b 2,∴B 不成立;对于C ,∵c 2+1≥1,且a >b ,∴>恒成立,∴C 成立;ac 2+1bc 2+1对于D ,当c =0时,a |c |=b |c |,∴D 不成立.4.若a >b >c 且a +b +c =0,则下列不等式中正确的是( )A .ab >acB .ac >bcC .a |b |>c |b |D .a 2>b 2>c 2答案 A解析 由a >b >c 及a +b +c =0,知a >0,c <0,Error!则ab >ac .5.已知a ,b 为非零实数,且a <b ,则下列命题成立的是( )A .a 2<b 2B .a 2b <ab 2C.< D.<1ab 21a 2bb a a b 答案 C解析 对于A ,在a <b 中,当a <0,b <0时,a 2<b 2不成立;对于B ,当a <0,b >0时,a 2b >0,ab 2<0,a 2b <ab 2不成立;对于C ,∵a <b ,>0,∴<;1a 2b 21ab 21a 2b对于D ,当a =-1,b =1时,==-1.b a a b6.若a >0且a ≠1,M =log a (a 3+1),N =log a (a 2+1),则M ,N 的大小关系为( )A .M <NB .M ≤NC .M >ND .M ≥N 答案 C解析 当a >1时,a 3+1>a 2+1,y =log a x 为(0,+∞)上的增函数,∴log a (a 3+1)>log a (a 2+1);当0<a <1时,a 3+1<a 2+1,y =log a x 为(0,+∞)上的减函数,∴log a (a 3+1)>log a (a 2+1),∴当a >0且a ≠1时,总有M >N .二、填空题7.b 克糖水中有a 克糖(b >a >0),若再添上m 克糖(m >0),则糖水就变甜了,试根据此事实提炼一个不等式:当b >a >0且m >0时, .答案 >a +m b +m a b 解析 变甜了,意味着含糖量大了,即浓度高了.8.已知函数f (x )=ax +b,0<f (1)<2,-1<f (-1)<1,则2a -b 的取值范围是 .答案 (-32,52)解析 由函数的解析式可知0<a +b <2,-1<-a +b <1,且2a -b =(a +b )-(-a +b ),1232结合不等式的性质可得,2a -b ∈.(-32,52)9.若x ∈R ,则与的大小关系为 .x 1+x 212答案 ≤x 1+x 212解析 ∵-==≤0.x 1+x 2122x -1-x 22(1+x 2)-(x -1)22(1+x 2)∴≤.x 1+x 21210.(x +5)(x +7)与(x +6)2的大小关系为 .答案 (x +5)(x +7)<(x +6)2解析 因为(x +5)(x +7)-(x +6)2=x 2+12x +35-(x 2+12x +36)=-1<0.所以(x +5)(x +7)<(x +6)2.三、解答题11.一个盒子中红、白、黑三种球分别为x 个、y 个、z 个,黑球个数至少是白球个数的一半,至多是红球个数的,白球与黑球的个数之和至少为55,试用不等式(组)将题中的不等关系表13示出来.解 由题意可得Error!(x ,y ,z ∈N ).12.设x ,y ,z ∈R ,比较5x 2+y 2+z 2与2xy +4x +2z -2的大小.解 ∵5x 2+y 2+z 2-(2xy +4x +2z -2)=4x 2-4x +1+x 2-2xy +y 2+z 2-2z +1=(2x -1)2+(x -y )2+(z -1)2≥0,∴5x 2+y 2+z 2≥2xy +4x +2z -2,当且仅当x =y =且z =1时取等号.1213.已知a >b >0,c <d <0,e <0,求证:>.e a -c eb -d 证明 ∵c <d <0,∴-c >-d >0,又∵a >b >0,∴a +(-c )>b +(-d )>0,即a -c >b -d >0,∴0<<,1a -c 1b -d 又∵e <0,∴>.e a -c eb -d14.若x >0,y >0,M =,N =+,则M ,N 的大小关系是()x +y1+x +y x1+x y1+y A .M =N B .M <NC .M ≤ND .M >N答案 B解析 ∵x >0,y >0,∴x +y +1>1+x >0,1+x +y >1+y >0,∴<,<,x 1+x +y x 1+x y 1+x +y y 1+y故M ==+<+=N ,即M <N .x +y 1+x +y x 1+x +y y 1+x +y x 1+x y 1+y 15.已知实数x ,y 满足-4≤x -y ≤-1,-1≤4x -y ≤5,则9x -3y 的取值范围是 .答案 [-6,9]解析 设9x -3y =a (x -y )+b (4x -y )=(a +4b )x -(a +b )y ,∴Error!⇒Error!∴9x -3y =(x -y )+2(4x -y ),∵-1≤4x -y ≤5,∴-2≤2(4x -y )≤10,又-4≤x -y ≤-1,∴-6≤9x -3y ≤9.。
第一部分 第三章 3.1 不等关系与不等式
32 3 3 =(x-2) +4≥4>0, ∴x2+3>3x.
返回
(2)(a3+b3)-(a2b+ab2)=a3+b3-a2b-ab2 =a2(a-b)-b2(a-b) =(a-b)(a2-b2) =(a-b)2(a+b), ∵a>0,b>0且a≠b,∴(a-b)2>0,a+b>0. ∴(a3+b3)-(a2b+ab2)>0, 即a3+b3>a2b+ab2.
返回
1 解:(1)∵a<b<0,∴ab>0.∴ab>0. 1 1 1 1 ∴a· <b· .∴b<a.∴(1)是假命题. ab ab (2)∵a>b,|c|≥0,当 c≠0 时,|c|>0, ∴a|c|>b|c|; 当 c=0 时,|c|=0,∴a|c|=b|c|=0. ∴(2)是假命题.
返回
1.比较两个实数或者代数式的大小的依据
返回
返回
[例2]
比较下列各组中两个代数式的大小:
(1)x2+3与3x; (2)已知a,b为正数,且a≠b,比较a3+b3与a2b+ab2. [思路点拨] 将两个代数式作差,并对差式进行变形
(因式分解或配方),判断变形后式子的符号,即可得解.
返回
[精解详析]
(1)(x2+3)-3x=x2-3x+3
返回
解析:可利用不等式的基本性质一一验证.由已知及不等式 的性质可得a+c>b+d,即a-d>b-c,所以A正确; 1 1 a b 由c>d>0,得d> c>0,又a>b>0,所以d> c,即B正 确;显然D正确.
答案:C
返回
8.判断下列两个命题的真假. 1 1 (1)若 a<b<0,则a<b; (2)若 a>b>c,则有 a|c|>b|c|.
返回
3.同向不等式相加方向不变,即a>b,c>d⇒a +c>b+d,不具有可逆性;注意:不能确定正负的代
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f ( 3)
的取值范围.
所以f(3)=9a-c=
8 5 f (2) f (1) 3 3
因为 4 f (1) 1, 1 f (2) 5
8 8 40 所以 ≤ f (2) ≤ 3 3 3
5 5 20 ≤ f (1) ≤ 3 3 3
两式相加得-1≤f(3) ≤20.
练习.已知-4≤a-b≤-1,-1≤4a- b≤5,求9a-b的取值范围。
作差
变形
定号
结论
因式分解、配方、通 分、分子有理化等手
对称性— a>b b<a 传递性— a>b,b>c a>c 可加性— a>b a+c>b+c 移项法则— a+c>b a>b-c
不 等 式 的 性 质
推 论
同向可加— a>b,c>d a+c>b+d c>0 ac>bc 可乘性— a>b, c<0 ac<bc
对于两个不等式,如果每一个不等式的左边 都大于(或都小于)右边,这样的两个不等式 叫作同向不等式。如果两个不等式的不等号 开口方向不同,那么两个不等式叫作异向不 等式。
知识探究:比较实数大小的基本原理
思考1:实数可以比较大小,对于两个实数a,b, 其大小关系有哪几种可能?
a>b,a=b,a<b.
思考2:任何一个实数都对应数轴上的一个点,那 么大数与小数所对应的点的相对位置关系如何? 大数对应的点位于小数对应的点的右边
2 2
例3:如果16 x 32, 4 y 8, 分别求 2 y x y, 2 x 3 y, xy , 的取值范围 x
解: 由16<x<32,4<y<8,得 16+4<x+y<32+8 即20<x+y<40 又 32<2x<64 , -24<-3y<-12 所以 32-24<2x-3y<64-12 即8<2x-3y<52 因为16<x<32, 4<y<8 所以16×42<xy2<32×82 即 256< xy2 < 2048
一、引入
二、新课讲解
不等式的定义:用数学符号>、<、≥、≤、≠
连接两个数或代数式,以表示它们之间的不等关系 的式子叫做不等式. 不等 关系词 大于、高 小于、低 大于等于、小于等于、 于、超过 于、少于 至少、不 至多、不 低于 多于、不 超过 > < ≥ ≤
不等号
" 思考: 观 察 不 等 式 a b" , " c d " , " e f " 有 什 么 特点?
这是一个不等式的证明问题
bm b 已知 a 、 、m 都是正数,且 a b ,求证: b am a
b m b (b m)a (a m)b 证明: ∵ am a (a m)a ab ma ab bm (a m)a m(a b) (a m)a
确定大小
ca bc 例 2.已知 a b 0 , c 0 ,求证: a b
解:法二:巧用不等式的性质(综合法)
∵ a b 0 , c 0 ,∴ ab 0
1 1 1 1 a b ∴ 即 ab ab b a
c c ∴ (两边同乘以一个负数不等号方向要改变) b a c c
a>b b<a(对称性)
思考2:若甲a的身材比乙b高,乙的身材b比丙c 高,那么甲a的身材比丙c高,这里反映出的不等 式性质如何用数学符号语言表述?
a>b,b>c
a<b,b<c
a>c;
a<c(传递性)
思考3:再有一个不争的事实:若甲a的年薪比乙b 高,如果年终两人发同样多的奖金或捐赠同样多 的善款,则甲的年薪仍然比乙高,这里反映出的 不等式性质如何用数学符号语言表述?
∵ a 、 、m 都是正数,且 a b b ∴ m 0, m a 0, a 0, a b 0 bm b bm b 0∴ ∴ am a am a
若b>a,结论 又会怎样呢?
探究:不等式的基本性质
思考1:若甲的身材比乙高,则乙的身材比甲矮, 反之亦然.从数学的观点分析,这里反映了一个不 等式性质,你能用数学符号语言表述这个不等式 性质吗?
a<b
a-b=0
a=b
比较两个数(式)的大小的方法:
例1.比较x2-x与x-2的大小. 解:(x2-x)-(x-2)=x2-2x+2 =(x-1)2+1, 因为(x-1)2≥0, 所以(x2-x)-(x-2)>0,
(4)结论 小结:作差法的步骤:(1)作差→(2)变形→ (3)定号→(4)结论 其中,变形的方法有:配方法;因式分解法;分子有 理化等。
2
0
例4 已知:函数 f ( x) ax c,
2
4 f (1) 1, 1 f (2) 5
求:
f (1) a c 解:因为f(x)=ax2-c, 所以 f (2) 4a c
1 a 3 [ f (2) f (1)] 解之得 c 1 f (2) 4 f (1) 3 3
由 16< x < 32 得 又4 < y < 8 所以有
1 y 1 即 8 x 2
1 1 1 32 x 16
4 y 8 32 x 16
,求 类型:若 ≤ ≤ , 2 2 2 2
的取值范围。
2
2
2
,
2
≤
只要证:
1 x1 1 x2 ≥ 1 x1 x2 1,
( 1 x1 1 x2 )2 ≥ ( 1 x1 x2 1)2
即证: 2 x1 x2 2 1 x1 x2 x1x2 ≥ 2 x1 x2 2 1 x1 x2
只要证:
(1)作差
(2)变形 (3)判号
因此x2-x>x-2.
思考:为什么糖水中加的糖越多越甜呢?
转化为数学问题:a 克糖水中含有 b 克糖(a>b>0), 若再加 m(m>0)克糖,则糖水更甜了,为什么?
这个数学问题怎么解决?
b 分析:起初糖水的浓度为 ,加入 m 克糖后的糖 a bm bm b 即可,怎么 水浓度为 ,只要证明 am am a 证呢?
思考3:如果两个实数的差是正数,那么这两个 实数的大小关系如何?反之成立吗?如何用数学 语言描述这个原理?
a-b>0
a>b
思考4:如果两个实数的差是负数,那么这两个实 数的大小关系如何?反之成立吗?如何用数学语 言描述这个原理?
a-b<0
思考5:如果两个实数的差等于零,那么这两个实 数的大小关系如何?反之成立吗?如何用数学语 言描述这个原理?
解:法一:作差比较法
作差 c a b c cb ab (ab ac) c(b a ) ∵ 变形 a b ab ab
∵ a b 0, a b 0, ab 0 ∵ c 0 c (b a ) 0 ∴ ab定来自号ca bc ∴ a b
a>b
a+c>b+c(可加性)
思考4:还有一个不争的事实:若甲班的男生 比乙班多,甲班的女生也比乙班多,则甲班 的人数比乙班多. 这里反映出的不等式性质 如何用数学符号语言表述?
a>b,c>d
a+c>b+d(同向可加性)
思考5:如果a>b,c>0,那么ac与bc的 大小关系如何?如果a>b,c<0,那么 ac与bc的大小关系如何?为什么? a>b,c>0 ac>bc; a>b,c<0 ac<bc(可乘性) 思考6:如果a>b>0,c>d>0,那么 ac与bd的大小关系如何?为什么? a>b>0,c>d>0 ac>bd
小 结
0 (7) a b (n N ) a b 0
* n n
(乘方法则)
0 (8) a b (n N , n ≥ 2) n a n b 0 (开方法则) 1 1 (9) a b,ab 0 (倒数法则) a b
*
ca bc 例 2.已知 a b 0 , c 0 ,求证: a b
以上两式相加得-1≤9a-b≤20.
例 5.(选作)非负实数 x1、x2,且 x1+x2≤1, 求证: 1 x1 1 x2 ≥ 1 x1 x2 1
证明: x1 ≥ 0, x2 ≥ 0, x1 x2 ≤1, 1 x1 ≥ 0,1 x2 ≥ 0,1 x1 x2 ≥ 0 要证:
3.对于实数a、b、c,有下列问题 ()若a b, 则ac bc 1 (2)若ac bc , 则a b
2 2
(3)若a b 0, 则a ab b a b (4)若c a b 0, 则 c a c b 1 1 (5)若a b, , 则a 0, b 0 a b 其中真命题的个数是( C ) A.2 B.3 C.4 D.5
> ⑶ a b 0 a ______ b ; 1 < 1 ⑷ a b 0 2 ____ 2 . a b
3 3
2、用不等号>,<, ≠填空
(1)a b, c d a c __ b d (2)a b 0, c d 0 ac __ bd (3)c __ 0, a b ac bc (4)c ___ 0, a b ac bc (5)a 0, b 0 ab ___ 0 (6)a b, c 0, d ac ____ d bc (7)a b, c 0, c( d a ) ____ c( d b )