初中数学整式的乘法第一课时教案

合集下载

人教版数学八年级上册15.1.3《整式的乘法》(第1课时)教学设计

人教版数学八年级上册15.1.3《整式的乘法》(第1课时)教学设计

人教版数学八年级上册15.1.3《整式的乘法》(第1课时)教学设计一. 教材分析人教版数学八年级上册15.1.3《整式的乘法》是初中数学的重要内容,是学习更高级数学的基础。

本节课主要介绍了整式乘法的基本概念和运算方法,包括单项式乘单项式、单项式乘多项式、多项式乘多项式。

学生通过学习本节课的内容,可以加深对整式的理解和应用,为后续学习函数、方程等知识打下基础。

二. 学情分析八年级的学生已经学习了有理数、代数式、方程等基础知识,对整式的概念和运算有一定的了解。

但学生在进行整式乘法运算时,容易出错,对乘法分配律的理解不够深入。

因此,在教学过程中,需要帮助学生巩固整式的基本概念,引导学生理解乘法分配律,并通过实例让学生熟练掌握整式乘法的运算方法。

三. 教学目标1.知识与技能:使学生掌握整式乘法的基本概念和运算方法,能够正确进行整式乘法运算。

2.过程与方法:通过实例分析,引导学生理解乘法分配律,培养学生运用数学知识解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。

四. 教学重难点1.教学重点:整式乘法的基本概念和运算方法。

2.教学难点:乘法分配律的理解和运用。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法。

通过设置问题,引导学生主动探究整式乘法的运算规律;通过案例分析,让学生深入了解乘法分配律;通过小组合作,培养学生团队合作解决问题的能力。

六. 教学准备1.教师准备:教材、教案、PPT、黑板、粉笔等。

2.学生准备:课本、练习本、文具等。

七. 教学过程1.导入(5分钟)教师通过提问方式复习整式的基本概念,如整式的定义、单项式、多项式等。

然后引导学生思考:如何进行整式的乘法运算?从而引出本节课的主题。

2.呈现(10分钟)教师通过PPT展示整式乘法的三个基本类型:单项式乘单项式、单项式乘多项式、多项式乘多项式。

并对每个类型给出一个示例,让学生观察和思考。

八年级数学上册14.1整式的乘法第1课时教案新版新人教版

八年级数学上册14.1整式的乘法第1课时教案新版新人教版

14.1 整式的乘法(第1课时)教学内容同底数幂的乘法.教学过程一、导入新课1二、探究新知1.同底数幂乘法公式问题1 一种电子计算机每秒可进行1千万亿(1015)次运算,它工作103 s可进行多少次运算?分析:它工作103 s可进行运算的次数为1015×103,怎样计算1015×103呢?列式:你能写出运算结果吗?.教师引导学生探究规律,并写出计算过程.探究:根据乘法的意义填空,观察计算结果,你能发现什么规律吗?(1)23×24=2().(2)53×54=5().(3)a3×a4=a().通过以上多个式子的计算过程,我们猜想:一般地,对于任意底数a与任意正整数m,N,因此,我们有同底数幂的乘法法则:a m·a n=a m+n(m、n都是正整数).即同底数幂相乘,底数不变,指数相加.提示:①同底数幂是指底数相同的幂.如(-3)2与(-3)5,(ab3)2与(ab3)5,(x-y)2与(x-y)3 等.②同底数幂的乘法法则的表达式中,左边两个幂的底数相同,且是相乘的关系;右边得到一个幂,且底数不变,指数相加.2.公式的应用例1 计算:(1)x2·x5 (2)a·a6;(3)(-2)×(-2)4×(-2)3;(4)x m·x3m+1.提示:不要忽视指数为1的因数,如(2).注意:以上是公式的正用,公式也可逆用,可以把一个幂分解成两个同底数幂的积,其中它们的底数与原来幂的底数相同,它的指数之和等于原来幂的指数.如:25=23×22=2×24等.练习已知a m=3,a n=8,求a n+m 的值.让学生把a m+n改写成a m·a n的形式,再带入已知完成此题.a m+n=a m·a n=3×8=24.三、课堂小结1.同底数幂的乘法,使用范围是两个幂的底数相同,且是相乘关系,•使用方法:乘积中,幂的底数不变,指数相加.2.应用时可以拓展,例如含有三个或三个以上的同底数幂相乘,仍成立,•底数和指数,它既可以取一个或几个具体数,也可取单项式或多项式.3.运用幂的乘法运算性质注意不能与整式的加减混淆.四、布置作业习题14.1.1第(1)(2)题.教学反思:中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。

八年级数学上册 14.1 整式的乘法 14.1.4 整式的乘法 第1课时 单项式乘以单项式教案 (新

八年级数学上册 14.1 整式的乘法 14.1.4 整式的乘法 第1课时 单项式乘以单项式教案 (新

八年级数学上册 14.1 整式的乘法 14.1.4 整式的乘法第1课时单项式乘以单项式教案(新版)新人教版一. 教材分析整式的乘法是初中数学的重要内容,对于培养学生的逻辑思维和抽象思维能力具有重要意义。

本节课主要讲解单项式乘以单项式的运算方法,通过实例引导学生掌握乘法法则,并能够熟练地进行计算。

教材中提供了丰富的例题和练习题,有助于学生巩固所学知识。

二. 学情分析八年级的学生已经掌握了实数运算的基本法则,具备一定的逻辑思维能力。

但是,对于整式乘法这种抽象的运算,部分学生可能还存在一定的困难。

因此,在教学过程中,要关注学生的个体差异,针对不同层次的学生进行有针对性的指导。

三. 教学目标1.理解单项式乘以单项式的运算方法。

2.能够熟练地进行单项式乘以单项式的计算。

3.培养学生的逻辑思维和抽象思维能力。

四. 教学重难点1.重点:单项式乘以单项式的运算方法。

2.难点:理解并掌握乘法法则,能够熟练地进行计算。

五. 教学方法1.采用启发式教学,引导学生主动探索、发现和总结规律。

2.用实例讲解,让学生通过观察、分析和归纳来理解乘法法则。

3.运用巩固练习,加强学生对知识的掌握。

4.分层次教学,关注学生的个体差异,满足不同层次学生的学习需求。

六. 教学准备1.准备相关的教学PPT,展示例题和练习题。

2.准备黑板,用于板书解题过程。

3.准备练习题,用于课堂巩固和拓展。

七. 教学过程1.导入(5分钟)利用复习实数运算的基本法则,引出整式乘法的话题。

提问:同学们,我们已经学习了实数的运算,那么你们知道如何计算整式的乘法吗?2.呈现(10分钟)通过PPT展示单项式乘以单项式的例题,引导学生观察和分析。

例如:计算 (2x + 3y) * (x + 2y)。

让学生思考并讨论,如何进行计算。

3.操练(10分钟)让学生在课堂上独立完成一些单项式乘以单项式的计算题。

例如:计算 (3a - 2b) * (a + 4b)、(4x^2 - 5y) * (2x + y) 等。

人教版数学八年级上册15.1.3《整式的乘法》(第1课时)教案

人教版数学八年级上册15.1.3《整式的乘法》(第1课时)教案

人教版数学八年级上册15.1.3《整式的乘法》(第1课时)教案一. 教材分析人教版数学八年级上册15.1.3《整式的乘法》是整式部分的重要内容,也是学习多项式乘法、平方差公式和完全平方公式的基石。

本节课主要让学生掌握整式乘法的基本方法,理解乘法分配律在整式乘法中的应用,为后续学习更复杂的整式运算打下基础。

二. 学情分析学生在七年级时已经学习了有理数的乘法、分配律等基础知识,对于整式的加减法有一定的了解。

但是,对于整式的乘法运算,学生可能还存在着一定的困难。

因此,在教学过程中,要注重引导学生理解乘法分配律,并通过大量的练习让学生熟练掌握整式乘法的方法。

三. 教学目标1.知识与技能:让学生掌握整式乘法的基本方法,理解乘法分配律在整式乘法中的应用。

2.过程与方法:通过实例演示、自主探究、合作交流等方式,让学生经历整式乘法的过程,培养学生的运算能力和思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。

四. 教学重难点1.教学重点:整式乘法的基本方法。

2.教学难点:乘法分配律在整式乘法中的应用。

五. 教学方法采用启发式教学法、情境教学法、合作学习法等多种教学方法,引导学生主动探究、合作交流,培养学生的运算能力和思维能力。

六. 教学准备1.教师准备:熟练掌握整式乘法的方法,准备相关教学案例和练习题。

2.学生准备:掌握有理数的乘法、分配律等基础知识。

七. 教学过程1. 导入(5分钟)教师通过一个实际问题引导学生思考:已知长方形的长是10cm,宽是5cm,求长方形的面积。

学生可以很容易地得出答案,从而引出整式乘法的概念。

2. 呈现(10分钟)教师通过PPT展示整式乘法的定义和基本方法,引导学生理解整式乘法的运算规律。

例如,对于两个整式ax + b和cx + d的乘法,可以将其看作是(a c)x^2 + (a d + b c)x + b d。

3. 操练(10分钟)教师给出几个简单的整式乘法例子,让学生在纸上完成。

1.4 整式的乘法 第1课时 教案

1.4 整式的乘法 第1课时 教案

一、情境导入根据乘法的运算律计算: (1)2x ·3y ;(2)5a 2b ·(-2ab 2). 解:(1)2x ·3y =(2×3)·(x ·y )=6xy ;(2)5a 2b ·(-2ab 2)=5×(-2)·(a 2·a )·(b ·b 2)=-10a 3b 3. 观察上述运算,你能归纳出单项式乘法的运算法则吗? 二、合作探究探究点:单项式与单项式相乘【类型一】 直接利用单项式乘以单项式法则进行计算计算: (1)(-23a 2b )·56ac 2;(2)(-12x 2y )3·3xy 2·(2xy 2)2;(3)-6m 2n ·(x -y )3·13mn 2(y -x )2.解析:运用幂的运算法则和单项式乘以单项式的法则计算即可. 解:(1)(-23a 2b )·56ac 2=-23×56a 3bc 2=-59a 3bc 2;(2)(-12x 2y )3·3xy 2·(2xy 2)2=-18x 6y 3×3xy 2×4x 2y 4=-32x 9y 9;(3)-6m 2n ·(x -y )3·13mn 2(y -x )2=-6×13m 3n 3(x -y )5=-2m 3n 3(x -y )5.方法总结:(1)在计算时,应先进行符号运算,积的系数等于各因式系数的积;(2)注意按顺序运算;(3)不要丢掉只在一个单项式里含有的字母因式;(4)此性质对于多个单项式相乘仍然成立.【类型二】 单项式乘以单项式与同类项的综合已知-2x 3m +1y 2n 与7x 5m -3y 5n -4的积与x 4y 是同类项,求m 2+n 的值.解析:根据-2x 3m +1y 2n 与7x 5m -3y 5n -4的积与x 4y 是同类项可得出关于m ,n 的方程组,进而求出m ,n 的值,即可得出答案.解:∵-2x 3m +1y 2n与7x 5m -3y 5n -4的积与x 4y是同类项,∴⎩⎪⎨⎪⎧3m +1+5m -3=4,2n +5n -4=1,解得⎩⎨⎧m =34,n =57,∴m 2+n =143112.方法总结:掌握单项式乘以单项式的运算法则,再结合同类项,列出二元一次方程组是解题关键. 【类型三】 单项式乘以单项式的实际应用有一块长为x m ,宽为y m 的长方形空地,现在要在这块地中规划一块长35x m ,宽34y m 的长方形空地用于绿化,求绿化的面积和剩下的面积.解析:先求出长方形的面积,再求出绿化的面积,两者相减即可求出剩下的面积.解:长方形的面积是xy m 2,绿化的面积是35x ×34y =920xy (m 2),则剩下的面积是xy -920xy =1120xy (m 2).方法总结:掌握长方形的面积公式和单项式乘单项式法则是解题的关键.三、板书设计1.单项式乘以单项式的运算法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里面含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以单项式的应用。

《14.1.4整式的乘法》教学设计教学反思-2023-2024学年初中数学人教版12八年级上册

《14.1.4整式的乘法》教学设计教学反思-2023-2024学年初中数学人教版12八年级上册

《整式的乘法》教学设计方案(第一课时)一、教学目标本课教学目标为:使学生理解整式乘法的概念及运算规则,能正确进行同类项合并及多项式乘法计算,通过实践操作掌握整式乘法的具体应用。

培养学生分析问题和解决问题的能力,激发学生对数学学习的兴趣和热情。

二、教学重难点教学重点:掌握整式乘法的基本法则,包括单项式乘单项式、单项式乘多项式等。

教学难点:理解整式乘法中同类项的合并过程,以及多项式乘法中如何灵活运用乘法分配律和乘法结合律。

三、教学准备课前准备:准备教材、教具(如白板、多媒体设备)、练习题以及课后作业。

教师需提前熟悉教材内容,准备好讲解用的示例和练习题,确保学生能够通过练习巩固所学知识。

同时,需确保教学环境安静舒适,为学生提供一个良好的学习氛围。

在上述教学准备基础上,教师应根据实际情况调整教学方法和策略,以适应不同学生的学习需求,提高教学效果。

四、教学过程:一、导课启思本环节将通过实际生活中的问题,引出整式乘法的概念和必要性。

教师可以利用具体的例子,如面积计算、速度与距离的关系等,让学生感受到整式乘法在现实生活中的广泛应用。

二、知识铺垫1. 复习旧知:回顾之前学过的单项式、多项式等概念,为整式的概念打下基础。

2. 引入新课:通过具体问题引出整式的概念,强调整式中各个项的乘积和相加关系。

三、新课讲解(一)整式的定义与分类1. 定义讲解:清晰、准确地阐述整式的定义,包括单项式和多项式等类型。

2. 实例展示:通过具体的数学表达式,让学生明确整式的形式。

3. 互动讨论:鼓励学生提出疑问,通过师生互动加深对整式定义的理解。

(二)整式的乘法法则1. 同类项的乘法:讲解同类项相乘的规则,强调乘法运算的顺序。

2. 分配律的应用:通过具体例子展示分配律在整式乘法中的应用,如(a+b)×c=a×c+b×c等。

3. 乘法的交换律和结合律:强调在整式乘法中交换律和结合律的重要性,并通过实例加以说明。

八年级数学上册 整式的乘法(第1课时)教案 (新版)新人教版

八年级数学上册 整式的乘法(第1课时)教案 (新版)新人教版

整式的乘法(1)
(一)教学目标
知识与技能目标:
掌握单项式与单项式相乘的法则.
过程与方法目标:
理解单项式的乘法运算的算理,体会乘法的交换律、结合律的作用,发展有条理的思考及语言表达能力.
情感态度与价值观:
通过学生板算、讨论、争论等方法培养学生归纳、概括能力,以及运算能力.
教学重点:单项式与单项式相乘的法则.
教学难点:对单项式的乘法运算的算理的理解.
教学用具:
(二)教学程序
教学过程
15.1.4 整式的乘法(1)
单项式相乘,把它的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.。

八年级数学上册 15.1 整式的乘法教案 人教新课标版

八年级数学上册 15.1 整式的乘法教案 人教新课标版

15.1整式的乘法(第1课时)——同底数幂的乘法一、教学目标1.经历同底数幂乘法法则的形成过程,会进行同底数幂的乘法运算.2.培养归纳概括能力.二、教学重点和难点1.重点:同底数幂的乘法运算.2.难点:归纳概括同底数幂的乘法法则.三、教学过程(一)创设情境,导入新课师:从今天开始,我们将学习新的一章——第十五章.第十五章要学什么?(师出示下面的板书)(2x2-3x)+5x (2x2-3x)-5x(2x2-3x)×5x (2x2-3x)÷5x师:(指准(2x2-3x)+5x)这个式子表示什么?2x2-3x是一个整式,5x也是一个整式,这个式子表示两个整式相加.师:(指准(2x2-3x)-5x)这个式子表示什么?表示整式2x2-3x与整式5x相减.师:(指准(2x2-3x)×5x)这个式子表示什么?生:表示整式2x2-3x与整式5x相乘.师:(指准(2x2-3x)÷5x)这个式子表示什么?生:表示整式2x2-3x与整式5x相除.师:(指式子)这四个式子表示的是整式的加减乘除.在初一的时候,我们已经学过整式的加减,第十五章要学什么?要学整式的乘除.师:怎么做整式的乘除?这个问题现在还回答不了,要回答这个问题,我们先要学习一些准备知识.准备知识要学好几节课,本节课我们学习准备知识之一:同底数幂的乘法(板书课题:15.1.1同底数幂的乘法,并擦掉上面四个式子).师:(指课题)同底数幂的乘法.什么是同底数幂?这得从幂说起.初一的时候我们学过幂的概念,什么是幂?譬如说,(板书:23)2的3次方就是一个幂(加框、画线并板书:幂,如下图所示),(指准23)其中2叫做底数(画线并板书:底数,如下图所示),3叫做指数(画线并板书:指数,如下图所示).师:(指23)这个幂的意思是什么?2的3次方的意思是3个2相乘(边讲边板书:=2×2×2).师:我们再来举一个幂的例子.(板书:a4)a的4次方也是一个幂,这个幂的底数是什么?指数是什么?生:底数是a,指数是4.师:(指a4)这个幂的意思是什么?意思是4个a相乘(边讲边板书:=a·a·a·a). 师:根据幂的概念,下面大家来做几道题.(二)基本训练,巩固旧知1.填空:(1)24= ×××; (2)103= ××;(3)3×3×3×3×3=3(); (4)a·a·a·a·a·a=a( ).2.填空:(1)68的底数是,指数是,幂是;(2)86的底数是,指数是,幂是;(3)x4的底数是,指数是,幂是;(4)x的底数是,指数是,幂是 .(三)尝试指导,讲授新课师:(板书:25 22,并指准)这个幂和这个幂有什么共同点?(稍停)它们的底数相同,也就是说2的5次方与2的2次方是同底数幂.师:把这两个同底数幂相乘(边讲边板书:×,与上面的板书连成25×22),怎么乘呢?(板书:=)师:(指25)2的5次方表示5个2相乘(板书:2×2×2×2×2),(指22)2的2次方表示2个2相乘(板书:×2×2).师:(指准式子)在这个式子中,一共有7个2相乘,可以写成2的7次方(板书:=27). 师:(指准式子)通过上面的计算,我们得到,25×22=27.师:我们再来看一个同底数幂相乘的例子.师:(板书:a3·a2,并指准)同底数幂a3与a2相乘,怎么乘呢?(板书:=)师:(指a3)a的3次方表示3个a相乘(板书:a·a·a),(指a2)a的2次方表示2个a 相乘(板书:·a·a).师:(指准式子)在这个式子中,一共有5个a相乘,可以写a的5次方(板书:=a5). 师:(指准式子)通过上面的计算,我们又得到,a3·a2=a5.师:从这两个例子,谁发现了同底数幂相乘的规律?(等到有一部分学生举手)师:同底数幂相乘有什么规律?大家先在小组里讨论讨论.(生小组讨论,师巡视倾听)师:谁来说同底数幂相乘的规律?生:……(多让几名同学发表看法,要鼓励学生用自己的语言概括)师:(指准25×22=……=27)同底数幂相乘,底数不变,指数相加.师:(指准a3·a2=……=a5)同底数幂相乘,底数不变,指数相加.(师出示下面的板书)同底数幂相乘,底数不变,指数相加.师:(指板书)这个结论就是同底数幂乘法的法则,大家把这个法则读两遍.(生读)师:(指板书)这个法则还可以用公式来表示.(板书:a m·a n=)根据法则,a m·a n等于什么?生:a m+n.(师板书:a m+n)师:(指式子)在这个公式中,m,n都是正整数(板书:(m,n都是正整数)).师:下面我们来看一道例题.(师出示例题)例计算:(1)x2·x5; (2)a·a6; (3)2×24×23; (4)x m·x3m+1.(先让生尝试,讲解时要紧扣法则,解题格式如课本第142页所示)(四)试探练习,回授调节3.直接写出结果:(1)65×64= (2)103×102=(3)a7·a6= (4)x3·x=(5)a n·a n+1= (6)x5-m·x m=(7)x3·x7·x2= (8)2m·2·22m-1=4.填空:(1)b5·b( )=b8; (2)y( )·y3=y6;(3)10×10( )=106; (4)5( )×58=59.5.判断正误:对的画“√”,错的画“×”.(1)b5·b5=2b5;()(2)b5+b5=b10;()(3)b5·b5=b25;()(4)b·b5=b5;()(5)b5·b5=b10. ()6.填空:某台电子计算机每秒可进行1014次运算,它工作103秒进行次运算.(五)归纳小结,布置作业师:本节课我们学习了同底数幂的乘法法则,同底数幂的乘法法则是什么?生:(齐答)同底数幂相乘,底数不变,指数相加.(作业:P142练习)四、板书设计课题:15.1整式的乘法(第2课时)——幂的乘方一、教学目标1.经历幂的乘方法则的形成过程,会进行幂的乘方运算.2.培养归纳概括能力和运算能力.二、教学重点和难点1.重点:幂的乘方运算.2.难点:归纳概括幂的乘方法则.三、教学过程(一)基本训练,巩固旧知1.填空:同底数幂相乘,底数,指数,即a m·a n= (m,n都是正整数).2.判断正误:对的画“√”,错的画“×”.(1)53+53=56;()(2)a3·a4=a12;()(3)b5·b5=2b5;()(4)c·c3=c3;()(5)m3·n2=m5. ()3.直接写出结果:(1)33×35= (2)105×106=(3)x2·x4= (4)y2·y=(5)a m·a2= (6)2n-1×2n+1=(7)42×42×42= (8)a3·a3·a3·a3=(二)创设情境,导入新课师:上节课我们说过,为了学习整式的乘除,我们需要学习一些准备知识.上节课我们学习了准备知识之一:同底数幂相乘,本节课我们要学习准备知识之二:幂的乘方(板书课题:15.1.2幂的乘方).(三)尝试指导,讲授新课师:什么是幂的乘方?(板书:(32)3,并指准)32是一个幂,这个式子表示这个幂的3次方,也就是幂的乘方.师:怎么做幂的乘方呢?(指(32)3)我们还是看这个例子.师:(指准(32)3)3的2次方是一个幂,这个幂的3次方是什么意思?生:……(多让几位同学发表看法)师:(指(32)3)这个式子表示3个32相乘(板书:=32×32×32).大家看一看,想一想,是不是这么回事?(稍停片刻)师:(指准式子)32×32×32又等于什么?生:36.(师板书:=36)师:(指准式子)通过上面的计算,我们得到(32)3=36.师:下面我们再来看一个幂的乘方的例子.师:(板书:(a3)4,并指准)a3是一个幂,这个幂的4次方是什么意思?(稍停)它表示4个a3相乘(边讲边板书:=a3·a3·a3·a3).师:(指准式子)利用同底数幂相乘的法则,a3·a3·a3·a3又等于什么?生:a12.(师板书:=a12)师:(指准式子)通过上面的计算,我们又得到(a3)4=a12.师:从这两个例子,谁发现了幂的乘方的规律?(等到有一部分学生举手)师:幂的乘方有什么规律?把你的看法在小组里交流交流.(生小组交流,师巡视倾听)师:谁来说一说幂的乘方的规律?生:……(多让几名同学发表看法,要鼓励学生用自己的语言概括)师:(指准(32)3=……=36)幂的乘方,底数不变,指数相乘.师:(指准(a3)4=……=a12)幂的乘方,底数不变,指数相乘.(师出示下面的板书)幂的乘方,底数不变,指数相乘.师:(指板书)这个结论就是幂的乘方的法则,大家把这个法则读两遍.(生读)师:(指板书)这个法则还可以用公式来表示.(板书:(a m)n=)根据法则(a m)n等于什么?生:a mn.(师板书:a mn)师:(指准式子)在这个公式中,m,n都是正整数(板书:(m,n都是正整数)).师:下面我们来看一道例题.(师出示例题)例1 计算:(1)(103)5; (2)(a4)4; (3)(a m)2; (4)-(x4)3.(先让生尝试,讲解时要紧扣法则,解题格式如课本第143页所示)(四)试探练习,回授调节4.直接写出结果:(1)(102)3= (2)(y6)2=(3)-(x3)5 = (4)(a n)6=5.填空:(1)a2·a3= ; (2)(x n)4= ;(3)x n+x n= ; (4)(a2)3= ;(5)x n·x4= ; (6)a3+a3= .(五)尝试指导,讲授新课师:下面我们再来看一道例题.(师出示例2)例2 计算:(1)(x2)8·(x3)4; (2)(y3)4+(y2)6;(逐步让生尝试)(六)试探练习,回授调节6.计算:(1)(x2)3·(x3)2 (2)(a2)8-(a4)4= == =(七)归纳小结,布置作业师:本节课我们学习了幂的乘方法则,幂的乘方法则是什么?生:(齐答)幂的乘方,底数不变,指数相乘.(作业:P143练习)四、板书设计课题:15.1整式的乘法(第3课时)——积的乘方一、教学目标1.经历积的乘方法则的形成过程,会进行积的乘方运算.2.培养归纳概括能力和运算能力.二、教学重点和难点1.重点:积的乘方运算.2.难点:归纳概括积的乘方法则.三、教学过程(一)基本训练,巩固旧知1.填空:同底数幂相乘,底数不变,指数;幂的乘方,底数不变,指数.2.判断正误:对的画“√”,错的画“×”.(1)(a3)3=a6;()(2)x3+x3=x6;()(3)x3·x4=x12;()(4)(x4)2=x8;()(5)a6·a4=a10;()(6)a5+a5=2a5. ()3.直接写出结果:(1)7×76= (2)(33)5=(3)y2+y2= (4)t2·t6=(5)-(a4)6= (6)(x2)5·x4=(二)创设情境,导入新课师:前面我们说过,这一章我们要学的内容是整式的乘除,为了学习整式的乘除,需要先学习一些准备知识.上面两节课我们学习了两个准备知识:同底数幂的乘法和幂的乘方,本节课我们将学习第三个准备知识——积的乘方(板书课题:15.1.3积的乘方).(三)尝试指导,讲授新课师:什么是积的乘方?(板书:(ab)2,并指准)ab是a与b的积,这个式子表示a与b积的2次方,也就是积的乘方.师:怎么做积的乘方呢?(指(ab)2)我们还是看这个例子.师:(指(ab)2)ab的2次方表示什么意思?生:……(多让几名同学发表看法)师:(指(ab)2)这个式子表示2个ab相乘(板书:=(ab)·(ab)).师:我们知道,乘法有交换律和结合律,利用乘法的交换律和结合律,(指准(ab)·(ab))我们可以把a写在一起乘,把b写在一起乘,(a·a)·(b·b)(边讲边板书:=(a·a)·(b·b)).大家仔细看一看,是不是这么回事?(稍停)师:(指(a·a)·(b·b))这个式子等于什么?等于a2b2(板书:=a2b2)师:(指准式子)通过上面的计算,我们得到(ab)2=a2b2.师:下面我们再来看一个积的乘方的例子.师:(板书:(ab)3,并指准)ab的3次方表示什么意思?生:表示3个ab相乘.(生答师板书:=(ab)·(ab)·(ab))师:利用乘法的交换律和结合律,(指准(ab)·(ab)·(ab))我们可以把a和写在一起乘,把b写在一起乘,于是得到(a·a·a)·(b·b·b)(边讲边板书:=(a·a·a) ·(b·b·b)). 师:(指(a·a·a)·(b·b·b))这个式子又等于什么?生:a3b3.(生答师板书:=a3b3)师:(指准式子)通过上面的计算,我们又得到(ab)3=a3b3.师:从这两个例子,我们想同学们已经发现了积的乘方的规律.(板书:(ab)4)不要中间过程,你能说出(ab)4的结果吗?生:a4b4.(多让几名同学回答,然后师板书:=a4b4)师:(板书:(ab)5)那(ab)5等于什么?生:(齐答)a5b5.(师板书:=a5b5)师:(板书:(ab)n)那(ab)n又等于什么?生:a n b n.(师板书:=a n b n)师:看来大家是真的掌握了积的乘方的规律,积的乘方等于什么?哪位同学会用一句话把这个规律说出来?生:……(多让几名同学说,鼓励学生用自己的语言概括)师:积的乘方的规律应该怎么说呢?(指准(ab)4=a4b4)ab是积,a是这个积的一个因式,b 也是这个积的一个因式.积的乘方等于每个因式分别乘方的积.师:(指准(ab)n=a n b n)积的乘方等于每个因式分别乘方的积.(师出示下面的板书)积的乘方等于每个因式分别乘方的积.师:(指板书)这个结论就是积的乘方的法则,大家把这个法则读两遍.(生读)师:下面我们来看一道例题.(师出示例题)例计算:(1)(2a)3; (2)(-5b)3; (3)(xy2)2; (4)(-2x3)4.师:(板书:解:(1)(2a)3=,并指准)2a有两个因式,一个是2,一个是a,可见(2a)3是积的乘方.根据积的乘方的法则,(2a)3=23·a3(边讲边板书:23·a3).而23=8,所以结果为8a3(边讲边板书:=8a3).(其它小题可逐步让生尝试,运用法则前要让学生明确积的因式)(四)试探练习,回授调节4.计算:(1)(3x)2=(2)(-2y)3=(3)(2ab)3=(4)(-xy)4=5.计算:(1)(bc3)2=(2)(2x2)3=(3)(-2a2b)3=(4)(-3x2y3)2=6.判断正误:对的画“√”,错的画“×”.(1)b3·b3=2b3;()(2)x4·x4=x16;()(3)(a5)2=a7;()(4)(a3)2·a4=a9;()(5)(ab2)3=ab6;()(6)(-2a)2=-4a2. ()(五)归纳小结,布置作业师:本节课我们学习了积的乘方法则,积的乘方法则是什么?生:(齐答)积的乘方等于每个因式分别乘方的积.(作业:P144练习,P148习题2.)四、板书设计15.1整式的乘法(第4课时)一、教学目标1.经历单项式乘单项式法则形成的过程,会进行单项式乘单项式的运算.2.培养归纳概括能力和运算能力.二、教学重点和难点1.重点:单项式乘单项式.2.难点:归纳概括单项式乘单项式的法则.三、教学过程(一)基本训练,巩固旧知1.直接写出结果:(1)(-3x)2= (2)(-b2)3=(3)a3·a= (4)(y2)2·y3=2.填空:(1)像3a,xy2这样,数字和字母乘积的式子叫做式;(2)像2x-3,x+5y2这样,几个单项式的和叫做式;(3)单项式与多项式统称式.3.判断正误:对的画“√”,错的画“×”.(1)-4x是单项式;()(2)-4x+1是单项式;()(3)2xy2是多项式;()(4)x2-2x+1是多项式;()(5)单项式-3ab的系数是-3;()(6)单项式a2b的系数是0. ()(二)创设情境,导入新课师:前面我们学习了同底数幂的乘法、幂的乘方、积的乘方,学习这些知识都是为了学习整式乘法作准备.从今天开始,我们才正式进入本章的主题——整式的乘法(板书课题:15.1.4整式的乘法).师:我们知道,整式包括单项式和多项式.因为整式包括单项式和多项式,所以整式的乘法可以分为三种.哪三种?生:……(多让几位同学发表看法)师:整式的乘法可以分为单项式乘单项式、单项式乘多项式、多项式乘多项式.本节课我们学习第一种,也就是单项式乘单项式(板书:(单项式乘单项式)).(三)尝试指导,讲授新课师:单项式乘单项式怎么乘?让我们来看一个例子.师:(板书:3x2·4xy,并指准)3x2是一个单项式,4xy也是一个单项式,这两个单项式怎么乘呢?利用乘法交换律和结合律,(指准式子)我们可以把系数3和系数4写在一起乘,把x2和x写在一起乘,y照抄,这样就得到(3×4)·(x2·x)·y(边讲边板书:=(3×4)·(x2·x)·y).师:(指(3×4)·(x2·x)·y)然后再计算这个式子,这个式子等于什么?生:12x3y.(生答师板书:=12x3y)师:下面我们再看一个单项式乘单项式的例子.师:(板书:-2ac5·6bc2)-2ac5是一个单项式,6bc2也是一个单项式,这两个单项式又怎么乘呢?生:……师:(指准式子)利用乘法交换律和结合律,我们可以把系数-2和6写在一起乘,把c5和c2写在一起乘,a、b照抄,这样就得到(-2×6) ·a·b·(c5·c2)(边讲边板书:=(-2×6)·a·b·(c5·c2)).师:最后的结果是什么?生:-12abc7.(生答师板书:=-12abc7)师:从这两个例子,谁会概括单项式乘单项式的法则?(等到有一部分学生举手,再叫学生)生:……(多让几名同学概括,鼓励学生用自己的语言概括)师:(指准第一个式子)单项式与单项式相乘,系数相乘,相同字母相乘,剩下的照抄. 师:(指准第二个式子)单项式与单项式相乘,系数相乘,相同字母相乘,剩下的照抄. (师出示下面的板书)单项式与单项式相乘,系数相乘,相同字母相乘,剩下的照抄.师:(指板书)大家把单项式乘单项式的法则读两遍.(生读)师:下面我们来看一道例题.(师出示下面的例题)例计算:(1)(-5a2b)(-3a); (2)(2x3)(-5xy3).(先让生尝试,然后师边讲边板演,讲解要紧扣法则,解题格式如课本第145页所示)(四)试探练习,回授调节4.计算:(1)3x2·5x3=(2)4y·(-2xy2)=(3)(2m2n)·(mn)=(4)(-a2b)·(5b2)=5.计算:(1)(3x2y)3·(-4x)=(2)(-2a)3·(-3a)2=6.判断正误:对的画“√”,错的画“×”.(1)3a3·2a2=6a6;()(2)2x2·3x2=6x4;()(3)3x2·4x2=12x2;()(4)5y3·3y5=15y15. ()7.填空:光的速度约为3×105千米/秒,太阳光照射到地球上需要的时间大约是5×102秒,地球与太阳的距离约为千米.(五)归纳小结,布置作业师:整式乘法分为单项式乘单项式、单项式乘多项式、多项式乘多项式,本节课我们学习了整式乘法的一种——单项式乘单项式,单项式乘单项式怎么乘?生:(齐答)单项式与单项式相乘,系数相乘,相同字母相乘,剩下的照抄.(作业:P149习题3.)四、板书设计15.1整式的乘法(第5课时)一、教学目标1.知道单项式乘多项式的法则,会运用法则进行单项式乘多项式的运算.2.培养运算能力,渗透转化思想.二、教学重点和难点1.重点:单项式乘多项式.2.难点:单项式乘多项式法则的运用.三、教学过程(一)基本训练,巩固旧知1.直接写出结果:(1)4a2·2a= (2)x·(-5)=(3)(2xy)·(-3x)= (4)(ab2)·(-6b)=(5)(2x)·(32x)= (6)(14ab)·(2a)=2.填空:几个式的和叫做多项式,其中,每个式叫做多项式的项.3.填空:(1)多项式3x+4y有2项,它们是、;(2)多项式2x-3有2项,它们是、;(3)多项式23ab2-2ab有2项,它们是、;(4)多项式2x2-3x+4有3项,它们是、、 .(二)创设情境,导入新课师:(板书课题:15.1.4整式的乘法)我们知道,整式的乘法可以分为单项式乘单项式、单项式乘多项式、多项式乘多项式.上节课我们学习了单项式乘单项式,那本节课我们学什么呢?(稍停)本节课我们将学习单项式乘多项式(板书:(单项式乘多项式)). (三)尝试指导,讲授新课师:(板书:m(a+b+c),并指准)m是一个单项式,a+b+c是一个多项式,这个式子是单项式乘多项式,怎么乘呢?利用分配律m(a+b+c)=ma+mb+mc(边讲边板书:=ma+mb+mc). 师:(指式子)从这个式子我们可以得到单项式乘多项式的法则,哪位同学会用自己的话概括法则?生:……(多让几名同学概括)师:(指准式子)从这个式子我们可以看出,单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.(师出示下面的板书)单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.师:(指板书)大家把单项式乘多项式的法则读两遍.(生读)师:下面我们来看一道例题.(师出示例题)例1 计算:(1)(-4x2)·(3x+1); (2)(23ab2-2ab)·12ab.师:(板书:解:(1)(-4x2)·(3x+1),并指准)3x+1是多项式,多项式3x+1有几项?是哪几项?生:……师:(指准式子)多项式3x+1有2项,一项是3x,一项是1.师:(指准式子)单项式-4x2乘多项式3x+1,怎么乘?(稍停)利用法则可以得到,(指(-4x2)·(3x+1))这个式子等于(-4x2)·3x+(-4x2)·1(边讲边板书:=(-4x2)·3x+(-4x2)·1).师:怎么用的法则?请大家看清楚了.(指准式子)单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.师:(指准式子)(-4x2)·3x等于什么?生:-12x3.师:(指准式子)(-4x2)·1等于什么?生:-4x2.师:所以,结果是-12x3-4x2(边讲边板书:=-12x3-4x2).((2)题的教学过程与(1)题相同,解题格式如课本第146页所示)(四)试探练习,回授调节4.计算:(1)3a(5a-b)=(2)(x-3y)(-6x)=(3)-2x(x2-x+1)=5.选做题:如图,利用图形你能得到等式m(a+b+c)=ma+mb+mc吗?(五)尝试指导,讲授新课(师出示例2)例2 化简x(x+3)-2x(x-1).(先让生尝试,再讲解板演.从-2x(x-1)可以直接得出-2x2+2x,也可以先写成-(2x2+2x),再去括号)(六)试探练习,回授调节6.化简:(1)-3x(x+2)+2x(x+1)=(2)x(x-1)-3x(2x-5)=(七)归纳小结,布置作业师:本节课我们学习了单项式乘多项式,单项式乘多项式怎么乘?生:(齐答)单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加. 师:(指例1(2)题)计算单项式乘多项式,关键是什么?生:……师:(指例1(2)题)计算单项式乘多项式,关键是把单项式乘多项式转化为单项式乘单项式.(作业:P149习题4,P146练习2)四、板书设计15.1整式的乘法(第6课时)一、教学目标1.知道多项式乘多项式的法则,会运用法则进行多项式乘多项式的运算.2.培养运算能力,渗透转化思想.二、教学重点和难点1.重点:多项式乘多项式.2.难点:多项式乘多项式法则的运用.三、教学过程(一)基本训练,巩固旧知1.填空:(1)单项式与单项式相乘,相乘,相同相乘,剩下的照抄;(2)单项式与多项式相乘,就是用单项式去乘多项式的,再把所得的积相加.2.直接写出结果:(1)(5x3)·(2x2y)= (2)(-3ab)·(-4b2)=(3)(xy)·(-2xy3)= (4)(2×103)·(8×108)=3.计算:(1)5x(2x2-3x+4)=(2)-6a(a-3b)=(二)创设情境,导入新课师:(板书课题:15.1.4整式的乘法)我们讲过,整式的乘法可分为三种,是哪三种?生:单项式乘单项式、单项式乘多项式、多项式乘多项式.师:前面我们学习了单项式乘单项式、单项式乘多项式,这节课我们学习多项式乘多项式(板书:(多项式乘多项式)).(三)尝试指导,讲授新课师:(板书:(a+b)(m+n),并指准)a+b是一个多项式,m+n也是一个多项式,这两个多项式相乘,怎么乘呢?大家自己先试着乘一乘.(生尝试,师巡视)师:谁来说说你的结果?生:am+an+bm+bn.(让一名好生回答)师:他的这个结果是怎么得到的?(指准(a+b)(m+n))我们可以先把m+n看成是一个单项式,利用单项式乘多项式的法则来乘,能得到什么?(稍停)能得到a(m+n)+b(m+n)(边讲边板书:a(m+n)+b(m+n)).师:(指式子)这一步很关键,大家仔细看一看.(稍停,如有必要可再讲一遍)师:(指a(m+n)+b(m+n))得到了这个式子,再利用单项式乘多项式法则,得到am+an+bm+bn (边讲边板书:=am+an+bm+bn).师:(指式子a(m+n)+b(m+n))省掉这一步,我们得到这样一个等式,(a+b)(m+n)= am+an+bm+bn(边讲边板书:(a+b)(m+n)=am+an+bm+bn).师:(指式子)从这个等式,我们可以概括出多项式乘多项式的法则,谁会用自己的语言来概括?生:……(多让几名同学概括)(师出示下面的板书)多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.师:(指板书)这就是多项式乘多项式的法则,大家把这个法则读一遍.(生读)师:在这个法则中,有一句话比较难懂,(指准板书)“用一个多项式的每一项乘另一个多项式的每一项”,这句话是什么意思?(稍停)师:(指准(a+b)(m+n)=am+an+bm+bn)a乘m(边讲边在等式中画带箭头的线,如下图所示),a乘n(边讲边在等式中画带箭头的线,如下图所示),b乘m(边讲边在等式中画带箭头的线,如下图所示),b乘n(边讲边在等式中画带箭头的线,如下图所示).这就是多项式a+b的每一项乘多项式m+n的每一项的意思.把所得的积相加,得到的是什么?是am+an+bm+bn.(a+b)(m+n)=am+an+bm+bn师:下面我们来看一道例题.(师出示例题)例1 计算:(1)(3x+1)(x+2); (2)(3x+y)(x-2y).师:(板书:解:(1)(3x+1)(x+2),并指准)多项式3x+1有2项,一项是3x,一项是1;多项式x+2也有2项,一项是x,一项是2.根据多项式乘多项式的法则,这两个多项式相乘等于什么?(板书:=)师:(指准式子)先用3x去乘x+2的每一项(板书:(3x)·x (3x)·2),用1去乘x+2的每一项(板书:1·x 1×2),再把所得的积相加(板书三个加号,上面的板书连成:(3x)·x+(3x)·2+1·x+1×2).师:(指(3x)·x+(3x)·2+1·x+1×2)这个式子等于什么?等于3x2+6x+x+2(边讲边板书:=3x2+6x+x+2).(指准3x2+6x+x+2)6x与x是同类项,合并同类项得到3x2+7x+2(边讲边板书:=3x2+7x+2). 师:((2)小题的教学过程同上,解题过程如下)(2) (3x+y)(x-2y)=(3x)·x+(3x)·(-2y)+y·x+y·(-2y)=3x2-6xy+xy-2y2=3x2-5xy-2y2(四)试探练习,回授调节4.填空:(1) (2x+1)(x+3)= + + +== ;(2) (m+2n)(m-3n)= + + +== .(五)尝试指导,讲授新课(师出示例2)例2 计算:(1)(x-8y)(x-y); (2)(x+y)(x2-xy+y2).师:(指准例1(2)题)从例1我们可以发现,多项式乘多项式一般有三步,哪三步?第一步运用法则,第二步单项式乘单项式,第三步合并同类项.在这三步中,运用法则这一步写起来比较麻烦,为了减少麻烦,我们可以把第一步第二步合成一步.怎么合成一步?让我们来看例2.师:(板书:解:(1)(x-8y)(x-y),并指准)多项式x-8y有2项,一项是x,一项是-8y,多项式x-y也有2项,一项是x,一项是-y.根据多项式乘多项式的法则,这两个多项式怎么乘?(板书:=)x乘x,也就是x2(边讲边板书:x2);x乘-y,也就是-xy(边讲边板书:-xy);-8y乘x,也就是-8xy(边讲边板书:-8xy);-8y乘-y,也就是8y2(边讲边板书:+8y2).师:(指准式子)这样我们就把两步合成了一步,直接得到x2-xy-8xy+8y2.然后再合并同类项,结果是什么?生:x2-9xy+8y2.(生答师板书:=x2-9xy+8y2)((2)小题可先让生尝试,然后师边讲解边板演,解题过程如课本148页所示)(六)试探练习,回授调节5.计算:(1) (x+3)(2x+5) (2) (a+3b)(a-3b)= == =(3) (2x2-1)(x-4) (4) (a-1)(a-1)= == =(5) (x-y)(x2+xy+y2)==6.选做题:如图,利用图形你能得到等式(a+b)(m+n)=am+an+bm+bn吗?(七)归纳小结,布置作业师:本节课我们学习了多项式乘多项式,多项式乘多项式怎么乘?生:(齐答)多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.师:多项式乘多项式的法则是怎么得到的?(指准(a+b)(m+n)=a(m+n)+b(m+n)= am+an+bm+bn)是从这个式子得到的.从这个式子我们还可以看出,多项式乘多项式实际上是先把多项式乘多项式转化为单项式乘多项式,再把单项式乘多项式转化为单项式乘单项式.(作业:P149习题5)四、板书设计15.1整式的乘法(第7课时)一、教学目标1.会比较熟练地进行多项式乘多项式的运算.2.会进行简单的整式加减乘混合运算.3.培养运算能力.二、教学重点和难点1.重点:进行多项式乘多项式的运算.2.难点:整式混合运算.三、教学过程(一)基本训练,巩固旧知1.口答:(1)2x·3y; (2)(-x)·3x; (3)(-3y)·(-5x);(4)y·2y; (5)(-2)·2x; (6)(3y)·4;(7)2x·4x2; (8)2x·(-2xy); (9)(-y)·(4x2);(10)(-3y)·2xy; (11)y2·2x; (12)(-y)·y2.2.直接写出结果:(1)2x(x2+2)=(2)(-b)·(-5b+3)=(3)(4y2-3y)·2y=(4)(3-a)(-2a)=3.计算:(1) (2x+3)(x+3) (2) (x-2)(x+5)= == =(3) (-x+4y)(x+4y) (4) (2a+b)(2a-b)= == =(5) (3a+b)2 (6) (3a-b)2=(3a+b)(3a+b) == == =(二)创设情境,导入新课师:初一的时候我们学过整式的加减,前面几节课我们又学习了整式的乘法.下面我们来看一道整式的计算题,在这道题中有乘法,也有加减法.(三)尝试指导,讲授新课(师出示例1)例1 计算:5x(2x+1)-(2x+3)(x-5).(先让生尝试,然后师边讲解边板演,解题过程如下)解:5x(2x+1)-(2x+3)(x-5)=10x2+5x-(2x2-10x+3x-15)=10x2+5x-(2x2-7x-15)=10x2+5x-2x2+7x+15=8x2+12x+15(四)试探练习,回授调节4.计算:(x+3)(2x-5)-(x-1)(x-2)====(五)尝试指导,讲授新课师:下面我们再来看一个例题.(师出示例2)例2 求值:(2x+3)2-(x-1)(4x-5),其中x=100.(先让生尝试,然后师边讲解边板演,解题过程如下)解:(2x+3)2-(x-1)(4x-5)=(2x+3)(2x+3)-(4x2-5x-4x+5)=(4x2+6x+6x+9)-(4x2-9x+5)=4x2+6x+6x+9-4x2+9x-5=21x+4当x=100,原式=21x+4=21×100+4=2104.(六)试探练习,回授调节5.求值:(2x+1)(2x-3)-(2x-3)2,其中1 x6(七)归纳小结,布置作业师:本节课我们学习了整式的混合运算,(指准例1)在整式的混合运算中,有乘法也有加减,谁来说说怎么做这种题目?生:……(作业:P149习题6.7.)四、板书设计(略)。

整式乘法第1课时教案人教版八年级数学上册

整式乘法第1课时教案人教版八年级数学上册

14.1.4整式乘法第1课时【教学目标】1.理解单项式乘法和单项式与多项式相乘的法则,会用乘法法则进行运算;2.经历乘法法则的形成过程,发展学生的运算能力,体会类比思想.3.学生从已有知识出发,通过适当的探究,获得一些直接的经验,体会数学的实用价值.【教学重难点】重点:理解并掌握单项式与单项式、多项式相乘运算法则;难点:单项式与单项式、多项式相乘时结果的符号的确定.【教学方法】启发式教学、举例合作探究法.【教学过程】新课导入:创设情境,提出问题:问题1:怎样计算(3×105)×(5×102)?计算过程中用到了哪些运算律及运算性质?(3×105)×(5×102)==(3×5)×(105×102)=15×107=1.5×108.运用了乘法交换律、结合律和同底数幂的乘法.新课讲授:(一)单项式乘以单项式问题2:如果将上式中的数字改为字母,怎样计算这个式子?a4·a3= (5×1.2) ·(a4·a3)=6 a7;5a4·a3 b2)=[ 5×(1.2)] ·(a4·a3 b2)=6 a7 b2.根据以上计算,引导学生发现计算单项式乘以单项式的规律方法.1.系数相乘;2.同底数的幂相乘;3.只在一个单项式里含有的字母,连同它的指数作为积的一个因式.用前面的发现来尝试计算:ac5·2bc2=2(a·b)·(c5·c2) (乘法交换律、结合律)=2abc5+2(同底数幂的乘法)=2abc7.通过又一轮实践及时与学生一起归纳结论:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.注意事项:(1)系数相乘;(2)相同字母的幂相乘;(3)其余字母连同它的指数不变,作为积的因式.例1:计算:(1)(5a2b)(3a);(2)(2x)3(5xy2).解:(1) 原式=[(5)×(3)](a2·a)·b =15a3b(2) 原式=8x3·(5xy2)=[8×(5)](x3·x)·y2=40x4y2比较以上两题你发现了哪些注意事项?(1)先做乘方,再做单项式相乘;(2)系数相乘不要漏掉负号.课堂练习:1.口算:(1)5x2y2.(3x2y)(2) (x2)2 .(2x3y2)2(3)(1.2×103) ·(5×102)2.判断正误.(1)4a2 •2a4 = 8a8( )(2)6a3 •5a2=11a5 ( )(3)(7a)•(3a3)=21a4 ( )(4)3a2b•4a3=12a5 ( )先通过口算练习训练运算的熟练程度,再通过正误判断重点关注计算的注意事项来提高学生的运算能力.拓展练习:这里有三个单项式相乘,还可以利用上面的法则吗?23222335xy z x yz - 变式:已知2x 3m +1y 2n 与7x n 6y 3m 的积与x 4y 是同类项,求m 2+n 的值.解:∵2x 3m +1y 2n 与7x n 6y 3m 的积与x 4y 是同类项,解得,3,2,n m =⎧⎨=⎩∵ m 2+n =7.总结分析:单项式乘以单项式就是把它们的系数和同底数幂分别相乘,结合同类项的定义,列出二元一次方程组求出参数的值,然后代入求值即可.课堂练习:1.当m 为偶数时,(ab )m ·(ba )n 与(ba )m +n 的关系是( )A.相等B.互为相反数C.不相等D.不确定2.若(8×106)×(5×102)×(2×10)=m ×10n (1≤m <10),则m ,n 的值分别为( )A.m =8,n =8B.m =2,n =9C.m =8,n =10D.m =5,n =103.若(a m · b n )·(a 2 ·b )=a 5b 3 那么m +n =( )4.计算:3x 3y ·(2y )2(xy)2·(xy )xy 3·(4x )2.解:原式=3xy 3·4y 2x 2y 2· (xy )xy 3·16x2=12x 3y 3+x 3y 316x 3y 3=3x 3y 35.如图,王大伯有一块长方形菜地,他把这块菜地分为6个大小相等的菜畦,每个菜畦的宽都是a 米,长都是ka 米,这块菜地的面积是多少?解:S =2a·3ka=(2×3)ka·a =6ka 2(平方米)答:这块菜地的面积是6ka 2 平方米.(二)单项式乘以多项式探究:为了扩大绿地的面积,要把街心花园的一块长p 米,宽b 米的长方形绿地,向两边分别加宽a 米和c 米,你能用几种方法表示扩大后的绿地的面积?方法一:看作一个长方形,计算它的面积.面积:(a +b +c )p ;方法二:看作3个长方形,计算它们的面积和.面积:pa +pb +pc .(a +b +c )p = pa +pb +pc .思考:你能用自己的语言概括出单项式乘多项式的法则吗?pa +pb +pc =(a +b +c )p归纳结论:即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加. 注意事项:(1)依据是乘法分配律;(2)积的项数与多项式的项数相同.例2:计算:解:(1)(4x )·(2x 2+3x 1)=(4x )·2x 2+(4x )·3x +(4x )·5(1)=8x 312x 2+4x ;观察两道习题要求学生去发现计算的注意事项: 1.单项式乘多项式的结果仍是多项式,积的项数与原多项式的项数相同;2.在单项式乘法运算中要注意系数的符号;3.不要出现漏乘现象,运算要有顺序.课堂练习:判断正误:② ②()2233313a b -ab c -a b =;( × )③()22432-32-1-36-3a a a a a a +=+.( × )例3:2a2·(ab+b2)5a(a2bab2)解:原式=2a3b2a2b25a3b+5a2b2=2a3b2a2b25a3b+5a2b2=7a3b+3a2b2.注意:单项式与多项式相乘的结果中有同类项,应将同类项合并.变式:先化简,再求值:3a(2a24a+3)2a2(3a+4),其中a=2.解:3a(2a24a+3)2a2(3a+4)=6a312a2+9a6a38a2=20a2+9a.当a=2时,原式=20×49×2=98.课堂练习:1.若(a m b n)·(a2b)=a5b3 那么m+n=( D )2.填空(1)4(ab+1)=(2)3x(2xy2)=(3)(2x5y+6z)(3x)=(4)(2a2)2(a2b+c)=3.解方程:8x(5x)=342x(4x3).解:40x8x2=348x2+6x,40x6x=34,34x=34,解得:x=1.4.计算:-2x2·(xy+y2)5x(x2yxy2).解:原式=(2x2)·xy+(2x2)·y2+(5x)·x2y+(5x)·(xy2)=2x3y+(2x2y2)+(5x3y)+5x2y2=7x3y+3x2y2.5.解方程:8x(5x)=342x(4x3).解:40x8x2=348x2+6x,40x6x=34,34x=34,解得:x=1.课堂小结:说一说本节课都有哪些收获.掌握单项式乘以单项式和单项式乘以多项式的运算法则;熟悉运算法则的注意事项.作业布置:1.细心填一填。

《整式的乘法》第一课时参考教案

《整式的乘法》第一课时参考教案

1.6 整式的乘法(1)教学目标:经历探索单项式与单项式相乘的运算方法,较熟练地进行整式的乘法运算,并学会解决有关问题.教学关键:(1)单项式与单项式相乘的方法的探索.(2)单项式与单项式相乘的方法的理解.(3)体会单项式与单项式相乘时,需转化为系数相乘、同底数幂相乘.教学过程:一.问题引入问题一:如图,有6个小正方形组成的长方形.①若小正方形的边长为a ,则长方形的长与宽分别是多少?②长方形的面积可表示成什么?方法1: 方法2:③由此可见,2623a a a =⨯.你能用乘法的运算律来说明相等的原因吗?问题二:教材上“宣传画”的面积分别是多少?()mx x ⋅ ()⎪⎭⎫ ⎝⎛⋅x mx 43“想一想”:如何使结果表达得更简单些?二.算法探索1.思考:将下列各式的结果表达得更简单些?(1) 3223ab b a ⋅ (2)()()z y xyz 2⋅2.讨论:如何进行单项式与单项式相乘的运算?单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式.如:4a 2x 5·(-3a 3bx) =[4×(-3)](a 2·a 3)·b ·(x 5·x) =-12a 5bx 6.系数相乘 相同字母相乘(有理数的乘法) (同底数幂的乘法)注: 只在一个单项式中含有的字母,连同它的指数作为积的一个因式,不能丢掉这个因式.三.例题学习1.计算:(1)()⎪⎭⎫ ⎝⎛⋅xy xy 3122 (2)()()a b a 3232-⋅- (3))()45105104⨯⨯ (4)()()n m mn m 526325-⎪⎭⎫ ⎝⎛⋅- 解:(1)()()()322232312312y x y y x x xy xy =⋅⋅⎪⎭⎫ ⎝⎛⨯=⎪⎭⎫ ⎝⎛⋅ (2)()()()()[]()33323263232b a b a a a b a =⋅--=-⋅-(3)()()()()10945451021020101054105104⨯=⨯=⨯⨯=⨯⨯(4)()()()()()()3725522063256325n m n n m m m n m mn m =⋅⋅⋅⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛⋅- 2.巩固练习:P.23 随堂练习1、2P.24 习题1.8 1同学交流、互学.如: (1)单项式相乘的结果仍是单项式.(2)不论几个单项式相乘,都可以用这个法则. 等等.四.应用举例1.窗户的形状如图,其上部是半圆形,下部是边长相同的四个小正方形.已知小正方形的边长为a,求窗户的面积是多少?解:()()22222142142122a a a a a a ⎪⎭⎫ ⎝⎛+=+=+πππ 2.练习: (1)P.24 习题1.8 2(2)一种电子计算机每秒可作108次运算,它工作5×102秒可作多少次运算?五.小结作业1.小结: (1)单项式与单项式相乘,如何运算?(2)你还有什么体会?2.作业: 另见配套练习.。

《整式的乘法》第一课时教案

《整式的乘法》第一课时教案

《整式的乘法》第一课时教案《《整式的乘法》第一课时教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!1.教学内容(1)单项式与单项式相乘法则:一般地,单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘法则:一般地,单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.2.地位与作用单项式乘单项式综合用到有理数的乘法、幂的运算性质等知识,它是学习多项式乘法的基础,在整式乘法中,它有承前启后的作用,是整式乘法的关键.单项式乘多项式是研究多项式与多项式相乘、整式的除法和因式分解的基础,同时也是学习物理、化学等学科不可缺少的工具.本节课的教学效果将直接影响后续课程的教学.3.教学重点(1)单项式与单项式相乘法则的概括过程和运用.(2)单项式与多项式相乘法则的概括过程和运用.二、目标解析1.目标(1)理解单项式乘单项式、单项式乘多项式法则.(2)能够运用单项式乘单项式、单项式乘多项式法则进行运算.(3)在探索单项式与多项式相乘法则中,发展学生的运算能力,体会转化思想和数形结合的思想.2.目标解析(1)学生能理解并掌握单项式与单项式相乘、单项式与多项式相乘法则.(2)学生能运用单项式与单项式、单项式与多项式相乘法则.(3)结合具体的实例,让学生体会从特殊到一般的数学思想及类比的学习方法.三、学情诊断八年级学生已经掌握了有理数的乘法,并对幂的运算性质有一定的认知水平,再利用单项式与单项式相乘法则过程中,符号是计算过程中极易出错的问题.单项式与多项式相乘是利用乘法分配律展开,结果是一个多项式,其项数与多项式中的项数相同,学生往往出现漏乘现象.四、教学策略1.教学手段利用多媒体和导学案辅助教学,提高课堂效率和学生的积极性.2.教学工具电脑和投影仪.五、教学过程本节课以教材为蓝本,以学生为主体,以高效为目标,以多媒体和导学案为手段,我将整个教学过程设计为以下8个环节:1.观看视频,激发热情首先让学生欣赏一段天宫二号起飞的视频,再提出问题:“天宫二号飞行的高度怎么求?”,由于学生已经学过路程问题,他们很快能说出“速度乘时间”.【设计意图】由天宫二号起飞视频入手,提高学生的学习积极性,既能让学生体会到数学来源于生活,也能服务于生活,更能激发学生的爱国热情.2.引入问题,探索新知新课标指出,教师是课堂教学的组织者、引导者、合作者,学生才是学习的主体.因此在这一环节,我引导学生探索,设置了问题1.问题1“天宫二号”垂直起飞的平均的速度约7×103m/s,垂直飞行的时间约2×102s,你知道“天宫二号”垂直飞行路程约是多少吗?问题1是由学生观看的视频抽象出来数学问题,并提出问题:“天宫二号”的垂直飞行的路程是多少呢?学生根据已经学过的知识,很容易的得出结论(7×103)×(2×102)m.我接着问:“那么(7×103)×(2×102)等于多少呢”,学生根据整数与整数的乘法和科学记数法等知识,能求出结果是1.4×106.肯定学生的回答后,再次追问了一个问题:在计算(7×103)×(2×102)的过程中,运用了哪些运算律和运算性质?这个问题不是很难,学生能够回答,结论是:乘法交换律、乘法结合律以及幂的运算性质.为了进一步引导,我追问了两个问题.追问1如果将数据7×103改为7c3,2×102改为2c2,怎样计算7c3·2c2这个式子?追问2如果将数据7c3改为ac3,那怎样计ac3·2c2这个式子?追问1是将问题1中物理问题转化为纯数学问题,把数据10换成c.追问2是将思考题1中的7换成了a.通过追问1和追问2,我把“数”的运算转化为“式”的运算,并在此基础上,让小组合作讨论、归纳和总结出“式”的运算规律,即单项式与单项式相乘法则.【设计意图】第一个环节,是为探索单项式与单项式相乘法则做知识铺垫,第二个环节通过由特殊到一般,由具体到抽象,通过类比得出单项式与单项式相乘法则,同时也培养学生了探索新知的方法3.总结新知,应用新知通过问题1探究,归纳提炼出单项式与单项式相乘法则,即:一般地,单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.在这个运算法则里,要强调三个方面的内容,即系数、同底数幂和只在一个单项式里含有的字母.为了引导学生使用这个法则,我设置了例题1.例1计算:(1)(-5a2b)(-3a)(2) (2x)3(-5xy2)运用法则解决问题时,首先要认清式子的结构,即是否单项式与单项式相乘.显然例1第一题符合这样的结构,而例1第二题不符合这样的结构,式子里面有一个积的乘方运算,所以先运算积乘方,然后转化为单项式与单项式相乘.【设计意图】引导学生使用法则,加深学生对法则的理解.4.应用新知提高能力为了突出难点1,我设置了练习1和练习2.练习1口算下列各题,看谁算得又对又快:(1) 6x2·3xy(2) 4y·(-2xy2)(3) (-3ab)·2ab2(4) (-3x)2·5x3练习2计算:(1) (-3x)2·4x2(2) (-2a)3·(-3a)2练习1是一个抢答题,不但提高了学生的积极性,也活跃了课堂气氛,更让学生加强了对法则的理解和应用.练习2由学生独立完成,学生代表板书.师生共同点评学生代表板书结果,适时提醒学生注意符号问题.练习1、练习2加强了单项式与单项式相乘法则的应用.【设计意图】第一个环节是为了激发学生的积极性,活跃课堂氛围,初步检查了部分学生的掌握情况.第二个环节是检验全体学生的掌握情况.5.引入问题再探新知为了突破重点2,我引入了问题2,把实验中学的“思源广场”花坛抽象成为数学问题.问题2为了扩大绿地面积,实验中学把“思源广场”的一块长pm,宽bm的长方形绿地,向两边分别加宽am和cm,你能用几种方法表示扩大后的整个绿地面积?学生根据数形结合思想,用两种不同方式表示花坛的面积,利用面积不变这一条件,得到一个单项式乘多项式等于多项式,并由小组合作探究单项式与多项式相乘的规律.【设计意图】由校园内的“思源广场”引出新知,可以增加学生的学习兴趣.在推导法则过程中,体会转换和数形结合的思想的应用.6.归纳新知应用新知根据小组探究结果,由小组代表总结出单项式与多项式相乘法则,即:一般地,单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.在得出单项式与多项式相乘法则后,引导学生发现,单项式与多项式相乘,实质是利用乘法分配律转化为单项式与单项式相乘,再把所得的积相加.这一过程体现了转化的数学思想.为了突破难点2,我设置了例题2.例2计算:(1)(-4x)·(3x+1)(2)【设计意图】加强对法则的理解,由老师根据法则完成例题2,并适时提醒学生避免出现“漏乘”现象,并注意符号问题.7.训练新知拓展提升第一个环节,为了突破难点2,我设置了练习3.练习3计算:(1)3a(5a-2b)(2)(x-3y)(-6x)练习3由学生独立完成,学生代表板书.师生共同点评学生代表板书结果,并了解下面学生掌握情况,适时提醒可能出现的问题.【设计意图】由学生独立完成,学生代表板书,可以检验学生对法则的掌握情况为了培养学生的发散思维,第二个环节设置了一个拓展提升题:如图是改造后的“思源广场”花坛,你能求出它的整个面积吗?在这个环节中,小组内再次合作交流,从不同角度看待这个问题,通过一题多思,一题多解培养学生的探索精神和创新意识.通过学生发言讲解,体现学生是课堂的主体,把课堂真正还给学生.【设计意图】用不同方法求面积,培养学生的发散思维.8.总结收获课后反思为了让学生能清晰的理出本节课所学的知识,我引导学生从两个方面进行总结:(1)本节课在数学知识上你有哪些收获?(2)本节课体现出了哪些数学思想?【设计意图】通过归纳总结,优化知识结构,完善知识体系,体会数学思想,提高认知水平,同时培养了学生的归纳能力、语言表达能力.本节课同学们共同探讨了单项式与单项式相乘、单项式与多项式相乘法则,知识点都是学生通过探索、归纳发现的.对知识的理解步步深入,达到了各层次的目标要求,并且本节课注重了知识的拓展延伸,使课堂效益达到最佳状态.《整式的乘法》第一课时教案这篇文章共10120字。

人教版数学八年级上册14.1《整式的乘法(1)》名师教案

人教版数学八年级上册14.1《整式的乘法(1)》名师教案

14.1整式的乘法〔第3课时〕14.1.4 整式的乘法〔第1课时〕〔刘小兰〕一、教学目标〔一〕学习目标1.以实际问题为背景引入,激发学生对新知探索的欲望,调动学生的学习积极性.2.理解单项式与单项式相乘的法那么和单项式与多项式相乘的法那么,并会运用法那么进展计算.3.两个法那么的熟练,灵活运用.〔二〕学习重点单项式与单项式、单项式与多项式相乘的运算法那么的理解及其运用.〔三〕学习难点灵活地运用单项式与单项式、单项式与多项式相乘的法那么进展计算.二、教学设计〔一〕课前设计〔1〕单项式与单项式相乘的法那么:单项式与单项式相乘,把他们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,那么连同它的指数作为积的一个因式.〔2〕单项式与多项式相乘的法那么:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.〔1〕计算:3425a b a【知识点】单项式与单项式相乘的法那么.【数学思想】【解题过程】343434725(25)()1010a b a a a b a b a b +=⨯==【思路点拨】利用单项式与单项式相乘的法那么计算.【答案】 710a b .〔2〕计算:23()(2)a a -【知识点】单项式与单项式相乘的法那么.【数学思想】【解题过程】23235()(2)()(8)8a a a a a -=-=-【思路点拨】先进展积的乘方运算,再利用单项式与单项式相乘的法那么计算.【答案】 58a -.〔3〕322(3)c c -【知识点】单项式与多项式相乘的法那么.【数学思想】转化思想【解题过程】32323532(3)22326c c c c c c c -=-⨯=-【思路点拨】先转化成单项式与单项式相乘,再利用单项式与单项式相乘的法那么.【答案】5326c c -.〔4〕23(3)(41)m m m --+【知识点】单项式与多项式相乘的法那么.【数学思想】转化思想【解题过程】23232322532(3)(41)9(41)994919369m m m m m m m m m m m m m m --+=-+=-+⨯=-+【思路点拨】先转化成单项式与单项式相乘,再利用单项式与单项式相乘的法那么,注意符号确实定.【答案】5329369m m m -+.(二)课堂设计〔1〕同底数幂的乘法的性质:同底数幂相乘,底数不变,指数相加.即m n m n a a a +=〔m ,n 为正整数〕.〔2〕幂的乘方的性质:幂的乘方,底数不变,指数相乘.即()m n mn a a =〔m ,n 为正整数〕.〔3〕积的乘方的性质:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.即()n n n ab a b =〔n 为正整数〕.探究一:回忆旧知,创设情境,引入新课.●活动① 回忆旧知,回忆乘法交换律,乘法结合律,乘法分配律乘法交换律:a b b a =乘法结合律:()()ab c a bc =乘法分配律:()m a b c ma mb mc ++=++【设计意图】通过对旧知识的复习,为新知识的学习作铺垫.●活动② 整合旧知,引出课题问题1:探索火星、月球以及其他星球的奥秘已逐渐被世人关注,飞向月球、进入太空也不再是遥远的事,浩瀚的宇宙期待着人们的光临.天文学上计算星球之间的距离的一种单位叫“光年〞,即光在一年里通过的距离.一年约等于7310⨯s ,光的速度约为5310⨯km /s ,那么1光年大约是多少千米?学生容易得出:1光年大约是〔7310⨯〕×〔5310⨯〕km .问题2:如何计算〔7310⨯〕×〔5310⨯〕呢?师:学习了今天的知识,你一定就会迎刃而解了.【设计意图】用光年知识,激发学生对新知主动探索的欲望,调动学生学习兴趣.●活动①大胆猜测,探究单项式与单项式相乘的法那么.问题1:怎样计算〔7310⨯〕×〔5310⨯〕?计算过程中用到哪些运算律及运算性质? 学生计算后,展示计算过程:〔7310⨯〕×〔5310⨯〕7512(33)(1010)910=⨯⨯⨯=⨯运用了乘法交换律、乘法结合律及同底数幂的乘法的性质.问题2:如果将上式中的数字改为字母,比方52ac bc ,怎样计算这个式子呢?学生独立思考后,展示:52527()()ac bc a b c c abc ==.【设计意图】学生通过类比〔7310⨯〕×〔5310⨯〕的计算,来计算52ac bc ,体会由特殊到一般,具体的数字抽象到字母的学习方法,让学生在独立思考,实践中获得计算的方法. 问题3:你能根据52ac bc 的计算方法,来计算以下式子吗?〔1〕2732m m ; 〔2〕23425(2)(3)p q p q m --.学生动手计算.展示答案:〔1〕96m ; 〔2〕6556p q m .【设计意图】让学生通过类比〔7310⨯〕×〔5310⨯〕和52ac bc 的计算方法,用前面获得经历来计算2732m m 和23425(2)(3)p q p q m --,从四个题目的计算,使单项式与多项式相乘的法那么在学生心中根本成型.●活动② 集思广益,归纳单项式与单项式相乘的法那么.师:观察52ac bc ,2732m m ,23425(2)(3)p q p q m --都是单项式与单项式相乘,通过刚刚的尝试,终究怎样进展单项式与单项式的乘法运算呢?先独立思考,再小组讨论.小组派代表发表小组的观点.学生发言,教师完善,得出结论:单项式与单项式相乘的法那么:单项式与单项式相乘,把他们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,那么连同它的指数作为积的一个因式.【设计意图】通过小组合作,用文字语言表述单项式与单项式相乘的法那么,培养学生的独立思考,观察,猜测,归纳,语言表达能力,和小组合作意识.例1计算:〔1〕2(5)(3)a b a --;〔2〕32(2)(5)x xy -.【知识点】单项式与单项式相乘的法那么【数学思想】【解题过程】解:〔1〕2(5)(3)a b a --[]23(5)(3)()15a a ba b =-⨯-=〔2〕32(2)(5)x xy -[]3232428(5)8(5)()40x xy x x y x y =-=⨯-=-【思路点拨】注意运算顺序,先算乘方,再算乘法,先确定运算中的符号,再利用单项式与单项式相乘的法那么进展计算.【答案】〔1〕315a b ;〔2〕4240x y -.练习:1.计算: 〔1〕2335x x ;〔2〕32(2)(3)a a --.【知识点】单项式与单项式相乘的法那么【数学思想】【解题过程】〔1〕2335x x =515x ;〔2〕32(2)(3)a a --=518a -【思路点拨】确定运算顺序,先算乘方,再算乘法,注意确定运算中的符号,再利用单项式与单项式相乘的法那么进展计算.【答案】〔1〕515x ; 〔2〕518a -.2.下面计算对不对?如果不对,应当怎样改正?〔1〕326326a a a =;〔2〕3515538y y y =.【知识点】单项式与单项式相乘的法那么【数学思想】【解题过程】〔1〕325326a a a =;〔2〕3585315y y y =【思路点拨】利用单项式与单项式相乘的法那么来判断【答案】〔1〕不对,应当为56a ;〔2〕不对,应当为815y .【设计意图】稳固新知,到达强化的目的.回忆课前引例,1光年大约是多少千米?怎样计算〔7310⨯〕×〔5310⨯〕?〔7310⨯〕×〔5310⨯〕7512(33)(1010)910=⨯⨯⨯=⨯实际上就是把〔7310⨯〕×〔5310⨯〕看作是单项式与单项式相乘,运用单项式与单项式相乘的法那么计算得到.【设计意图】解决引例,前后照应,让学生对引例问题豁然开朗,同时也让给学生感受到数学源于生活,又效劳于生活.探究三:再探新知,升华提高,探究单项式与多项式相乘的法那么,并会运用法那么计算.★●活动①展示实际问题,引出单项式与多项式相乘的法那么的思考.问题1:如图,为了扩大绿地面积,要把街心花园的一块长m米,宽b米的长方形绿地,向两边加宽a米和c米,你能用几种方法表示扩大后的绿地面积?学生思考.师生共同得出结论:方法一:()++;m a b c++.方法二:ma mb mc师:这两种方法结果有什么样的关系?学生思考得出关系:相等关系,即:()++=++.m a b c ma mb mc师:观察上式,左边是一个单项式与一个多项式的乘积,右边是几个单项式的和,怎样进展单项式与多项式的乘法运算呢?【设计意图】由生活中的实际问题,从不同的面积计算方法,引发对单项式与多项式相乘的运算法那么的思考,表达数学源于生活,渗透数形结合思想.同时让学生从直观上感知单项式与多项式的乘法运算.●活动②集思广益,归纳单项式与多项式相乘的法那么.师:观察式子()++=++,可以根据运算律得到这个等式吗?m a b c ma mb mc思考得出:可以根据乘法对加法的分配律得到.师:你能说说单项式与多项式的相乘的法那么吗?学生独立思考,再小组讨论,小组派代表发表看法学生发言,教师完善,得出结论:单项式与多项式相乘的法那么:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.【设计意图】让学生从面积问题和乘法分配律两个角度,得到单项式与多项式的相乘的法那么,使得学生理解更深入,通过法那么的得出,培养学生的合作意识和归纳能力.例2 计算〔1〕2(4)(31)x x -+;〔2〕221(2)32ab ab ab -. 【知识点】单项式与多项式相乘的法那么.【数学思想】将单项式与多项式相乘转化成单项式与单项式相乘,渗透转化思想【解题过程】解:〔1〕2(4)(31)x x -+222232(4)(3)(4)1(43)()(4)124x x x x x x x x =-+-⨯=-⨯+-=--〔2〕221(2)32ab ab ab - 22322211(2)32213ab ab ab ab a b a b =+-=- 【思路点拨】利单项式与多项式相乘的法那么计算,要注意〔1〕单项式乘多项式,结果仍是多项式,且项数与原多项式的项数一样;〔2〕符号确实定.【答案】〔1〕32124x x --;〔2〕232213a b a b -. 练习:1.计算:〔1〕3(52)a a b -;〔2〕(3)(6)x y x --.【知识点】单项式与多项式相乘的法那么.【数学思想】【解题过程】〔1〕3(52)a a b -=2156a ab -;〔2〕(3)(6)x y x --=2618x xy -+.【思路点拨】运用单项式与多项式相乘的法那么计算【答案】〔1〕2156a ab -;〔2〕2618x xy -+.2.化简:(1)2(1)3(25)x x x x x x -++--.【知识点】单项式与多项式相乘的法那么,合并同类项.【数学思想】【解题过程】(1)2(1)3(25)x x x x x x -++--222222615316x x x x x xx x =-++-+=-+【思路点拨】运用单项式与多项式相乘的法那么计算,注意各项符号确实定.【答案】2316x x -+.【设计意图】稳固新知,到达强化的目的.●活动③ 灵活运用两个法那么进展计算.例3 化简求值: 2224(2)(3)(3)(2)y x y x x y x y --++-,其中4x =-,12y = 【知识点】单项式与单项式,单项式与多项式相乘的法那么,合并同类项【数学思想】【解题过程】2224(2)(3)(3)(2)y x y x x y x y --++-2322223222232223483(3)(4)48312(4312)8118xy y x xy x y xy y x xy xy xy y x x xy y =---+-=----=----=---当4x =-,12y =时,223118x xy y ---=-6 【思路点拨】根据单项式与单项式,单项式与多项式相乘的法那么计算,翻开括号,注意各项符号确实定,再根据整式加法的合并同类项法那么得223118x xy y ---,最后把4x =-,12y =值代入223118x xy y ---从而求解.【答案】-6练习:化简求值:223(43)(2)(3)a a a a a -+--,其中2a =-【知识点】单项式与单项式,多单项式与多项式相乘的法那么,合并同类项.【数学思想】【解题过程】223(43)(2)(3)a a a a a -+--322323321239(2)(9)123918639a a a a a a a a a a a a =-+-=-+-=--+当2a =-时,3263918a a a --+=【思路点拨】根据单项式与单项式,单项式与多项式相乘的法那么计算,翻开括号,注意各项符号确实定,再根据整式加法合并同类项法那么得32639a a a --+,再把2a =-代入32639a a a --+从而求解.【答案】18【设计意图】稳固所学两个法那么,灵活运用两个法那么进展计算.例422x y =,求523(243)xy x y x y x --的值.【知识点】单项式与多项式相乘的法那么【数学思想】整体代换思想【解题过程】解:523(243)xy x y x y x --63422232222432()4()3x y x y x yx y x y x y =--=--因为22x y =,所以:23222322()4()32242326x y x y x y --=⨯-⨯-⨯=-【思路点拨】用单项式与多项式相乘的法那么对式子化简,再观察条件22x y =中,x y 的可能值较多,不可能逐一代入求解,所以考虑整体代换思想,将22x y =整体代入,从而求解.【答案】-6练习:3mn =,求322(234)(2)m n m n m n -+-的值.【知识点】单项式与多项式相乘的法那么【数学思想】整体代换思想【解题过程】解:322(234)(2)m n m n m n -+-3322324684()6()8m n m n mnmn mn mn=-+-=-+- 因为3mn =,所以:32324()6()8436383108542478mn mn mn-+-=-⨯+⨯-⨯=-+-=-【思路点拨】用单项式与多项式相乘的法那么对式子化简,再观察条件3mn =中,m n 的可能值较多,不可能逐一代入求解,所以考虑整体代换思想,将3mn =整体代入,从而求解.【答案】-78【设计意图】熟练运用法那么进展计算,渗透整体代换的数学思想.3.课堂总结知识梳理〔1〕单项式与单项式相乘的法那么:单项式与单项式相乘,把他们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,那么连同它的指数作为积的一个因式.〔2〕单项式与多项式相乘的法那么:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.〔3〕计算时要注意的方面:运算顺序,符号确实定重难点归纳:〔1〕两个法那么的理解及灵活熟练运用;〔2〕学习和运用法那么过程中,类比,特殊到一般等方法的运用,渗透了转化,整体代换,数形结合等数学思想.〔三〕课后作业根底型 自主突破1.计算262x x 结果正确的选项是〔 〕A .212xB .38xC .28xD .312x【知识点】单项式与单项式相乘法那么【数学思想】【解题过程】236212x x x =【思路点拨】利用单项式与单项式相乘法那么计算【答案】D .2.以下计算正确的选项是〔 〕A .23622x x x =B .2324(2)2ab a b a b -=-C .2236611()28x y xy x y -=- D .322398()(3)27m n mn m n --=- 【知识点】单项式与单项式相乘法那么【数学思想】【解题过程】3223623698()(3)(27)27m n mn m n m n m n --=-=-【思路点拨】利用单项式与单项式相乘法那么计算【答案】D .3.计算42(31)x x -结果正确的选项是〔 〕A .552x x -B . 561x -C . 562x x -D .462x x -【知识点】单项式与多项式相乘的法那么【数学思想】【解题过程】452(31)62x x x x -=-【思路点拨】利用单项式与多项式相乘的法那么计算【答案】C .4.以下计算正确的选项是〔 〕A.22()xy x y x y xy -=+B.2323(21)363m m m m m m --=--C.23(1)1x x x x x --=--D.2322(1)222a a a a a a ---=---【知识点】单项式与多项式相乘的法那么【数学思想】【解题过程】2323(21)363m m m m m m --=--【思路点拨】利用单项式与多项式相乘的法那么计算,注意符号确实定.【答案】B .5.假设2(2)()x ax x -+-的展开式中2x 项的系数为4-,那么a 的值为〔 〕A.4-B.2-C.2D.4【知识点】单项式与多项式相乘的法那么【数学思想】对应思想【解题过程】2(2)()x ax x -+-322x ax x =-+-因为原式中的2x 的系数为4-,所以4a =-【思路点拨】单项式与多项式相乘的法那么,展开括号,再根据要求,对应求出a .【答案】A .6.通过计算几何图形的面积可表示一些代数恒等式,如下图的几何图形的面积可表示的代数恒等式是〔 〕A.222()2a b a ab b +=++B.22()()a b a b a b +-=-C.222()2a b a ab b -=-+D.22()22a a b a ab +=+【知识点】通过面积恒等反映单项式与多项式相乘的运算方法.【数学思想】数形结合思想【解题过程】几个图形的面积相加得:222a ab +,长乘以宽得长方形的面积为2()a a b +,即:22()22a a b a ab +=+【思路点拨】大长方形由两个面积相等的正方形和两个面积相等的的长方形组成,因此,面积有两种算法:一是由几个图形的面积相加得:22222a a ab ab a ab +++=+;二是由长乘以宽得长方形的面积为2()a a b +,所以可以得到一个恒等式:22()22a a b a ab +=+【答案】D .能力型 师生共研7.“三角〞表示3abc ,“方框〞 表示4y z x w -,那么×=__________.【知识点】单项式与单项式相乘的法那么【数学思想】对应思想【解题过程】525236(33)(4)9(4)36mn n m mn n m m n ⨯-=-=-【思路点拨】根据题中新定义化简所求的式子,利用单项式与单项式相乘的法那么计算即可得结果.【答案】3636m n -.8.解以下方程:24(3)3(3)(2)0a a a a a a +--++-+=【知识点】单项式与多项式相乘的法那么,解一元一次方程.【数学思想】【解题过程】24(3)3(3)(2)0a a a a a a +--++-+=2224412932031204a a a a a a a a +----+=--==-【思路点拨】利用单项式与多项式相乘的法那么计算,把左边化简,再解关于a 一元一次方程.【答案】4a =-.探究型 多维突破9.有理数,m n 满足条件2231(35)0m n m n -++++=,求代数式222(2)()(6)mn n mn --的值.【知识点】单项式与单项式相乘的法那么,等式的非负性.【数学思想】方程思想【解题过程】222222236(2)()(6)4()(6)24mn n mn m n n mn m n --=-=- 因为2231(35)0m n m n -++++= 所以22310,(35)0m n m n -+≥++≥2310350m n m n -+=⎧⎨++=⎩ 解得21m n =-⎧⎨=-⎩,所以3624192m n -= 【思路点拨】根据单项式与单项式相乘的法那么进展计算化简,在化简过程中注意运算顺序和符号确实定,再根据等式非负性组成方程组求出,m n 的值,将,m n 的值代入化简的式子,从而求解.【答案】192.10.试说明:对于任意自然数x ,代数式[](3)(9)6x x x x +--+的值能被6整除.【知识点】单项式与多项式相乘的法那么,合并同类项【数学思想】【解题过程】[](3)(9)6x x x x +--+22223(96)3961266(21)x x x x x x x x x x =+--+=+-+-=-=-因为代数式[](3)(9)6x x x x +--+计算后的结果为6和21x -的积,所以原代数式能被6整除.【思路点拨】化简式子后,观察是6的倍数.【答案】见解答过程.自助餐1.假设51015()m n x y xy x y =,那么3(1)m n +的值为〔 〕A .9B .15C .18D .10【知识点】单项式与单项式相乘的法那么【数学思想】对应思想【解题过程】51155555()()m n m n m n x y xy x y x y ++++==因为 51015()m n x y xy x y =,所以 55551015m n x y x y ++=,所以55105515m n +=⎧⎨+=⎩,解得:12m n =⎧⎨=⎩,即3(1)9m n += 【思路点拨】先计算括号内单项式与单项式的乘法,再利用积的乘方得到55551015m n x y x y ++=,组成方程组55105515m n +=⎧⎨+=⎩,求出m ,n 的值,再代入式子求解. 【答案】A .2.假设三角形的底边为21x +,高为2x ,那么此三角形的面积为〔 〕A .241x +B .242x x +C . 2122x x +D .22x x + 【知识点】单项式与多项式相乘的法那么【数学思想】 【解题过程】21(21)222x x x x +=+ 【思路点拨】根据三角形面积公式求面积【答案】D .3.计算232221()3(2)2a b ab c ab -=____________ 【知识点】单项式与单项式相乘的法那么【数学思想】 【解题过程】232221()3(2)2a b ab c ab - 6322499134832a b ab c a b a b c =-=- 【思路点拨】根据单项式与单项式相乘法那么计算,对于三个单项式相乘,单项式与单项式相乘法那么仍然适用. 【答案】9932a b c -. 4.单项式A 、B 满足234(3)7x A x x y B -=+,那么A =_________,B =_________.【知识点】单项式与多项式相乘的法那么【数学思想】对应思想【解题过程】24(3)412x A x Ax x -=-因为234(3)7x A x x y B -=+,所以2347Ax x y =,212B x =-所以 374A xy = 【思路点拨】利用单项式与多项式相乘的法那么化简,与右边局部对应相等,从而求解【答案】 374A xy =,212B x =-. 5.小敏家新购了一套构造如图的住房,正准备装修.〔1〕试用代数式表示这套住房的总面积;〔2〕假设x =2.6m ,y =3.1m, ,装修客厅和卧室至少需要准备多少面积的木地板?【知识点】单项式与单项式相乘的法那么【数学思想】数学源于生活,又效劳于生活【解题过程】解:〔1〕24222x y x y x y x y +++15xy =〔2〕客厅和卧室的总面积为:4812xy xy xy +=,将x =2.6,y =3.1代入,得12xy =12×2.6×3.1=〔2m 〕.【思路点拨】先根据单项式乘以单项式法那么求出总面积,再根据条件,代入求出答案.【答案】〔1〕15xy ;〔2〕〔2m 〕.6.2232(2)(36)4m m pm m m ----+中不含3m 项,求p 的值.【知识点】单项式与多项式相乘的法那么,合并同类项.【数学思想】【解题过程】解:2232(2)(36)4m m pm m m ----+43232432621246(24)13m pm m m m m p m m=-++-+=-+-+因为原式不含3m 项,所以240p -=,p =2 【思路点拨】先利用单项式与多项式相乘的法那么将式子化简,在合并同类项,得出3m 的系数为24p -,再根据条件,得到240p -=,从而求出p 值.【答案】2.。

4整式的乘法第1课时-初中七年级下册数学(教案)(北师大版)

4整式的乘法第1课时-初中七年级下册数学(教案)(北师大版)
教师在教学中应针对以上难点,采用直观的图形演示、分步骤的讲解、互动式的问答等方法,帮助学生逐步突破难点。同时,设计适量的练习题,让学生在实际操作中加深理解,提高解题能力。通过反复练习和反馈,确保学生能够准确理解和掌握本节课的核心知识。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《整式的乘法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要将几个物品的个数相乘的情况?”(如购买水果时计算总价)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索整式乘法的奥秘。
本节课将结合具体实例,让学生在实际操作中掌握整式乘法的基本方法,培养他们的运算能力和逻辑思维能力。
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
1.培养学生的逻辑推理能力:通过整式乘法的学习,使学生能够运用数学语言和符号进行逻辑推理,理解数学概念之间的内在联系,提高解决问题的能力。
2.发展学生的数学建模素养:让学生在实际问题中运用整式乘法建立数学模型,培养他们从现实情境中抽象出数学问题,并用数学语言进行表达和分析的能力。
-合并同类项:在乘法运算过程中,学生容易忽视或错误处理含有相同字母的项的合并。
难点举例:在计算4x^2 * (x + 2x)时,学生可能会错误地将结果写为8x^3,而忽略了字母x的指数合并。
-系数与指数的正确处理:在计算过程中,学生可能会混淆系数的乘法与字母指数的加法。
难点举例:3x^2 * 4x中,学生可能会错误地将系数3和4相加,而将字母x的指数2和1相乘。
在学生小组讨论时,我尝试作为一个引导者,提出了一些开放性的问题。我发现这样的问题能够激发学生的思考,促使他们从不同角度去理解和应用整式乘法。但同时,我也发现部分学生在分享成果时表达不够清晰,可能是因为他们对知识的掌握还不够牢固。

整式的乘法(一)教学设计

整式的乘法(一)教学设计

第一章 整式的乘除4 整式的乘法(第1课时)一、教学目标为:1.知识与技能:在具体情境中了解单项式乘法的意义,理解单项式乘法法则,会利用法则进行单项式的乘法运算.2.过程与方法:经历探索单项式乘法法则的过程,理解单项式乘法运算的算理,发展学生有条理的思考能力和语言表达能力.3.情感与态度:体验探求数学问题的过程,体验转化的思想方法,获得成功的体验.二、教学重点:单项式乘法法则及其应用.教学难点:理解运算法则及其探索过程.三、 教学过程设计:本节课共设计了六个环节:温故育新—实例引入—探索规律—及时训练—延伸拓展—随堂测评.第一环节:温故育新活动内容:教师提出问题,引导学生复习幂的运算性质问题1:前面学习了哪些幂的运算?运算法则分别是什么?让学生分别用语言和字母表示幂的运算性质:(1)同底数幂相乘,底数不变,指数相加.n m n m a a a +=⋅ (m,n 是正整数)(2)幂的乘方,底数不变,指数相乘.mn n m a a =)((m,n 是正整数)(3)积的乘方等于积中各因数乘方的积.n n n b a ab =)( (n 是正整数)(4)同底数幂相除,底数不变,指数相减. n m n m a a a -=÷问题2:计算下列各题:(1)(-a 5)5 (2) (-a 2b )3 (3) (-2a )2(-3a 2)3 (4) (-y n )2 y n -1活动 第二环节:实例引入:xm活动内容:提出学生身边的一个实例,引出问题:七年级三班举办新年才艺展示,小明的作品是用同样大小的纸精心制作的两幅剪贴画,如右图所示,第一幅画的画面大小与纸的大小相同,第二幅画的画面在纸的上、下方各留有 x 81米的空白.(1) 第一幅画的画面面积是多少平方米?第二幅呢?你是怎样做的?(2) 若把图中的1.2x 改为mx ,其他不变,则两幅画的面积又该怎样表示呢?第三环节:探索规律活动内容:在刚才的数学活动基础上,教师再提出以下两个问题:问题1: 3a 2b ·2 ab 3和(xyz )·y 2z 又等于什么?你是怎样计算的? 问题2: 如何进行单项式乘单项式的运算?问题3:在你探索单项式乘法运算法则的过程中,运用了哪些运算律和运算法则?第四环节:及时训练活动内容:教师通过例题,使学生明确利用单项式乘法法则进行计算的方法.虽然是例题,但是教师先不讲解,让学生尝试独立完成,教师根据学生遇到的问题和出现的错误,有针对性地进行讲解和板书示范.同时教学中应通过恰当的方式让学生明确每一步运算的依据.例1 计算:)31(2)1(2xy xy ⋅ )3(2)2(32a b a -⋅-22)2(7)3(xyz z xy ⋅ )31()43()32)(4(2532c ab c bc a ⋅-⋅-随堂练习:计算:(1)y x x 2325⋅ (2))4(32b ab -⋅- (3)a ab 23⋅(4)222z y yz ⋅ (5))4()2(232xy y x -⋅ (6)22253)(631ac c b a b a -⋅⋅第五环节:拓展延伸m 81x4yy 2y 4x 活动内容:让学生先独立思考解决,再交流讨论.一家住房的结构如图示,房子的主人打算把卧室以外的部砖的价格是a 元/平方米,那么购买所需地砖至少需要多少元?第六环节:随堂测评活动内容:让学生独立完成计算: ①3253x x ⋅ ②)2()5(22a b a -⋅- ③ .)2()5(1a b a n -⋅-+④)2()2(23y x x -⋅ ⑤ 32232)()(y x z xy -⋅-课堂小结:利用乘法交换律和结合律及同底数幂的乘法探索出单项式乘以单项式的运算法则.课后作业:1.习题1.6四、 教学设计反思:1、关注对教学难点的教学.新课程标准下,数学教育的根本任务是发展学生的思维,教材中的难点往往是数学思维迅速丰富、过程大步跳跃的地方,所以在本节课难点教学中既注意了化难为易的效果,又注意了化难为易的过程,在探究法则的过程中设置循序渐进的问题,不断启迪学生思考,发展学生的思维能力,在应用法则的过程中,又引导学生进行解题后的反思,这些将促使学生知识水平和能力水平同时提高.2、关注对学生学习方法的指导.建构主义学习理论认为,学生的学习是对知识主动建构的过程,同时学生要主动构建对外部信息的解释交流,所以在教学中注重营造学生自主参与、师生互动合作、探究创新为主线的教学模式,从学生已有的知识结构入手,逐渐发现和提出新问题,在解决问题的过程中学会思考,在探究中掌握知识.。

整式的乘法(第一课时)教案

整式的乘法(第一课时)教案
附加练习:
1.小民的步长为a米,他量得家里的卧室长15步,宽14步,这间卧室的面积有多少平方米?
2
(-10xy3)(2xy4z) (-2xy2)(-3x2y3)( xy)
3、
3(x-y)2·[ (y-x)3][ (x-y)4]
4.判断:单项式乘以单项式,结果一定是单项式()
两个单项式相乘,积的系数是两个单项式系数的积()
教学重点、难点
重点:单项式与单项式、单项式与多项式和多项式与多项式相乘的法则
难点:项式与多项式相乘的法则
教具准备:数控一体机
教学过程
教学环节
教师活动
预设学生活动
设计意图
(一)知识回顾:回忆幂的运算性质:
(二)创设情境,引入新课
(三)自己动手,得到新知
(四)巩固结论,加强练习
(五)小结
am·an=am+n(am)n=amn(ab)n=anbn(m,n都是正整数)
问题:光的速度约为3×105千米/秒,太阳光照射到地球上需要的时间大约是5×102秒,你知道地球与太阳的距离约是多少千米吗?
问题的推广:如果将上式中的数字改为字母,即ac5·bc2,如何计算?
.类似地,请你试着计算:(1)2c5·5c2;(2)(-5a2b3)·(-4b2c)
例:计算:(-5a2b)·(-3a)(2x)3·(-5xy2)
两个单项式相乘,积的次数是两个单项式次数的积()
两个单项式相乘,每一个因式所含的字母都在结果里出现()
5.计算:0.4x2y·( xy)2-(-2x)3·xy3
6.已知am=2,an=3,求(a3m+n)2的值
求证:52·32n+1·2n-3n·6n+2能被13整除

《整式的乘法》第1课时示范公开课教案【北师大数学七年级下册】

《整式的乘法》第1课时示范公开课教案【北师大数学七年级下册】

《整式的乘法》教学设计第1课时一、教学目标1.熟练并掌握单项式乘以单项式的运算法则.2.能够熟练地进行单项式的乘法计算,发展运算能力.3.经历探索单项式乘单项式的运算法则的过程,通过类比学习,利用乘法的运算律将问题转化,培养学生转化的数学思想.4.让学生主动参与到探索过程中,培养学生思维的严密性和初步解决问题的能力.二、教学重难点重点:熟练并掌握单项式乘以单项式的运算法则.难点:能够熟练地进行单项式的乘法计算.三、教学用具电脑、多媒体、课件、教学用具等.四、教学过程设计【复习回顾】教师活动:教师提出问题,引导学生思考回答.问题:下列代数式中,哪些是单项式?预设:234235abx ab y --,,,是单项式.提问:什么是单项式?预设:数与字母的乘积,这样的代数式叫做单项式,单独的一个数或一个字母也是单项式.【情境导入】京京用两张同样大小的纸,精心制作了两幅画.如下图所示,第一幅画的画面大小与纸的大小相同,第二幅画的画面在纸的上、下方各留有18x m 的空白.提问:你能计算出这两幅画的画面面积吗?【探究】教师活动:引导学生通过计算画面的面积引入单项式乘单项式的运算,类比数的运算,利用乘法的交换律和同底数幂的乘法,获得单项式乘单项式的运算法则.(1)第一幅画的画面面积是多少平方米?第二幅呢?你是怎样做的?预设: 第一幅画:(1.2)x x ⋅()1.2x x =⋅⋅ 乘法的交换律、结合律 21.2x = 同底数幂的乘法第二幅画:11(1.2)(1)88x x x ⋅--3=(1.2)()4x x ⋅()3(1.2)4x x =⨯⋅⋅乘法的交换律、结合律20.9x = 同底数幂的乘法(2)若把图中的1.2x 该为mx ,其他不变,则两幅画的面积又该怎样表示呢?预设: 第一幅画:()x mx ⋅()m x x =⋅⋅ 乘法的交换律、结合律 2mx = 同底数幂的乘法第二幅画:11()(1)88mx x x ⋅--3=()()4mx x ⋅()3()4m x x =⨯⋅⋅乘法的交换律、结合律234mx = 同底数幂的乘法 【想一想】(1)3a ²b ·2ab 3 及 xyz ·y 2z 等于什么?你是怎样计算的?预设: 3a ²b ·2ab 3 =(3×2)(a 2·a )(b ·b 3) = 6a 3b 4注:系数与系数相乘,同底数幂相乘. xyz ·y 2z=x ·(y ·y 2)·(z ·z )= xy 3z 2.注:只在一个单项式里含有的字母,连同)36a b6))()()22x x x y y z z32y z思维导图的形式呈现本节课的主要内容:。

《整式的乘法》第1课时 教学设计【初中数学人教版八年级上册】

《整式的乘法》第1课时 教学设计【初中数学人教版八年级上册】

《整式的乘法》 教学设计第1课时一、教学目标1.通过探索单项式乘法法则的过程,在具体情境中了解单项式乘法的意义,理解单项式乘法法则.2.会利用法则进行单项式的乘法运算.二、教学重点及难点重点:单项式乘法法则及其应用.难点:理解运算法则及其探索过程.三、教学用具电脑、多媒体、课件四、相关资源微课,图片.五、教学过程(一)复习旧知回忆我们前面学过的正整数幂的运算性质:(1)同底数幂相乘:同底数幂相乘,底数不变,指数相加.即:m n m n a a a +⋅=(m ,n 均为正整数).(2)幂的乘方:幂的乘方,底数不变,指数相乘.即:m n mn a a =()(m ,n 均为正整数).(3)积的乘方:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.即:n n n ab a b =()(n 为正整数).设计意图:通过复习,让学生进一步熟悉正整数幂的三个运算性质,澄清学习中存在的一些模糊认识,为后续学习铺平道路.(二)探究新知本图片是微课的首页截图,本微课资源讲解了单项式乘以单项式法则,并通过讲解实例与练习,巩固所学的知识点,有利于启发教师教学或学生预习或复习使用.若需使用,请插入微课【知识点解析】单项式乘以单项式.1.单项式乘单项式(1)问题:光的速度约为5310⨯ km/s ,太阳光照射到地球上需要的时间大约是2510⨯ s ,你知道地球到太阳的距离约是多少吗?学生思考列出式子:523510()()10⨯⨯⨯.(2)这个式子怎样计算?你能说说每步运算的依据吗?师生共同得出结果: 525252783510351010151015101510 ()()()().10.+⨯⨯⨯=⨯⨯⨯=⨯=⨯=⨯在上面的运算过程中用到了哪些运算定律及运算性质?(乘法交换律、结合律及同底数幂的运算性质)(3)填空: 52ac bc ()()._________________________________________⋅=⋅==结合上面的计算过程,先请学生用自己的语言概括单项式乘单项式法则,最后师生共同用精炼的文字概括表述单项式乘单项式法则:一般地,单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(三)例题解析【例1】计算:(1)253a b a --()();(2)3225x xy -()(). []223153 53 15 a b a a a b a b --=-⨯-⋅⋅=解:()()()()()();[]32323242225 85 85 40x xy x xy x x y x y -=⋅-=⨯-⋅⋅=-()()()()()().通过例1的解析,师生共同总结单项式乘单项式计算时的注意事项:(1)积的系数等于各系数的积,这部分是有理数的乘法运算,应先确定符号,再计算绝对值;(2)同底数幂的乘法运算,要按照“底数不变,指数相加”进行计算;(3)只在一个单项式里含有的字母,要连同他的指数写在积里,注意不要把这个因式丢掉.设计意图:巩固单项式乘单项式法则的同时让学生总结单项式乘单项式计算时的注意事项.(四)课堂练习(1)计算的结果是( ). A . B .C .D .设计意图:考查单项式乘单项式法则.(2)计算的结果为( ).A .B .C .D .(3)已知:,求代数式的值. 学生独立完成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的乘法
教学目标1.会熟练利用单项式乘单项式的法则进行相关运算;
2.通过对单项式法则的应用,培养观察、比较、归纳及运算的能力.
3.培养类比、归纳、猜想、推理的数学思想方法;培养合作交流的能力,在解决问题的过程中体会数学来自实践并在实践中发展.
教学
重点
单项式与单项式相乘的法则.
教学
难点
计算时注意积的系数、字母及其指数.
学情
分析
经历探索整式乘法运算法则的过程,进一步体会类比方法的作用。

教学
准备
多媒体
教学过程:
结合学科特点,体现单元组教学环节,学习内容,时间预测,教师活动,学生活动,自主学习设计,问题探究,单元组合作,同层竞争,人人参与,精讲足练,联系实际,点拨升华,
教学设计
一、个性学习:
针对本节所学习教材内容,教师提出三个或以上可操作,可测的大问题:
学习课本36页,并思考以下几个问题:
1.探究: 4xy·3x 该如何进行计算呢?你是怎样想的?
2.仿例计算:(1)3a2·2a3 = ()×()= .
(2)-3m2·2m4 =()×()= .
(3)x2y3·4x3y2 =()×()= .
(4)2a2b3·3a3= ()×()= .
(5)3x2y·(-2xy3)== .
3.观察第2题的每个小题的式子有什么特点?由此你能得到的结论是:法则:
单项式与单项式相乘,。

二、同层展示(5分钟)
同层比较个性学习内容的质量和数量
三、小组合作(15分钟)
1、同质交流:
2、异质帮扶:
3、提出疑难问题:
四、师生探究(10分钟)
1. 计算:(1)
1
3
a2·6ab (2)4y· (-2xy2)
(3)(-5a2b3) ·(-3a) (4)(5×105)×(2×10-6)
2.计算:(1)(-3x2y) ·(-2x)2 (2)(-3a2b3)(-2ab3c)3
(3)3a3b·2ab2·(-5a2b2)
五、课堂检测(10分钟)
计算:(1)(-3a2)3• (-2a3)2(2)-3xy2z • (x2y)2
六、小结与作业(5分钟)
必做:
选做:














小结:会熟练利用单项式乘单项式的法则进行相关运算;通过对单项式法则的应用,培养观察、比较、归纳及运算的能力。





建。

相关文档
最新文档