LM2575

合集下载

LM2575HV中文资料(上)

LM2575HV中文资料(上)

(以下资料皆是个人翻译的结果.非官方版本.由于个人能力有限,所以在翻译的过程中不可避 免犯一些错误.希望能理解并参考原始资料慎重使用.如果有什么建议,望联系 QQ:372857305.)LM2574 中文资料(上)◆LM2574/LM2574HV 简单的交换器,以 0.5A 为负荷的电压调节器 ◆普通的描述: LM2574 是一个综合的连续的调节电路模块,所有的功能都可以描述成一个上下调节开 关。

0.5A 的负荷以内, 在 有极好的线性调节能力。

该器件有效的固定输出电压是 3.3v,5v,12v,15, 和可调节输出正反相变化。

最少需要一个外部数字组成, 所有功能都需要包含一个外部频率组成和固定频率的振荡 器。

这个 LM2574 可以替代流行的三个线性调节器,并且一直工作在高功率的状态。

由于一 直工作在高功率的状态, 所以在印制电路板的时候, 正常情况下需要做成铜模防止发热引起 的脱落。

一个标准系列的传感器充分利用了 LM2574 不同厂家的作用。

这个特点可以用来非常简 化的设计开关电源模块。

所有产品的输出电压和输入电压在规定的范围 4%之内,震荡频率在 10%之内。

产品 包含 50uA 的备用电流,在满足热关机的条件下,输出的电流是循环输出的。

◆产品特点: 支持 3.3v,5V,12V,15V,和可调节的输出方式。

在 4%的最大线性误差以内和稳定的供电条件下输出可调节的电压范围是 1.23V~37V. 输出 0.5A 的输出电流。

最大的电压输出范围,40V 到 60V。

在构建输出功能是只需要 4 个外部部件(2 个电容,1 个电阻,一个稳压管) 。

包含 52KHZ 的内部震荡频率。

矩形波的输出性能,支持低电源备用模式。

支持有效的标准的电感器。

支持热关机和电流极限保护。

◆性能应用: 简单的高频率逐周期的调节方式。

支持有效的线性的调节。

支持负的变流器。

◆典型的应用方式:(以下资料皆是个人翻译的结果.非官方版本.由于个人能力有限,所以在翻译的过程中不可避 免犯一些错误.希望能理解并参考原始资料慎重使用.如果有什么建议,望联系 QQ:372857305.)(以下资料皆是个人翻译的结果.非官方版本.由于个人能力有限,所以在翻译的过程中不可避 免犯一些错误.希望能理解并参考原始资料慎重使用.如果有什么建议,望联系 QQ:372857305.)60V 未校准的 DC 输入◆连接图解:校准的 0.5A 输出◆极限参数: 如果用在军队或者航天上面,则必须用详细的(更好的)设备。

LM2575(开关稳压管)中文资料

LM2575(开关稳压管)中文资料

LM2575 超详细中文介绍1 概述LM2575系列开关稳压集成电路是美国国家半导体公司生产的1A集成稳压电路,它内部集成了一个固定的振荡器,只须极少外围器件便可构成一种高效的稳压电路,可大大减小散热片的体积,而在大多数情况下不需散热片;内部有完善的保护电路,包括电流限制及热关断电路等;芯片可提供外部控制引脚。

是传统三端式稳压集成电路的理想替代产品。

此主题相关图片如下:该系列分为LM1575、LM2575及LM2575HV三个系列,其中LM1575为军品级产品,LM2575为标准电压产品,LM2575HV为高电压输入产品。

每一种产品系列均提供3.3V、5V、12V、15V及可调(ADJ)等多个电压档次产品。

除军品级产品外,其余两个系列均提供TO-200直脚、TO-220弯脚、塑封DIP-16脚、表面安装DIP-24脚、表面安装T)-263-5脚等多种封装形式,并分别用后缀T、Flow LB3、N、M、S表示。

对于5V输出的LM2575产品,不同的封装形式,其完整表示分别为LM2575T-5.0、LM2575T-5.0 Flow LB03、LM2575N-5.0、LM2575M-5.0、LM2575S-5.0。

LM2575T系列开关稳压集成电路芯片的主要参数如下:●最大输出电流:1A;●最大输入电压:LM1575/LM2575为45V;LM2575HV为63V;●输出电压:3.3V、5V、12V、ADJ(可调);●振荡频率:54kHz;●最大稳压误差:4%;●转换效率:75%~88%(不同的电压输出的效率不同);●工作温度范围:LM1575为-55℃~+150℃;LM2575/LM2575HV为-40℃~+125℃。

2 引脚功能图1是LM2575集成稳压器的两种引脚排列。

其引脚功能如下:VIN:未稳压电压输入端;OUTPUT:开关电压输出,接电感及快恢复二极管;GND:公共端;FEEDBACK:反馈输入端;ON/OFF:控制输入端,接公共端时,稳压电路工作;接高电平时,稳压电路停止。

33063应用

33063应用

电源电路一、使用LM2575的降压开关电源LM2575是可以输出1A电流,1A时效率高达80%以上的降压开关电源芯片,开关工作频率是52KHz。

它的内部结构如下图所示:它内置了功率管和过流保护电路,在外部只需加少量的滤波元件即可构成一个开关电源模块。

在实际电路的设计中,对原电路做了一些改动:在这个电路中,高压输入端加了一个二极管,防止不慎接反电源引起电容爆炸和芯片损坏。

保险丝是1A,防止输入电压超过40V或电源板内部短路引起的大电流造成的危害。

在图中,保险丝接在3300uF电容的后端,防止加电时电容大电流充电烧断保险丝。

3300uF的电容起储能和电源滤波的作用,在电池组供电时主要起储能作用,电容接在高压端更利于储能,因为如果电源暂时断电,稳压电路前面的电压逐渐下降不会影响输出电压。

如果使用全、半波整流的工频交流或者高频开关电源供电,应该在这个电容上再并联一个瓷片电容来吸收高频。

LM2575和第一级滤波电路是按照LM2575的datasheet说明里接的,在后面又加了第二级滤波以进一步减小纹波。

发光二极管D2作输出只是,另外在空载时,D2可以提供一个负载,使空载电压不至于偏离稳压值。

在机器人的应用中,LM2575把24~30V的电压降至9~12V,供传感器板和主控板使用。

主控板带有线性稳压,所以本电路对输出电压的精确程度要求不是很高,所以在输出端又串接了一个肖特基二极管防止用户错把高压接到输出端。

如果该电源板直接对单片机供电,这个二极管不能接,而且最好把电源部分集成到主控板上,防止连线不当造成的干扰。

所有电感用黑色铁氧体磁芯自己绕制,不要用色环电感(小于200mA的除外)。

漆包线直径0.51mm。

L1用磁罐,L2用磁环。

二、使用比较器的降压开关电源使用滞回比较器作自激振荡的12V 1A开关稳压电源,是工控主板用5V 10A开关电源(项目被取消,未实际制作)的技术验证机。

比较器A接成滞回比较器作自激振荡,C1起加速作用。

LM2575HVSX-12 TI高压三端稳压器

LM2575HVSX-12 TI高压三端稳压器

LM2575系列稳压器是单片集成电路,为降压型开关稳压器提供所有有源功能,能够以出色的线路和负载调节来驱动1A负载。

这些器件提供3.3V,5V,12V,15V的固定输出电压以及可调输出版本。

LM2575HVS-ADJ LM2575HVT-5.0 LM2575HVT-ADJ SIMPLE SWITCHER® 1A Step-Down Voltage RegulatorFEATURES• 3.3V,5V,12V,15V和可调输出版本•可调版本输出电压范围,•–1.23V至37V(HV版为57V)±4%最大•–线路和负载条件•规定的1A输出电流•宽输入电压范围,HV版本为40V至60V •仅需4个外部组件•52 kHz固定频率内部振荡器•TTL关机功能,低功耗待机模式•高效率•使用现成的标准电感器•热关断和限流保护•P +产品增强测试APPLICATIONS•简单的高效降压(降压)稳压器•用于线性稳压器的高效预稳压器•插卡式开关稳压器•正负转换器(降压-升压)DESCRIPTIONLM2575系列稳压器是单片集成电路,为降压型开关稳压器提供所有有源功能,能够以出色的线路和负载调节来驱动1A负载。

这些器件提供3.3V,5V,12V,15V 的固定输出电压以及可调输出版本。

这些稳压器需要最少的外部组件,易于使用,并包括内部频率补偿和固定频率振荡器。

LM2575系列可为流行的三端子线性稳压器提供高效替代。

它大大减小了散热器的尺寸,并且在许多情况下不需要散热器。

几个不同的制造商都提供了针对LM2575优化使用的标准系列电感器。

此功能极大地简化了开关电源的设计其他功能包括在规定的输入电压和输出负载条件下,规定的输出电压公差为±4%,在振荡器频率上的公差为±10%。

包括外部关断功能,待机电流为50μA(典型值)。

输出开关包括逐周期电流限制,以及热关断功能,可在故障情况下提供全面保护。

LM2575HVS LM2575HVT系列TI高压三端稳压器

LM2575HVS LM2575HVT系列TI高压三端稳压器

LM2575系列稳压器是单片集成电路,为降压型开关稳压器提供所有有源功能,能够以出色的线路和负载调节来驱动1A负载。

这些器件提供3.3V,5V,12V,15V的固定输出电压以及可调输出版本。

LM2575HVS-ADJ LM2575HVT-5.0 LM2575HVT-ADJ SIMPLE SWITCHER® 1A Step-Down Voltage RegulatorFEATURES• 3.3V,5V,12V,15V和可调输出版本•可调版本输出电压范围,•–1.23V至37V(HV版为57V)±4%最大•–线路和负载条件•规定的1A输出电流•宽输入电压范围,HV版本为40V至60V •仅需4个外部组件•52 kHz固定频率内部振荡器•TTL关机功能,低功耗待机模式•高效率•使用现成的标准电感器•热关断和限流保护•P +产品增强测试APPLICATIONS•简单的高效降压(降压)稳压器•用于线性稳压器的高效预稳压器•插卡式开关稳压器•正负转换器(降压-升压)DESCRIPTIONLM2575系列稳压器是单片集成电路,为降压型开关稳压器提供所有有源功能,能够以出色的线路和负载调节来驱动1A负载。

这些器件提供3.3V,5V,12V,15V 的固定输出电压以及可调输出版本。

这些稳压器需要最少的外部组件,易于使用,并包括内部频率补偿和固定频率振荡器。

LM2575系列可为流行的三端子线性稳压器提供高效替代。

它大大减小了散热器的尺寸,并且在许多情况下不需要散热器。

几个不同的制造商都提供了针对LM2575优化使用的标准系列电感器。

此功能极大地简化了开关电源的设计其他功能包括在规定的输入电压和输出负载条件下,规定的输出电压公差为±4%,在振荡器频率上的公差为±10%。

包括外部关断功能,待机电流为50μA(典型值)。

输出开关包括逐周期电流限制,以及热关断功能,可在故障情况下提供全面保护。

LM2575中文资料详解

LM2575中文资料详解

LM2575 超详细中文介绍来源: | 发表于:2008年02月28日1 概述LM2575系列开关稳压集成电路是美国国家半导体公司生产的1A集成稳压电路,它内部集成了一个固定的振荡器,只须极少外围器件便可构成一种高效的稳压电路,可大大减小散热片的体积,而在大多数情况下不需散热片;内部有完善的保护电路,包括电流限制及热关断电路等;芯片可提供外部控制引脚。

是传统三端式稳压集成电路的理想替代产品。

此主题相关图片如下:该系列分为LM1575、LM2575及LM2575HV三个系列,其中LM1575为军品级产品,LM2575为标准电压产品,LM2575HV为高电压输入产品。

每一种产品系列均提供3.3V、5V、12V、15V及可调(ADJ)等多个电压档次产品。

除军品级产品外,其余两个系列均提供TO-200直脚、TO-220弯脚、塑封DIP-16脚、表面安装DIP-24脚、表面安装T)-263-5脚等多种封装形式,并分别用后缀T、Flow LB3、N、M、S表示。

对于5V输出的LM2575产品,不同的封装形式,其完整表示分别为LM2575T-5.0、LM2575T-5.0 Flow LB03、LM2575N-5.0、LM2575M-5.0、LM2575S-5.0。

LM2575T系列开关稳压集成电路芯片的主要参数如下:●最大输出电流:1A;●最大输入电压:LM1575/LM2575为45V;LM2575HV为63V;PCB下载站●输出电压:3.3V、5V、12V、ADJ(可调);●振荡频率:54kHz;●最大稳压误差:4%;●转换效率:75%~88%(不同的电压输出的效率不同);●工作温度范围:LM1575为-55℃~+150℃;LM2575/LM2575HV为-40℃~+125℃。

2 引脚功能图1是LM2575集成稳压器的两种引脚排列。

其引脚功能如下:VIN:未稳压电压输入端;PCB下载站OUTPUT:开关电压输出,接电感及快恢复二极管;GND:公共端;FEEDBACK:反馈输入端;ON/OFF:控制输入端,接公共端时,稳压电路工作;接高电平时,稳压电路停止。

LM2575中文资料详解

LM2575中文资料详解

LM2575 超详细中文介绍来源: | 发表于:2008年02月28日1 概述LM2575系列开关稳压集成电路是美国国家半导体公司生产的1A集成稳压电路,它内部集成了一个固定的振荡器,只须极少外围器件便可构成一种高效的稳压电路,可大大减小散热片的体积,而在大多数情况下不需散热片;内部有完善的保护电路,包括电流限制及热关断电路等;芯片可提供外部控制引脚。

是传统三端式稳压集成电路的理想替代产品。

此主题相关图片如下:该系列分为LM1575、LM2575及LM2575HV三个系列,其中LM1575为军品级产品,LM2575为标准电压产品,LM2575HV为高电压输入产品。

每一种产品系列均提供、5V、12V、15V及可调(ADJ)等多个电压档次产品。

除军品级产品外,其余两个系列均提供TO-200直脚、TO-220弯脚、塑封DIP-16脚、表面安装DIP-24脚、表面安装T)-263-5脚等多种封装形式,并分别用后缀T、Flow LB3、N、M、S 表示。

对于5V输出的LM2575产品,不同的封装形式,其完整表示分别为、 Flow LB03、、、。

LM2575T系列开关稳压集成电路芯片的主要参数如下:●最大输出电流:1A;●最大输入电压:LM1575/LM2575为45V;LM2575HV为63V;此主题相关图片如下:●输出电压:、5V、12V、ADJ(可调);●振荡频率:54kHz;●最大稳压误差:4%;●转换效率:75%~88%(不同的电压输出的效率不同);●工作温度范围:LM1575为-55℃~+150℃;LM2575/LM2575HV为-40℃~+125℃。

2 引脚功能图1是LM2575集成稳压器的两种引脚排列。

其引脚功能如下:VIN:未稳压电压输入端;此主题相关图片如下:OUTPUT:开关电压输出,接电感及快恢复二极管;GND:公共端;FEEDBACK:反馈输入端;ON/OFF:控制输入端,接公共端时,稳压电路工作;接高电平时,稳压电路停止。

LM2575T-12-V中文资料

LM2575T-12-V中文资料

DC ICL
Peak C urrent LM2576(1)
ICL
4.2 3.5
ã 2001 Semtech Corp.
3

元器件交易网
LM2575 & LM2576
POWER MANAGEMENT Electrical Characteristics (Cont.)
Parameter Output Voltage LM2576-3.3
Sy mbol VO
Test C onditions IO = 0.5A 8V to VIN Rated
ห้องสมุดไป่ตู้
Min 3.23 3.20 3.14
Ty p 3.30
Max 3.37 3.40 3.47
U nits V
Output Voltage LM2576-5
V
Feedback Voltage LM2576-AD J, VO = 5V
V FB
IO = 0.5A 8V to VIN Rated
1.217 1.193 1.180
1.230
1.243 1.267 1.280
V
Feedback Bi as C urrent LM2576-AD J
ã 2001 Semtech Corp.
mA
IQ
5
mA
Standby Qui escent C urrent (On/Off Pi n = 5V) On/Off Pi n Logi c Input Level
ISTBY
The LM2575/6 series offers an alternative to popular 3 terminal linear regulators by providing higher efficiency with reduced heatsink size. In many applications a heat sink will not be required.

LM2575

LM2575

FEATURESNCNCOUTPUTNCGNDNCFBNCN (PDIP) PACKAGE(TOP VIEW)KTT (TO-263) PACKAGE(TOP VIEW)12345GNDON/OFFFEEDBACKGNDOUTPUTV INAPPLICATIONSDESCRIPTION/ORDERING INFORMATIONLM25751-A SIMPLE STEP-DOWN SWITCHING VOLTAGE REGULATORSLVS569D–JANUARY2005–REVISED JULY2005•Fixed3.3-V,5-V,12-V,and15-V Options With±5%Regulation(Max)Over Line,Load,andTemperature Conditions•Adjustable Option With a Range of1.23V to37V and±4%Regulation(Max)Over Line,Load,and Temperature Conditions•Specified1-A Output Current•Wide Input Voltage Range…4.75V to40V•Requires Only Four External Components(Fixed Versions)and Uses Readily AvailableStandard Inductors•52-kHz(Typ)Fixed-Frequency InternalOscillator•TTL Shutdown Capability With50-µA(Typ)Standby Current•High Efficiency…as High as88%(Typ)•Thermal Shutdown and Current-LimitProtection With Cycle-by-Cycle CurrentLimiting•Simple High-Efficiency Step-Down(Buck)Regulator•Pre-Regulator for Linear Regulators•On-Card Switching Regulators•Positive-to-Negative Converter(Buck-Boost)The LM2575greatly simplifies the design of switching power supplies by conveniently providing all the active functions needed for a step-down(buck)switching regulator in an integrated circuit.Accepting a wide input voltage range and available in fixed output voltages of3.3V,5V,12V,15V,or an adjustable output version, the LM2575has an integrated switch capable of delivering1A of load current,with excellent line and load regulation.The device also offers internal frequency compensation,a fixed-frequency oscillator,cycle-by-cycle current limiting,and thermal shutdown.In addition,a manual shutdown is available via an external ON/OFF pin. The LM2575represents a superior alternative to popular three-terminal linear regulators.Due to its high efficiency,it significantly reduces the size of the heat sink and,in many cases,no heat sink is required. Optimized for use with standard series of inductors available from several different manufacturers,the LM2575 greatly simplifies the design of switch-mode power supplies by requiringa minimal addition of only four to six external components for operation.The LM2575is characterized for operation over the virtual junction temperature range of–40°C to125°C.Please be aware that an important notice concerning availability,standard warranty,and use in critical applications of TexasInstruments semiconductor products and disclaimers thereto appears at the end of this data sheet.PRODUCTION DATA information is current as of publication date.Copyright©2005,Texas Instruments Incorporated Products conform to specifications per the terms of the TexasInstruments standard warranty.Production processing does notnecessarily include testing of all parameters.LM25751-A SIMPLE STEP-DOWN SWITCHING VOLTAGE REGULATORSLVS569D–JANUARY 2005–REVISED JULY 2005ORDERING INFORMATIONV O T JPACKAGE (1)ORDERABLE PART NUMBER TOP-SIDE MARKING (NOM)3.3V LM2575-33IN PREVIEW 5V LM2575-05IN PREVIEW 12V PDIP –NTube of 25LM2575-12IN PREVIEW 15V LM2575-15IN PREVIEW ADJ LM2575IN LM2575IN Tube of 50LM2575-33IKTT 3.3VPREVIEW Reel of 2000LM2575-33IKTTR –40°C to 125°CTube of 50LM2575-05IKTT 5V PREVIEW Reel of 2000LM2575-05IKTTR Tube of 50LM2575-12IKTT 12V TO-263–KTTPREVIEW Reel of 2000LM2575-12IKTTR Tube of 50LM2575-15IKTT 15V PREVIEW Reel of 2000LM2575-15IKTTR Tube of 50LM2575IKTT ADJPREVIEWReel of 2000LM2575IKTTR(1)Package drawings,standard packing quantities,thermal data,symbolization,and PCB design guidelines are available at /sc/package.2UnregulatedDC Input5 V: R2 = 3.1 k W 12 V: R2 = 8.84 k W 15 V: R2 = 11.3 k WADJ: R1 = Open, R2 = 0 Ω7-V to 40-V UnregulatedDC Input5-VRegulated Output 1-A LoadLM25751-A SIMPLE STEP-DOWN SWITCHING VOLTAGE REGULATORSLVS569D–JANUARY 2005–REVISED JULY 2005FUNCTIONAL BLOCK DIAGRAMA.Pin numbers are for the KTT (TO-263)package.A.Pin numbers are for the KTT (TO-263)package.Figure 1.Typical Application Circuit (Fixed Version)3Absolute Maximum Ratings (1)Package Thermal Data (1)Recommended Operating ConditionsLM25751-A SIMPLE STEP-DOWN SWITCHING VOLTAGE REGULATORSLVS569D–JANUARY 2005–REVISED JULY 2005over operating free-air temperature range (unless otherwise noted)MINMAX UNIT V INSupply voltage42V ON/OFF pin input voltage–0.3V IN V Output voltage to GND (steady state)–1V T J Maximum junction temperature 150°C T stg Storage temperature range–65150°C(1)Stresses beyond those listed under “absolute maximum ratings”may cause permanent damage to the device.These are stress ratings only,and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions”is not implied.Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.PACKAGE BOARD θJC θJCBθJA PDIP (N)High K,JESD 51-751°C/W67°C/W TO-263(KTT)High K,JESD 51-5TBD TBD(1)Maximum power dissipation is a function of T J (max),θJA ,and T A .The maximum allowable power dissipation at any allowable ambient temperature is P D =(T J (max)–T A )/θJA .Operating at the absolute maximum T J of 150°C can affect reliability.over operating free-air temperature range (unless otherwise noted)MINMAX UNIT V IN Supply voltage4.7540V T JOperating virtual junction temperature–40125°C4Electrical CharacteristicsLM2575 1-A SIMPLE STEP-DOWN SWITCHING VOLTAGE REGULATORSLVS569D–JANUARY2005–REVISED JULY2005I LOAD =200mA,VIN=12V for3.3-V,5-V,and adjustable versions,VIN=25V for12-V version,VIN=30V for15-V version(unless otherwise noted)(see Figure2)PARAMETER TEST CONDITIONS T J MIN TYP MAX UNITV IN=12V,I LOAD=0.2A25°C 3.234 3.3 3.366LM2575-3325°C 3.168 3.3 3.4324.75V≤V IN≤40V,0.2A≤I LOAD≤1A Full range 3.135 3.465V IN=12V,I LOAD=0.2A25°C 4.95 5.1LM2575-0525°C 4.85 5.28V≤V IN≤40V,0.2A≤I LOAD≤1A Full range 4.75 5.25V OUT Output voltage VV IN=25V,I LOAD=0.2A25°C11.761212.24LM2575-1225°C11.521212.4815V≤V IN≤40V,0.2A≤I LOAD≤1A Full range11.412.6V IN=30V,I LOAD=0.2A25°C14.71515.3LM2575-1525°C14.41515.618V≤V IN≤40V,0.2A≤I LOAD≤1A Full range14.251515.75V IN=12V,V OUT=5V,25°C 1.217 1.23 1.243I LOAD=0.2AFeedback voltage LM2575-ADJ V25°C 1.193 1.23 1.2678V≤V IN≤40V,V OUT=5V,0.2A≤I LOAD≤1A Full range 1.18 1.28LM2575-33V IN=12V,I LOAD=1A75LM2575-05V IN=12V,I LOAD=1A77LM2575-12V IN=15V,I LOAD=1A88ηEfficiency25°C%LM2575-15V IN=18V,I LOAD=1A88V IN=12V,V OUT=5V,LM2575-ADJ77I LOAD=1A25°C50100I IB Feedback bias current V OUT=5V(ADJ version only)nAFull range50025°C475258f o Oscillator frequency(1)kHzFull range426325°C0.9 1.2V SAT Saturation voltage I OUT=1A(2)VFull range 1.4 Maximum duty cycle(3)25°C9398%25°C 1.7 2.8 3.6I CL Peak current(1)(2)AFull range 1.34V IN=40(4),Output=0V2I L Output leakage current25°C mAV IN=40(4),Output=–1V7.530I Q Quiescent current(4)25°C510mAI STBY Standby quiescent current OFF(ON/OFF pin=5V)25°C50200µA25°C 2.2 1.4V IH OFF(V OUT=0V)Full range 2.4ON/OFF logic input level V25°C 1.21V IL ON(V OUT=nominal voltage)Full range0.8I IH OFF(ON/OFF pin=5V)1230ON/OFF input current25°CµAI IL OFF(ON/OFF pin=0V)010(1)In the event of an output short or an overload condition,self-protection features lower the oscillator frequency to∼18kHz and theminimum duty cycle from5%to∼2%.The resulting output voltage drops to∼40%of its nominal value,causing the average power dissipated by the IC to lower.(2)Output is not connected to diode,inductor,or capacitor.Output is sourcing current.(3)Feedback is disconnected from output and connected to0V.(4)To force the output transistor off,FEEDBACK is disconnected from output and connected to12V for the adjustable,3.3-V,and5-Vversions;and25V for the12-V and15-V versions.5TYPICAL OPERATING CHARACTERISTICSLM25751-A SIMPLE STEP-DOWN SWITCHING VOLTAGE REGULATORSLVS569D–JANUARY 2005–REVISED JULY 2005T A =25°C (unless otherwise noted)GRAPH PREVIEWSFigure 2.Normalized Output Voltage Figure 3.Line Regulation Figure 4.Dropout Voltage Figure 5.Current Limit Figure 6.Quiescent Current Figure 7.Standby Quiescent Current Figure 9.Quiescent Current vs Duty Cycle Figure 0.Oscillator Frequency Figure 10.Switch Saturation Voltage Figure 11.EfficiencyFigure 12.Minimum Operating Voltage (Adjustable Version)Figure 13.Feedback Voltage vs Duty CycleFigure 14.Feedback Pin Current (Adjustable Version)Figure 15.Switching Waveforms Figure 16.Load Transient Response6APPLICATION INFORMATIONLayout GuidelinesC IN = 100 µF , Aluminum Electrolytic C OUT = 330 µF , Aluminum Electrolytic D1 = Schottky L1 = 330 µHFixed Output Voltage VersionsAdjustable Output Voltage VersionsV OUT = V REF (1 + R2/R1) = 5 V Where,V REF = 1.23 V R1 = 2 k W R2 = 6.12 k WLM25751-A SIMPLE STEP-DOWN SWITCHING VOLTAGE REGULATORSLVS569D–JANUARY 2005–REVISED JULY 2005With any switching regulator,circuit layout plays an important role in circuit performance.Wiring and parasitic inductances,as well as stray capacitances,are subjected to rapidly switching currents,which can result in unwanted voltage transients.To minimize inductance and ground loops,the length of the leads indicated by heavy lines should be minimized.Optimal results can be achieved by single-point grounding (see Figure 2)or by ground-plane construction.For the same reasons,the two programming resistors used in the adjustable version should be located as close as possible to the regulator to keep the sensitive feedback wiring short.A.Pin numbers are for the KTT (TO-263)package.Figure 2.Test Circuit and Layout Guidelines7Input Capacitor (C IN )I C,RMS u 1.2(t onT )I LOAD,where:t onT +V OUT V IN{buck regulator},and t onT+|V OUT |(|V OUT |)V IN ){buck−boost regulator}Output Capacitor (C OUT )Catch DiodeInductorLM25751-A SIMPLE STEP-DOWN SWITCHING VOLTAGE REGULATORSLVS569D–JANUARY 2005–REVISED JULY 2005APPLICATION INFORMATION (continued)For stability concerns,an input bypass capacitor (electrolytic,C IN ≥47µF)needs to be located as close as possible to the regulator.For operating temperatures below –25°C,C IN may need to be larger in value.In addition,since most electrolytic capacitors have decreasing capacitances and increasing ESR as temperature drops,adding a ceramic or solid tantalum capacitor in parallel increases the stability in cold temperatures.To extend the capacitor operating lifetime,the capacitor RMS ripple current rating should be:For both loop stability and filtering of ripple voltage,an output capacitor also is required,again in close proximityto the regulator.For best performance,low-ESR aluminum electrolytics are recommended,although standard aluminum electrolytics may be adequate for some applications.Based on the following equation:Output Ripple Voltage =(ESR of C OUT )×(inductor ripple current)Output ripple of 50mV to 150mV typically can be achieved with capacitor values of 220µF to 680µrger C OUT can reduce the ripple 20mV to 50mV peak-to-peak.To improve further on output ripple,paralleling of standard electrolytic capacitors may be used.Alternatively,higher-grade capacitors such as “high frequency”,“low inductance”,or “low ESR”can be used.The following should be taken into account when selecting C OUT :•At cold temperatures,the ESR of the electrolytic capacitors can rise dramatically (typically 3×nominal valueat –25°C).Because solid tantalum capacitors have significantly better ESR specifications at cold temperatures,they should be used at operating temperature lower than –25°C.As an alternative,tantalums also can be paralleled to aluminum electrolytics and should contribute 10%to 20%to the total capacitance.•Low ESR for C OUT is desirable for low output ripple.However,the ESR should be greater than 0.05Ωtoavoid the possibility of regulator instability.Hence,a sole tantalum capacitor used for C OUT is most susceptible to this occurrence.•The capacitor’s ripple current rating of 52kHz should be at least 50%higher than the peak-to-peak inductorripple current.As with other external components,the catch diode should be placed close to the output to minimize unwanted noise.Schottky diodes have fast switching speeds and low forward voltage drops and,thus,offer the best performance,especially for switching regulators with low output voltages (V OUT <5V).If a high-efficiency,fast-recovery,or ultra-fast-recovery diode is used in place of a Schottky,it should have a soft recovery (versus abrupt turn-off characteristics)to avoid the chance of causing instability and EMI.Standard 50-/60-Hz diodes,such as the 1N4001or 1N5400series,are NOT suitable.Proper inductor selection is key to the performance-switching power-supply designs.One important factor to consider is whether the regulator will be used in continuous (inductor current flows continuously and never drops to zero)or in discontinuous mode (inductor current goes to zero during the normal switching cycle).Each mode has distinctively different operating characteristics and,therefore,can affect the regulator performance and requirements.In many applications,the continuous mode is the preferred mode of operation,since it offers greater output power with lower peak currents,and also can result in lower output ripple voltage.The advantages of continuous mode of operation come at the expense of a larger inductor required to keep inductorcurrent continuous,especially at low output currents and/or high input voltages.8Output Voltage Ripple and TransientsFeedback ConnectionON/OFF InputGrounding LM25751-A SIMPLE STEP-DOWN SWITCHING VOLTAGE REGULATORSLVS569D–JANUARY2005–REVISED JULY2005 APPLICATION INFORMATION(continued)The LM2575can operate in either continuous or discontinuous mode.With heavy load currents,the inductor current flows continuously and the regulator operates in continuous mode.Under light load,the inductor fully discharges and the regulator is forced into the discontinuous mode of operation.For light loads(approximately 200mA or less),this discontinuous mode of operation is perfectly acceptable and may be desirable solely to keep the inductor value and size small.Any buck regulator eventually will operate in discontinuous mode when the load current is light enough.The type of inductor chosen can have advantages and disadvantages.If high performance/quality is a concern, then more-expensive toroid core inductors are the best choice,as the magnetic flux is contained completely within the core,resulting in less EMI and noise in nearby sensitive circuits.Inexpensive bobbin core inductors, however,generate more EMI as the open core will not confine the flux within the core.Multiple switching regulators located in proximity to each other are particularly susceptible to mutual coupling of magnetic fluxes from each other’s open cores.In these situations,closed magnetic structures(such as a toroid,pot core,or E-core)are more appropriate.Regardless of the type and value of inductor used,the inductor never should carry more than its rated current. Doing so may cause the inductor to saturate,in which case the inductance quickly drops,and the inductor looks like a low-value resistor(from the dc resistance of the windings).As a result,switching current rises dramatically (until limited by the current-by-current limiting feature of the LM2575)and can result in overheating of the inductor and the IC itself.Note that different types of inductors have different saturation characteristics.As with any switching power supply,the output of the LM2575will have a sawtooth ripple voltage at the switching frequency.Typically about1%of the output voltage,this ripple is due mainly to the inductor sawtooth ripple current and the ESR of the output capacitor(see note on C OUT).Furthermore,the output also may contain small voltage spikes at the peaks of the sawtooth waveform.This is due to the fast switching of the output switch and the parasitic inductance of C OUT.These voltage spikes can be minimized through the use of low-inductance capacitors.There are several ways to reduce the output ripple voltage:a larger inductor,a larger C OUT,or both.Another method is to use a small LC filter(20µH and100µF)at the output.This filter can reduce the output ripple voltage by a factor of10(see Figure2).For fixed voltage options,FEEDBACK must be wired to V OUT.For the adjustable version,FEEDBACK must be connected between the two programming resistors.Again,both of these resistors should be in close proximity to the regulator,and each should be less than100kΩto minimize noise pickup.ON/OFF should be grounded or be a low-level TTL voltage(typically<1.6V)for normal operation.To shut down the LM2575and put it in standby mode,a high-level TTL or CMOS voltage should be supplied to this pin. ON/OFF should not be left open and safely can be pulled up to V IN with or without a pullup resistor.The power and ground connections of the LM2575must be low impedance to help maintain output stability.For the5-pin packages,both pin3and tab are ground,and either connection can be used as they are both part of the same lead frame.With the16-pin and24-pin packages,all the ground pins(including signal and power grounds)should be soldered directly to wide PCB copper traces to ensure low-inductance connections and good thermal dissipation.9PACKAGING INFORMATIONOrderable Device Status (1)Package Type Package DrawingPins Package Qty Eco Plan (2)Lead/Ball FinishMSL Peak Temp (3)LM2575-33IN PREVIEW PDIP N 1625TBD Call TI Call TILM2575IN ACTIVE PDIP N 1625Pb-Free (RoHS)CU NIPD Level-NC-NC-NC LM2575INE4ACTIVEPDIPN1625Pb-Free (RoHS)CU NIPDLevel-NC-NC-NC(1)The marketing status values are defined as follows:ACTIVE:Product device recommended for new designs.LIFEBUY:TI has announced that the device will be discontinued,and a lifetime-buy period is in effect.NRND:Not recommended for new designs.Device is in production to support existing customers,but TI does not recommend using this part in a new design.PREVIEW:Device has been announced but is not in production.Samples may or may not be available.OBSOLETE:TI has discontinued the production of the device.(2)Eco Plan -The planned eco-friendly classification:Pb-Free (RoHS)or Green (RoHS &no Sb/Br)-please check /productcontent for the latest availability information and additional product content details.TBD:The Pb-Free/Green conversion plan has not been defined.Pb-Free (RoHS):TI's terms "Lead-Free"or "Pb-Free"mean semiconductor products that are compatible with the current RoHS requirements for all 6substances,including the requirement that lead not exceed 0.1%by weight in homogeneous materials.Where designed to be soldered at high temperatures,TI Pb-Free products are suitable for use in specified lead-free processes.Green (RoHS &no Sb/Br):TI defines "Green"to mean Pb-Free (RoHS compatible),and free of Bromine (Br)and Antimony (Sb)based flame retardants (Br or Sb do not exceed 0.1%by weight in homogeneous material)(3)MSL,Peak Temp.--The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications,and peak solder temperature.Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided.TI bases its knowledge and belief on information provided by third parties,and makes no representation or warranty as to the accuracy of such information.Efforts are underway to better integrate information from third parties.TIhas taken and continues to take reasonable steps to provide representativeand accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.TI and TI suppliers consider certain information to be proprietary,and thus CAS numbers and other limited information may not be available for release.In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s)at issue in this document sold by TI to Customer on an annual basis.PACKAGE OPTION ADDENDUM17-Oct-2005Addendum-Page 1IMPORTANT NOTICETexas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. T esting and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. T o minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions:Products ApplicationsAmplifiers Audio /audioData Converters Automotive /automotiveDSP Broadband /broadbandInterface Digital Control /digitalcontrolLogic Military /militaryPower Mgmt Optical Networking /opticalnetwork Microcontrollers Security /securityTelephony /telephonyVideo & Imaging /videoWireless /wirelessMailing Address:Texas InstrumentsPost Office Box 655303 Dallas, Texas 75265Copyright 2005, Texas Instruments Incorporated。

太阳能充电宝的方案

太阳能充电宝的方案

太阳能充电宝的方案图是由LM2575ADJ和LM3420等构成的充电电路,LM3420监视充电电器的电压,其输入加至开关集成稳压器LM2575ADJ的反馈端(FB)。

当检测到用电器满充电电压时,电路停止对电池充电,另外,A1(LM358)放大器用于增强LM3420的检测能力。

1、LM2575的介绍●输出电压:3.3V、5V、12V、ADJ(可调);●振荡频率:54kHz;●最大稳压误差:4%;●转换效率:75%~88%(不同的电压输出的效率不同);●工作温度范围:LM1575为-55℃~+150℃;LM2575/LM2575HV为-40℃~+125℃。

2 引脚功能图1是LM2575集成稳压器的两种引脚排列。

其引脚功能如下:VIN:未稳压电压输入端;OUTPUT:开关电压输出,接电感及快恢复二极管;GND:公共端;FEEDBACK:反馈输入端;ON/OFF:控制输入端,接公共端时,稳压电路工作;接高电平时,稳压电路停止。

3 基本原理LM2575的内部框图如图2所示,该框图对应于TO-220封装的引脚。

其中R1=1kΩ(ADJ时开路),R2分别为1.7kΩ(3.3V)、3.1kΩ(5V)、8.8kΩ(12V)、11.3kΩ(15V)和0(ADJ),可以看出LM2575内含52kHz振荡器、基准电路、热关断电路、电流限制电路、放大器、比较器及内部稳压等电路。

将稳压输出的电压接到反馈输入端的目的是同内部电压基准比较,若电压偏低,则用放大器来控制内部振荡器以提高输出占空比,从而提高输出电压。

2、LM3420的介绍下图是LM3420的内部电路图,LM3420在充电电路中是监视充电电器的电压的作用。

3、充电电路的总电路图V信院毕业设计耗材申请表指导老师(签名):联系方式:元器件库管理员签字:学生专业:电子信息工程学生姓名:联系方式:。

LM2575--通用降压DC电源

LM2575--通用降压DC电源

LM1575/LM2575/LM2575HV SeriesSIMPLE SWITCHER ®1A Step-Down Voltage RegulatorGeneral DescriptionThe LM2575series of regulators are monolithic integrated circuits that provide all the active functions for a step-down (buck)switching regulator,capable of driving a 1A load with excellent line and load regulation.These devices are avail-able in fixed output voltages of 3.3V,5V,12V,15V,and an adjustable output version.Requiring a minimum number of external components,these regulators are simple to use and include internal frequency compensation and a fixed-frequency oscillator.The LM2575series offers a high-efficiency replacement for popular three-terminal linear regulators.It substantially re-duces the size of the heat sink,and in many cases no heat sink is required.A standard series of inductors optimized for use with the LM2575are available from several different manufacturers.This feature greatly simplifies the design of switch-mode power supplies.Other features include a guaranteed ±4%tolerance on out-put voltage within specified input voltages and output load conditions,and ±10%on the oscillator frequency.External shutdown is included,featuring 50µA (typical)standby cur-rent.The output switch includes cycle-by-cycle current limit-ing,as well as thermal shutdown for full protection under fault conditions.Featuresn 3.3V,5V,12V,15V,and adjustable output versions n Adjustable version output voltage range,1.23V to 37V (57V for HV version)±4%max over line and load conditions n Guaranteed 1A output currentn Wide input voltage range,40V up to 60V for HV version n Requires only 4external components n 52kHz fixed frequency internal oscillatorn TTL shutdown capability,low power standby mode n High efficiencyn Uses readily available standard inductorsn Thermal shutdown and current limit protection n P +Product Enhancement testedApplicationsn Simple high-efficiency step-down (buck)regulator n Efficient pre-regualtor for linear regulators n On-card switching regulatorsnPositive to negative converter (Buck-Boost)Typical Application(Fixed Output Voltage Versions)SIMPLE SWITCHER ®is a registered trademark of National Semiconductor Corporation.DS011475-1Note:Pin numbers are for the TO-220package.May 1999LM1575/LM2575/LM2575HV Series SIMPLE SWITCHER 1A Step-Down Voltage Regulator©1999National Semiconductor Corporation 查询LM1575 Series供应商Block Diagram and Typical ApplicationConnection Diagrams(XX indicates output voltage option.See Ordering Information table for complete part number.)DS011475-23.3V,R2=1.7k5V,R2=3.1k12V,R2=8.84k15V,R2=11.3kFor ADJ.VersionR1=Open,R2=0ΩNote:Pin numbers are for the TO-220package.FIGURE1.Straight Leads5–Lead TO-22(T)DS011475-22Top ViewLM2575T-XX or LM2575HVT-XXSee NS Package Number T05ABent,Staggered Leads5-Lead TO-220(T)DS011475-23Top ViewDS011475-25*No Internal ConnectionTop ViewLM2575N-XX or LM2575HVN-XXSee NS Package Number N16ALM1575J-XX-QMLSee NS Package Number J16A24-Lead Surface Mount(M)DS011475-26*No Internal ConnectionTop ViewLM2575M-XX or LM2575HVM-XXSee NS Package Number M24B2Connection Diagrams(XX indicates output voltage option.See Ordering Information table for complete partnumber.)(Continued)Ordering InformationPackage NSC Standard High Temperature TypePackage Voltage RatingVoltage RatingRangeNumber (40V)(60V)5-Lead TO-220T05ALM2575T-3.3LM2575HVT-3.3Straight LeadsLM2575T-5.0LM2575HVT-5.0LM2575T-12LM2575HVT-12LM2575T-15LM2575HVT-15LM2575T-ADJLM2575HVT-ADJ5-Lead TO-220T05DLM2575T-3.3Flow LB03LM2575HVT-3.3Flow LB03Bent and LM2575T-5.0Flow LB03LM2575HVT-5.0Flow LB03Staggered LeadsLM2575T-12Flow LB03LM2575HVT-12Flow LB03LM2575T-15Flow LB03LM2575HVT-15Flow LB03LM2575T-ADJ Flow LB03LM2575HVT-ADJ Flow LB0316-Pin Molded N16ALM2575N-5.0LM2575HVN-5.0−40˚C ≤T J ≤+125˚CDIPLM2575N-12LM2575HVN-12LM2575N-15LM2575HVN-15LM2575N-ADJLM2575HVN-ADJ 24-Pin M24BLM2575M-5.0LM2575HVM-5.0Surface MountLM2575M-12LM2575HVM-12LM2575M-15LM2575HVM-15LM2575M-ADJLM2575HVM-ADJ 5-Lead TO-236TS5BLM2575S-3.3LM2575HVS-3.3Surface MountLM2575S-5.0LM2575HVS-5.0LM2575S-12LM2575HVS-12LM2575S-15LM2575HVS-15LM2575S-ADJLM2575HVS-ADJ16-Pin CeramicJ16ALM1575J-3.3-QML DIPLM1575J-5.0-QML LM1575J-12-QML −55˚C ≤T J ≤+150˚CLM1575J-15-QML LM1575J-ADJ-QMLTO-263(S)5-Lead Surface-Mount PackageDS011475-29Top ViewDS011475-30Side ViewLM2575S-XX or LM2575HVS-XX See NS Package Number TS5B3Absolute Maximum Ratings(Note1)If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. Maximum Supply VoltageLM1575/LM257545V LM2575HV63V ON/OFF Pin Input Voltage−0.3V≤V≤+V IN Output Voltage to Ground(Steady State)−1V Power Dissipation Internally Limited Storage Temperature Range−65˚C to+150˚C Maximum Junction Temperature150˚C Minimum ESD Rating(C=100pF,R=1.5kΩ)2kV Lead Temperature(Soldering,10sec.)260˚C Operating RatingsTemperature RangeLM1575−55˚C≤T J≤+150˚C LM2575/LM2575HV−40˚C≤T J≤+125˚C Supply VoltageLM1575/LM257540V LM2575HV60VLM1575-3.3,LM2575-3.3,LM2575HV-3.3Electrical CharacteristicsSpecifications with standard type face are for T J=25˚C,and those with boldface type apply over full Operating Tempera-ture Range.Symbol Parameter Conditions Typ LM1575-3.3LM2575-3.3Units(Limits)LM2575HV-3.3Limit Limit(Note2)(Note3)SYSTEM PARAMETERS(Note4)Test Circuit Figure2V OUT Output Voltage V IN=12V,I LOAD=0.2A 3.3VCircuit of Figure2 3.267 3.234V(Min)3.333 3.366V(Max) V OUT Output Voltage4.75V≤V IN≤40V,0.2A≤I LOAD≤1A 3.3V LM1575/LM2575Circuit of Figure2 3.200/3.168 3.168/3.135V(Min)3.400/3.432 3.432/3.465V(Max) V OUT Output Voltage4.75V≤V IN≤60V,0.2A≤I LOAD≤1A 3.3V LM2575HV Circuit of Figure2 3.200/3.168 3.168/3.135V(Min)3.416/3.450 3.450/3.482V(Max)ηEfficiency V IN=12V,I LOAD=1A75%LM1575-5.0,LM2575-5.0,LM2575HV-5.0Electrical CharacteristicsSpecifications with standard type face are for T J=25˚C,and those with boldface type apply over full Operating Tempera-ture Range.Symbol Parameter Conditions Typ LM1575-5.0LM2575-5.0Units(Limits)LM2575HV-5.0Limit Limit(Note2)(Note3)SYSTEM PARAMETERS(Note4)Test Circuit Figure2V OUT Output Voltage V IN=12V,I LOAD=0.2A 5.0VCircuit of Figure2 4.950 4.900V(Min)5.050 5.100V(Max) V OUT Output Voltage0.2A≤I LOAD≤1A, 5.0V LM1575/LM25758V≤V IN≤40V 4.850/4.800 4.800/4.750V(Min)Circuit of Figure2 5.150/5.200 5.200/5.250V(Max) V OUT Output Voltage0.2A≤I LOAD≤1A, 5.0V LM2575HV8V≤V IN≤60V 4.850/4.800 4.800/4.750V(Min)Circuit of Figure2 5.175/5.225 5.225/5.275V(Max)ηEfficiency V IN=12V,I LOAD=1A77%4LM1575-12,LM2575-12,LM2575HV-12Electrical CharacteristicsSpecifications with standard type face are for T J=25˚C,and those with boldface type apply over full Operating Tempera-ture Range.Symbol Parameter Conditions Typ LM1575-12LM2575-12Units(Limits)LM2575HV-12Limit Limit(Note2)(Note3)SYSTEM PARAMETERS(Note4)Test Circuit Figure2V OUT Output Voltage V IN=25V,I LOAD=0.2A12VCircuit of Figure211.8811.76V(Min)12.1212.24V(Max)V OUT Output Voltage0.2A≤I LOAD≤1A,12V LM1575/LM257515V≤V IN≤40V11.64/11.5211.52/11.40V(Min)Circuit of Figure212.36/12.4812.48/12.60V(Max)V OUT Output Voltage0.2A≤I LOAD≤1A,12V LM2575HV15V≤V IN≤60V11.64/11.5211.52/11.40V(Min)Circuit of Figure212.42/12.5412.54/12.66V(Max)ηEfficiency V IN=15V,I LOAD=1A88%LM1575-15,LM2575-15,LM2575HV-15Electrical CharacteristicsSpecifications with standard type face are for T J=25˚C,and those with boldface type apply over full Operating Tempera-ture Range.Symbol Parameter Conditions Typ LM1575-15LM2575-15Units(Limits)LM2575HV-15Limit Limit(Note2)(Note3)SYSTEM PARAMETERS(Note4)Test Circuit Figure2V OUT Output Voltage V IN=30V,I LOAD=0.2A15VCircuit of Figure214.8514.70V(Min)15.1515.30V(Max)V OUT Output Voltage0.2A≤I LOAD≤1A,15V LM1575/LM257518V≤V IN≤40V14.55/14.4014.40/14.25V(Min)Circuit of Figure215.45/15.6015.60/15.75V(Max)V OUT Output Voltage0.2A≤I LOAD≤1A,15V LM2575HV18V≤V IN≤60V14.55/14.4014.40/14.25V(Min)Circuit of Figure215.525/15.67515.68/15.83V(Max)ηEfficiency V IN=18V,I LOAD=1A88%LM1575-ADJ,LM2575-ADJ,LM2575HV-ADJElectrical CharacteristicsSpecifications with standard type face are for T J=25˚C,and those with boldface type apply over full Operating Temperature Range.Symbol Parameter Conditions Typ LM1575-ADJ LM2575-ADJ Units(Limits)LM2575HV-ADJLimit Limit(Note2)(Note3)SYSTEM PARAMETERS(Note4)Test Circuit Figure2V OUT Feedback Voltage V IN=12V,I LOAD=0.2A 1.230VV OUT=5V 1.217 1.217V(Min)Circuit of Figure2 1.243 1.243V(Max)5LM1575-ADJ,LM2575-ADJ,LM2575HV-ADJElectrical Characteristics(Continued)Specifications with standard type face are for T J=25˚C,and those with boldface type apply over full Operating Temperature Range.Symbol Parameter Conditions Typ LM1575-ADJ LM2575-ADJ Units(Limits)LM2575HV-ADJLimit Limit(Note2)(Note3)SYSTEM PARAMETERS(Note4)Test Circuit Figure2V OUT Feedback Voltage0.2A≤I LOAD≤1A, 1.230V LM1575/LM25758V≤V IN≤40V 1.205/1.193 1.193/1.180V(Min)V OUT=5V,Circuit of Figure2 1.255/1.267 1.267/1.280V(Max) V OUT Feedback Voltage0.2A≤I LOAD≤1A, 1.230V LM2575HV8V≤V IN≤60V 1.205/1.193 1.193/1.180V(Min)V OUT=5V,Circuit of Figure2 1.261/1.273 1.273/1.286V(Max)ηEfficiency V IN=12V,I LOAD=1A,V OUT=5V77%All Output Voltage VersionsElectrical CharacteristicsSpecifications with standard type face are for T J=25˚C,and those with boldface type apply over full Operating Temperature Range.Unless otherwise specified,V IN=12V for the3.3V,5V,and Adjustable version,V IN=25V for the12V version,and V IN =30V for the15V version.I=200mA.LOADSymbol Parameter Conditions Typ LM1575-XX LM2575-XX Units(Limits)LM2575HV-XXLimit Limit(Note2)(Note3)DEVICE PARAMETERSV OUT=5V(Adjustable Version Only)50100/500100/500nAI b Feedback BiasCurrentf O Oscillator Frequency(Note13)52kHz47/4347/42kHz(Min)58/6258/63kHz(Max) V SAT Saturation Voltage I OUT=1A(Note5)0.9V1.2/1.4 1.2/1.4V(Max) DC Max Duty Cycle(ON)(Note6)98%9393%(Min)I CL Current Limit Peak Current(Notes5,13) 2.2A1.7/1.3 1.7/1.3A(Min)3.0/3.2 3.0/3.2A(Max)I L Output Leakage(Notes7,8)Output=0V22mA(Max)Current Output=−1V7.5mAOutput=−1V3030mA(Max) I Q Quiescent Current(Note7)5mA10/1210mA(Max) I STBY Standby Quiescent ON/OFF Pin=5V(OFF)50µACurrent200/500200µA(Max)θJA Thermal Resistance T Package,Junction to Ambient(Note9)65θJA T Package,Junction to Ambient(Note10)45˚C/W θJC T Package,Junction to Case2θJA N Package,Junction to Ambient(Note11)85θJA M Package,Junction to Ambient(Note11)100θJA S Package,Junction to Ambient(Note12)376All Output Voltage VersionsElectrical Characteristics(Continued)Specifications with standard type face are for T J=25˚C,and those with boldface type apply over full Operating Temperature Range.Unless otherwise specified,V IN=12V for the3.3V,5V,and Adjustable version,V IN=25V for the12V version,and V IN =30V for the15V version.ILOAD=200mA.Symbol Parameter Conditions Typ LM1575-XX LM2575-XX Units(Limits)LM2575HV-XXLimit Limit(Note2)(Note3)ON/OFF CONTROL Test Circuit Figure2V IH ON/OFF Pin Logic V OUT=0V 1.4 2.2/2.4 2.2/2.4V(Min) V IL Input Level V OUT=Nominal Output Voltage 1.2 1.0/0.8 1.0/0.8V(Max) I IH ON/OFF Pin Input ON/OFF Pin=5V(OFF)12µACurrent3030µA(Max) I IL ON/OFF Pin=0V(ON)0µA1010µA(Max)Note1:Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.Operating Ratings indicate conditions for which the device is in-tended to be functional,but do not guarantee specific performance limits.For guaranteed specifications and test conditions,see the Electrical Characteristics.Note2:All limits guaranteed at room temperature(standard type face)and at temperature extremes(bold type face).All limts are used to calculate Average Out-going Quality Level,and all are100%production tested.Note3:All limits guaranteed at room temperature(standard type face)and at temperature extremes(bold type face).All room temperature limits are100%pro-duction tested.All limits at temperature extremes are guaranteed via correlation using standard Statistical Quality Control(SQC)methods.Note4:External components such as the catch diode,inductor,input and output capacitors can affect switching regulator system performance.When the LM1575/ LM2575is used as shown in the Figure2test circuit,system performance will be as shown in system parameters section of Electrical Characteristics.Note5:Output(pin2)sourcing current.No diode,inductor or capacitor connected to output pin.Note6:Feedback(pin4)removed from output and connected to0V.Note7:Feedback(pin4)removed from output and connected to+12V for the Adjustable,3.3V,and5V versions,and+25V for the12V and15V versions,to force the output transistor OFF.Note8:V IN=40V(60V for the high voltage version).Note9:Junction to ambient thermal resistance(no external heat sink)for the5lead TO-220package mounted vertically,with1⁄2inch leads in a socket,or on a PC board with minimum copper area.Note10:Junction to ambient thermal resistance(no external heat sink)for the5lead TO-220package mounted vertically,with1⁄2inch leads soldered to a PC board containing approximately4square inches of copper area surrounding the leads.Note11:Junction to ambient thermal resistance with approxmiately1square inch of pc board copper surrounding the leads.Additional copper area will lower thermal resistance further.See thermal model in Switchers made Simple software.Note12:If the TO-263package is used,the thermal resistance can be reduced by increasing the PC board copper area thermally connected to the package:Using 0.5square inches of copper area,θJA is50˚C/W;with1square inch of copper area,θJA is37˚C/W;and with1.6or more square inches of copper area,θJA is32˚C/W. Note13:The oscillator frequency reduces to approximately18kHz in the event of an output short or an overload which causes the regulated output voltage to drop approximately40%from the nominal output voltage.This self protection feature lowers the average power dissipation of the IC by lowering the minimum duty cycle from5%down to approximately2%.Note14:Refer to RETS LM1575J for current revision of military RETS/SMD.Typical Performance Characteristics(Circuit of Figure2)Normalized Output VoltageDS011475-32Line RegulationDS011475-33Dropout VoltageDS011475-34 7Typical Performance Characteristics(Circuit of Figure 2)(Continued)Current LimitDS011475-35Quiescent CurrentDS011475-36StandbyQuiescent CurrentDS011475-37Oscillator FrequencyDS011475-38Switch Saturation VoltageDS011475-39EfficiencyDS011475-40Minimum Operating VoltageDS011475-41Quiescent Current vs Duty Cycle DS011475-42Feedback Voltage vs Duty CycleDS011475-43 8Typical Performance Characteristics(Circuit of Figure2)(Continued)Test Circuit and Layout GuidelinesAs in any switching regulator,layout is very important.Rap-idly switching currents associated with wiring inductancegenerate voltage transients which can cause problems.Forminimal inductance and ground loops,the length of the leadsindicated by heavy lines should be kept as short as possible.Single-point grounding(as indicated)or ground plane con-struction should be used for best results.When using the Ad-justable version,physically locate the programming resistorsnear the regulator,to keep the sensitive feedback wiringshort.Feedback Pin CurrentDS011475-5Maximum Power Dissipation(TO-263)(See(Note12))DS011475-28Switching WaveformsDS011475-6V OUT=5VA:Output Pin Voltage,10V/divB:Output Pin Current,1A/divC:Inductor Current,0.5A/divD:Output Ripple Voltage,20mV/div,AC-CoupledHorizontal Time Base:5µs/divLoad Transient ResponseDS011475-79Test Circuit and Layout Guidelines(Continued)Fixed Output Voltage VersionsDS011475-8C IN—100µF,75V,Aluminum ElectrolyticC OUT—330µF,25V,Aluminum ElectrolyticD1—Schottky,11DQ06L1—330µH,PE-52627(for5V in,3.3V out,use100µH,PE-92108)Adjustable Output Voltage VersionDS011475-9where V REF=1.23V,R1between1k and5k.R1—2k,0.1%R2— 6.12k,0.1%Note:Pin numbers are for the TO-220package.FIGURE2.10LM2575Series Buck Regulator Design ProcedurePROCEDURE(Fixed Output Voltage Versions)EXAMPLE(Fixed Output Voltage Versions)Given:V OUT=Regulated Output Voltage(3.3V,5V,12V,or15V) V IN(Max)=Maximum Input VoltageI LOAD(Max)=Maximum Load Current Given:V OUT=5VV IN(Max)=20VI LOAD(Max)=0.8A1.Inductor Selection(L1)A.Select the correct Inductor value selection guide from Fig-ures3,4,5,6(Output voltages of3.3V,5V,12V or15V re-spectively).For other output voltages,see the design proce-dure for the adjustable version.B.From the inductor value selection guide,identify the in-ductance region intersected by V IN(Max)and I LOAD(Max), and note the inductor code for that region.C.Identify the inductor value from the inductor code,and se-lect an appropriate inductor from the table shown in Figure9. Part numbers are listed for three inductor manufacturers. The inductor chosen must be rated for operation at the LM2575switching frequency(52kHz)and for a current rat-ing of1.15x I LOAD.For additional inductor information,see the inductor section in the Application Hints section of this data sheet.1.Inductor Selection(L1)e the selection guide shown in Figure4.B.From the selection guide,the inductance area intersected by the20V line and0.8A line is L330.C.Inductor value required is330µH.From the table in Fig-ure9,choose AIE415-0926,Pulse Engineering PE-52627, or RL1952.2.Output Capacitor Selection(C OUT)A.The value of the output capacitor together with the induc-tor defines the dominate pole-pair of the switching regulator loop.For stable operation and an acceptable output ripple voltage,(approximately1%of the output voltage)a value be-tween100µF and470µF is recommended.B.The capacitor’s voltage rating should be at least1.5times greater than the output voltage.For a5V regulator,a rating of at least8V is appropriate,and a10V or15V rating is rec-ommended.Higher voltage electrolytic capacitors generally have lower ESR numbers,and for this reasion it may be necessary to select a capacitor rated for a higher voltage than would nor-mally be needed.2.Output Capacitor Selection(C OUT)A.C OUT=100µF to470µF standard aluminum electrolytic.B.Capacitor voltage rating=20V.3.Catch Diode Selection(D1)A.The catch-diode current rating must be at least1.2times greater than the maximum load current.Also,if the power supply design must withstand a continuous output short,the diode should have a current rating equal to the maximum current limit of the LM2575.The most stressful condition for this diode is an overload or shorted output condition.B.The reverse voltage rating of the diode should be at least1.25times the maximum input voltage.3.Catch Diode Selection(D1)A.For this example,a1A current rating is adequate.e a30V1N5818or SR103Schottky diode,or any of the suggested fast-recovery diodes shown in Figure8.4.Input Capacitor(C IN)An aluminum or tantalum electrolytic bypass capacitor lo-cated close to the regulator is needed for stable operation.4.Input Capacitor(C IN)A47µF,25V aluminum electrolytic capacitor located nearthe input and ground pins provides sufficient bypassing. 11(Continued)INDUCTOR VALUE SELECTION GUIDES (For Continuous Mode Operation)DS011475-10FIGURE 3.LM2575(HV)-3.3DS011475-11FIGURE 4.LM2575(HV)-5.0DS011475-12FIGURE 5.LM2575(HV)-12DS011475-13FIGURE 6.LM2575(HV)-15DS011475-14FIGURE 7.LM2575(HV)-ADJ 12(Continued)PROCEDURE(Adjustable Output Voltage Versions)EXAMPLE(Adjustable Output Voltage Versions) Given:V OUT=Regulated Output VoltageV IN(Max)=Maximum Input VoltageI LOAD(Max)=Maximum Load CurrentF=Switching Frequency(Fixed at52kHz)Given:V OUT=10VV IN(Max)=25VI LOAD(Max)=1AF=52kHz1.Programming Output Voltage(Selecting R1and R2,asshown in Figure2)Use the following formula to select the appropriate resistorvalues.R1can be between1k and5k.(For best temperature coeffi-cient and stability with time,use1%metal film resistors)1.Programming Output Voltage(Selecting R1and R2)R2=1k(8.13−1)=7.13k,closest1%value is7.15k2.Inductor Selection(L1)A.Calculate the inductor Volt•microsecond constant,E•T(V•µs),from the following formula:e the E•T value from the previous formula and matchit with the E•T number on the vertical axis of the InductorValue Selection Guide shown in Figure7.C.On the horizontal axis,select the maximum load current.D.Identify the inductance region intersected by the E•Tvalue and the maximum load current value,and note the in-ductor code for that region.E.Identify the inductor value from the inductor code,and se-lect an appropriate inductor from the table shown in Figure9.Part numbers are listed for three inductor manufacturers.The inductor chosen must be rated for operation at theLM2575switching frequency(52kHz)and for a current rat-ing of1.15x I LOAD.For additional inductor information,seethe inductor section in the application hints section of thisdata sheet.2.Inductor Selection(L1)A.Calculate E•T(V•µs)B.E•T=115V•µsC.I LOAD(Max)=1AD.Inductance Region=H470E.Inductor Value=470µH Choose from AIE part#430-0634,Pulse Engineering part#PE-53118,or Rencopart#RL-1961.13(Continued)PROCEDURE(Adjustable Output Voltage Versions)EXAMPLE(Adjustable Output Voltage Versions)3.Output Capacitor Selection(C OUT)A.The value of the output capacitor together with the induc-tor defines the dominate pole-pair of the switching regulatorloop.For stable operation,the capacitor must satisfy the fol-lowing requirement:The above formula yields capacitor values between10µFand2000µF that will satisfy the loop requirements for stableoperation.But to achieve an acceptable output ripple volt-age,(approximately1%of the output voltage)and transientresponse,the output capacitor may need to be several timeslarger than the above formula yields.B.The capacitor’s voltage rating should be at last1.5timesgreater than the output voltage.For a10V regulator,a ratingof at least15V or more is recommended.Higher voltage electrolytic capacitors generally have lowerESR numbers,and for this reasion it may be necessary toselect a capacitor rate for a higher voltage than would nor-mally be needed.3.Output Capacitor Selection(C OUT)A.However,for acceptable output ripple voltage selectC OUT≥220µFC OUT=220µF electrolytic capacitor4.Catch Diode Selection(D1)A.The catch-diode current rating must be at least1.2timesgreater than the maximum load current.Also,if the powersupply design must withstand a continuous output short,thediode should have a current rating equal to the maximumcurrent limit of the LM2575.The most stressful condition forthis diode is an overload or shorted output.See diode selec-tion guide in Figure8.B.The reverse voltage rating of the diode should be at least1.25times the maximum input voltage.4.Catch Diode Selection(D1)A.For this example,a3A current rating is adequate.e a40V MBR340or31DQ04Schottky diode,or any ofthe suggested fast-recovery diodes in Figure8.5.Input Capacitor(C IN)An aluminum or tantalum electrolytic bypass capacitor lo-cated close to the regulator is needed for stable operation.5.Input Capacitor(C IN)A100µF aluminum electrolytic capacitor located near the in-put and ground pins provides sufficient bypassing.To further simplify the buck regulator design procedure,National Semiconductor is making available computer design software to be used with the Simple Switcher line of switching regulators.Switchers Made Simple(version3.3)is available on a(31⁄2")dis-kette for IBM compatible computers from a National Semiconductor sales office in your area.14(Continued)V R Schottky Fast Recovery1A3A1A3A20V1N58171N5820MBR120P MBR320SR102SR30230V1N58181N5821MBR130P MBR330The followingdiodes areallrated to100V11DF1MUR110HER102The following diodes areallrated to100V31DF1 MURD310HER30211DQ0331DQ03SR103SR30340V1N5819IN5822MBR140P MBR34011DQ0431DQ04SR104SR30450V MBR150MBR35011DQ0531DQ05SR105SR30560V MBR160MBR36011DQ0631DQ06SR106SR306FIGURE8.Diode Selection GuideInductor Inductor Schott Pulse Eng.RencoCode Value(Note15)(Note16)(Note17)L100100µH67127000PE-92108RL2444L150150µH67127010PE-53113RL1954L220220µH67127020PE-52626RL1953L330330µH67127030PE-52627RL1952L470470µH67127040PE-53114RL1951L680680µH67127050PE-52629RL1950H150150µH67127060PE-53115RL2445H220220µH67127070PE-53116RL2446H330330µH67127080PE-53117RL2447H470470µH67127090PE-53118RL1961H680680µH67127100PE-53119RL1960H10001000µH67127110PE-53120RL1959H15001500µH67127120PE-53121RL1958H22002200µH67127130PE-53122RL2448Note15:Schott Corp.,(612)475-1173,1000Parkers Lake Rd.,Wayzata,MN55391.Note16:Pulse Engineering,(619)674-8100,P.O.Box12236,San Diego,CA92112.Note17:Renco Electronics Inc.,(516)586-5566,60Jeffryn Blvd.East,Deer Park,NY11729.FIGURE9.Inductor Selection by Manufacturer’s Part Number15Application HintsINPUT CAPACITOR(C IN)To maintain stability,the regulator input pin must be by-passed with at least a47µF electrolytic capacitor.The ca-pacitor’s leads must be kept short,and located near the regulator.If the operating temperature range includes temperatures below−25˚C,the input capacitor value may need to be larger.With most electrolytic capacitors,the capacitance value decreases and the ESR increases with lower tempera-tures and age.Paralleling a ceramic or solid tantalum ca-pacitor will increase the regulator stability at cold tempera-tures.For maximum capacitor operating lifetime,the capacitor’s RMS ripple current rating should be greater thanINDUCTOR SELECTIONAll switching regulators have two basic modes of operation: continuous and discontinuous.The difference between the two types relates to the inductor current,whether it is flowing continuously,or if it drops to zero for a period of time in the normal switching cycle.Each mode has distinctively different operating characteristics,which can affect the regulator per-formance and requirements.The LM2575(or any of the Simple Switcher family)can be used for both continuous and discontinuous modes of opera-tion.The inductor value selection guides in Figure3through Fig-ure7were designed for buck regulator designs of the con-tinuous inductor current type.When using inductor values shown in the inductor selection guide,the peak-to-peak in-ductor ripple current will be approximately20%to30%of the maximum DC current.With relatively heavy load currents, the circuit operates in the continuous mode(inductor current always flowing),but under light load conditions,the circuit will be forced to the discontinuous mode(inductor current falls to zero for a period of time).This discontinuous mode of operation is perfectly acceptable.For light loads(less than approximately200mA)it may be desirable to operate the regulator in the discontinuous mode,primarily because of the lower inductor values required for the discontinuous mode.The selection guide chooses inductor values suitable for continuous mode operation,but if the inductor value chosen is prohibitively high,the designer should investigate the pos-sibility of discontinuous operation.The computer design soft-ware Switchers Made Simple will provide all component values for discontinuous(as well as continuous)mode of op-eration.Inductors are available in different styles such as pot core, toriod,E-frame,bobbin core,etc.,as well as different core materials,such as ferrites and powdered iron.The least ex-pensive,the bobbin core type,consists of wire wrapped on a ferrite rod core.This type of construction makes for an inex-pensive inductor,but since the magnetic flux is not com-pletely contained within the core,it generates more electro-magnetic interference(EMI).This EMI can cause problems in sensitive circuits,or can give incorrect scope readings be-cause of induced voltages in the scope probe.The inductors listed in the selection chart include ferrite pot core construction for AIE,powdered iron toroid for Pulse En-gineering,and ferrite bobbin core for Renco.An inductor should not be operated beyond its maximum rated current because it may saturate.When an inductor be-gins to saturate,the inductance decreases rapidly and the inductor begins to look mainly resistive(the DC resistance of the winding).This will cause the switch current to rise very rapidly.Different inductor types have different saturation characteristics,and this should be kept in mind when select-ing an inductor.The inductor manufacturer’s data sheets include current and energy limits to avoid inductor saturation.INDUCTOR RIPPLE CURRENTWhen the switcher is operating in the continuous mode,the inductor current waveform ranges from a triangular to a saw-tooth type of waveform(depending on the input voltage).For a given input voltage and output voltage,the peak-to-peak amplitude of this inductor current waveform remains con-stant.As the load current rises or falls,the entire sawtooth current waveform also rises or falls.The average DC value of this waveform is equal to the DC load current(in the buck regulator configuration).If the load current drops to a low enough level,the bottom of the sawtooth current waveform will reach zero,and the switcher will change to a discontinuous mode of operation. This is a perfectly acceptable mode of operation.Any buck switching regulator(no matter how large the inductor value is)will be forced to run discontinuous if the load current is light enough.OUTPUT CAPACITORAn output capacitor is required to filter the output voltage and is needed for loop stability.The capacitor should be located near the LM2575using short pc board traces.Standard alu-minum electrolytics are usually adequate,but low ESR types are recommended for low output ripple voltage and good stability.The ESR of a capacitor depends on many factors, some which are:the value,the voltage rating,physical size and the type of construction.In general,low value or low voltage(less than12V)electrolytic capacitors usually have higher ESR numbers.The amount of output ripple voltage is primarily a function of the ESR(Equivalent Series Resistance)of the output ca-pacitor and the amplitude of the inductor ripple current (∆IIND).See the section on inductor ripple current in Applica-tion Hints.The lower capacitor values(220µF–680µF)will allow typi-cally50mV to150mV of output ripple voltage,while larger-value capacitors will reduce the ripple to approxi-mately20mV to50mV.Output Ripple Voltage=(∆I IND)(ESR of C OUT)To further reduce the output ripple voltage,several standard electrolytic capacitors may be paralleled,or a higher-grade capacitor may be used.Such capacitors are often called “high-frequency,”“low-inductance,”or“low-ESR.”These will reduce the output ripple to10mV or20mV.However,when operating in the continuous mode,reducing the ESR below 0.05Ωcan cause instability in the regulator.16。

LM2575电源电路设计测试总结

LM2575电源电路设计测试总结

LM2575电源电路设计测试总结最近的项目中有用到LM2575做的电源电路,在起初设计时,完全照搬官方技术手册提供的电路:板子回来之后,带轻负载时没有问题(负载电流几十mA),当把迪文的触摸屏接上后(负载电流300mA),纹波很大,达到75mA,并且电感(图中的L1)伴有啸叫声,后来在网上搜集资料,查找原因,得到结果如下:一有经验的人士称:“电感的线径要够粗,保证1A电流流过不会出问题。

再者,LM2575两端的电容要比datasheet所示的大一倍,且采用2个电容并联的方式减低波纹。

2个100uF的并联,效果要优于1个220uF的。

”另电感啸叫的原因及解决办法是:“还是频率问题,音频分量是合成频率,虽然34063工作在36k,但反馈电路如果每1mS动作一下的话,那么变压器(电感)上就有1Khz分量。

随着负载的增大,反馈电路动作就越频繁,声音就会越尖锐,高到一定程度就会消失,负载小到一定程度噪音也会消失。

所以开关电源的噪音是很难避免的,变压器一定要通过浸胶的方式固定才能消除;解决办法:1、电感叫可以用浸漆解决2、发热问题需要增加匝数解决3、纹波需要低ESR的滤波电容来解决; 4、噪声需要合理设计PCB、加滤波器解决. 因为没有频率参数,因此无法设计电感.”另从一份LM2575中文资料得到它的电感曲线图如下:根据以上信息,测试如下:环境:12V输入,负载电流0.3A;测试了以下几项:原始电路--- 声音较小,纹波75mv(PS:昨晚声音大,很可能是单个板子情况,这块板子折腾过几次,有些地方焊接不好,修补后有改善)原始电路+ 输出并220uf电容---基本无啸叫,纹波30mv原始电路+ 输出并220uf + 输入并220uf---无声效果更好,但不明显,约28mv 原始电路+ 串330uh电感---无声、纹波40左右(有时能达到50mv)原始电路+ 串330uh电感+输出并220uf 电容---无声纹波25mv左右综上所述:原始电路最大问题是输出电容偏小,应达到470uf以上,其他因素影响不大~~~后记:后来观察电路,是自己的疏忽大意,错把输入与输出的电容封装弄错了,导致焊接时对调了,实在该死~~~!最近干活不在状态,经常犯低级错误,愤这个…愤那个…要改…要改…。

LM2575HVT-ADJ TI高压三端稳压器

LM2575HVT-ADJ TI高压三端稳压器

LM2575系列稳压器是单片集成电路,为降压型开关稳压器提供所有有源功能,能够以出色的线路和负载调节来驱动1A负载。

这些器件提供3.3V,5V,12V,15V的固定输出电压以及可调输出版本。

LM2575HVS-ADJ LM2575HVT-5.0 LM2575HVT-ADJ SIMPLE SWITCHER® 1A Step-Down Voltage RegulatorFEATURES• 3.3V,5V,12V,15V和可调输出版本•可调版本输出电压范围,•–1.23V至37V(HV版为57V)±4%最大•–线路和负载条件•规定的1A输出电流•宽输入电压范围,HV版本为40V至60V •仅需4个外部组件•52 kHz固定频率内部振荡器•TTL关机功能,低功耗待机模式•高效率•使用现成的标准电感器•热关断和限流保护•P +产品增强测试APPLICATIONS•简单的高效降压(降压)稳压器•用于线性稳压器的高效预稳压器•插卡式开关稳压器•正负转换器(降压-升压)DESCRIPTIONLM2575系列稳压器是单片集成电路,为降压型开关稳压器提供所有有源功能,能够以出色的线路和负载调节来驱动1A负载。

这些器件提供3.3V,5V,12V,15V 的固定输出电压以及可调输出版本。

这些稳压器需要最少的外部组件,易于使用,并包括内部频率补偿和固定频率振荡器。

LM2575系列可为流行的三端子线性稳压器提供高效替代。

它大大减小了散热器的尺寸,并且在许多情况下不需要散热器。

几个不同的制造商都提供了针对LM2575优化使用的标准系列电感器。

此功能极大地简化了开关电源的设计其他功能包括在规定的输入电压和输出负载条件下,规定的输出电压公差为±4%,在振荡器频率上的公差为±10%。

包括外部关断功能,待机电流为50μA(典型值)。

输出开关包括逐周期电流限制,以及热关断功能,可在故障情况下提供全面保护。

开关模式稳压电路LM2575

开关模式稳压电路LM2575

为 但 作 状 态 , 它 的 逻 辑 电 平 与 T L 电 平 兼 容 。 输 入 电 压 在 电 解 电容 容 量 大 价 格 低 , 开 关 电源 广 泛 使 用 。 是 它 的 T
2.V 以 上 为 高 电 平 , 关 电 源 停 止 工 作 , 入 待 机 ; .V 温 度 特 性 不 好 , 其 不 宜 在 低 温 条 件 下 使 用 。 在 滤 波 电 5 开 进 16 尤 能 以 下 为 低 电 平 , 片 正 常 稳 压 。 所 以 , 种 稳 压 电 源 的 工 容 两 端 再 并 联 一 只 固体 钽 电 容 作 为 辅 助 ,开 关 电 源 的 低 芯 这 作 状 态 是 可 以 受 外 电 路 控 制 的 。 进 入 待 机 后 , M2 7 L 5 5将 温 特 性 将 得 到 很 大 改 善 。 进 入 微 功 耗 状 态 。 上 述 应 用 电路 中 , 脚 是 直 接 接 地 , 该 只 要 输 入 端 电压 正 常 , 稳 压 电 源 始 终 处 于 正 常 工 作 中 。 则

S ud wn h to
( .V以上 电压 ) 芯片进入待机状态 , 出电压 降为 0 25 时, 输 V 电子世界

・0 o1 21. o
1 — 4

新器 件 应 用 ・
2同 时 被 充 电 。 输 出管 截 止 后 电 感 L 1 T 2 3封 装 。 外 围 有 五 只 引 脚 ,外 壳 金 属 散 热 片 接 地 。 出 电压 滤 波 电容 C O一 6 这 二 L 它 可 以 组 成 目前 最 简 易 的 大 范 围 可 调 式 高 效 率 稳 压 电 将 储 存 较 多 的 能 量 , 时 , 极 管 D1将 进 入 导 通 , 1储

电源转换电路设计与应用

电源转换电路设计与应用

电源转换电路设计与应用作者:李志强来源:《科技视界》2013年第10期在众多硬件设计过程中,由于所选用电子电路模块不同,所需电源往往有多个需求,在这些电源转换过程中,通常是将输入的单电源逐步转换为所需的多种电源。

本文设计了三种转换电路,并通过了实际应用,效果良好。

1 LM2575开关电源专用模块应用考虑到5V电源的功耗,以及12V与5V之间的压差,从12V到5V选择使用开关电源,开关电源效率高,可以减少发热量,特别适合在功率较大时。

但开关电源也有其缺点,电路复杂、输出纹波比较大。

12V到5V的电源变换使用LM2575,LM2575是开关电源专用模块。

其输出电压值可以使固定的,也可以是可调整的。

LM2575的后缀决定其输出值,其输出电压有3.3V、5V、12V、15V和ADJ(可调整)。

LM2575所构成的电路为典型的BUCK电路,LM2575的内部框图及基本连接图如图1所示。

由LM2575的内部框图及连接图可以看出,LM2575的连接方式是标准的BUCK拓扑结构。

R2与R1的反馈值决定了输出电压。

在LM2575-3.3V中R2为1.7K,5V中R2为3.1K,12V中R2为8.84K,15V中R2为11.3K,ADJ中R2是需要外接的。

本电路中选择LM2575-5V,直接输出5V电源。

电路原理图如图2所示。

2 SPX1117线性模拟电源模块应用在对3.3V电源要求比较高,但是功耗不是很大情况下,不必使用开关电源,应当用低压差低的线性模拟电源(LDO)。

合乎要求的LDO芯片有很多,Sipex半导体SPX1117是一种比较好的选择,它的性价比较高,而且用一些其他产品可以直接进行替换,减少采购风险,图3是利用SPX1117电源模块将5V转换为3.3V电路图。

SPX1117为一款低功耗正向压降的电压调节器,其可以用在一些效率高、封装小的低功耗设计中,此款芯片非常适合便携式电脑及电池供电的应用中。

SPX1117有非常低的静态电流,在满负载输出时压差仅为1.1V。

LM2575S-5.0经典开关稳压器-奥伟斯

LM2575S-5.0经典开关稳压器-奥伟斯

奥伟斯科技为您提供开关稳压集成电路 LM2575S-5.0应用参考设计方案●内容导航:●公司简介●LM2575S-5.0产品规格书●产品图片●主营产品及优势产品简介●公司简介深圳市奥伟斯科技有限公司是一家专注触摸芯片,单片机,电源管理芯片,语音芯片,场效应管,显示驱动芯片,网络接收芯片,运算放大器,红外线接收头及其它半导体产品的研发,代理销售推广的高新技术企业.奥伟斯科技自成立以来一直致力于新半导体产品在国内的推广与销售,年销售额超过壹亿人民币是一家具有综合竞争优势的专业电子元器件代理商.本公司代理推广的一系列优秀触摸芯片及语音芯片,现以大批量应用到智能电子锁、饮水机、电饭煲、LED台灯等控制器为顾客提供最佳解决方案,受到广大客户的一致赞誉。

奥伟斯科技优势行业集中在家用电器和汽车电子领域,包括:智能电子锁、饮水机、抽烟机、空调、洗衣机、冰箱、洗碗机、电饭煲、电磁炉、微波炉、电动自行车、汽车仪表、汽车音响、汽车空调等。

销售网络覆盖华东、华南及华北地区。

奥伟斯科技已为众多世界著名企业提供服务如:美的、小米、云米、长虹、创维、三星、LG、飞利浦、TCL、海尔、美菱、沁园、等众多中国一流品牌电家厂商奥伟斯科技提供专业的智能电子锁触摸解决方案,并提供电子锁整套的芯片配套:低功耗触摸芯片低功耗单片机马达驱动芯片显示驱动芯片刷卡芯片时针芯片存储芯片语音芯片低压MOS管 TVS二极管主要品牌产品:OWEIS-TECHOWEIS触摸芯片 OWEIS接口芯片 OWEIS电源芯片 OWEIS语音芯片 OWEIS场效应管一.电容式触摸芯片ADSEMI触摸芯片代理芯邦科技触控芯片万代科技触摸按键芯片博晶微触摸控制芯片海栎创触摸感应芯片启攀微触摸IC 融和微触摸感应IC 合泰触摸按键IC 通泰触摸芯片二.汽车电子/电源管理/接口芯片/逻辑芯片:IKSEMICON一级代理 ILN2003ADT IK62783DT IL2596 IL2576 ILX485 ILX3485ILX232 ILX3232三.功率器件/接收头/光电开关:KODENSHI AUK SMK系列MOS管SMK0260F SMK0460F SMK0760F SMK1260F SMK1820F SMK18T50F四. LED显示驱动芯片:中微爱芯AIP系列 AIP1668 AIP1628 AIP1629 AIP1616天微电子TM系列 TM1628TM1668 TM1621五.电源管理芯片:Power Integrations LNK364PN LNK564PN 芯朋微PN8012 PN8015 AP5054 AP5056 力生美晶源微友达天钰电子FR9886 FR9888六.语音芯片:APLUS巨华电子AP23085 AP23170 AP23341 AP23682 AP89085 AP89170 AP89341 AP89341K AP89682七.运算放大器:3PEAK运算放大器聚洵运算放大器圣邦微运算放大器八.发光二极管:OSRAM欧司朗发光二极管 Lite-On光宝发光二极管 Everlight亿光发光二极管 Kingbright 今台发光二极管九. CAN收发器:NXP恩智浦CAN收发器 Microchip微芯CAN收发器十.分销产品线:ONSEMI安森美 TI德州仪器 ADI TOSHIBA东芝 AVAGO安华高十一 MCU单片机ABOV现代单片机MC96F系列 Microchip微芯单片机PIC12F PIC16F PIC18F系列FUJITSU富仕通单片机MB95F系列 STM单片机STM32F STM32L系列 CKS中科芯单片机CKS32F系列 TI单片机MSP430系列 TMS320F系列 NXP单片机LPC系列FEATURES3.3V, 5.0V, 12V, 15V, and Adjustable Output Versions1 Adjustable Version Output Voltage Range, 1.23 to 37V+/- 4% AG10 Maximum Over Line and Load ConditionsGuaranteed 1A Output CurrentWide Input Voltage RangeRequires Only 4 External Components52kHz Fixed Frequency Internal OscillatorTTL Shutdown Capability, Low Power Standby ModeHigh EfficiencyUses Readily Available Standard InductorsThermal Shutdown and Current Limit ProtectionMoisture Sensitivity Level 3ApplicationsSimple High-Efficiency Step-Down(Buck) RegulatorEfficient Pre-Regulator for Linear RegulatorsOn-Card Switching RegulatorsPositive to Negative Converter(Buck-Boost)Negative Step-Up ConvertersPower Supply for Battery ChargersDESCRIPTIONcircuits ideally suited for easy and convenient design of astep-down switching regualtor(buck converter).All circuits of this series are capable of driving a 1A loadwith excellent line and load regulation. These devices areavailable in fixed output voltages of 3.3V, 5.0V,12V, 15V,and an adjustable output version.These regulatiors were designed to minimize the number of externalcomponents to simplify the power supply design. Standard series of inductors optimized for use with the LM2575 are offeredby several different inductor manufacturers.Since the LM2575 converter is a switch-mode power supply, its efficiency is significantly higher in comparison with popular three-terminal limear reguators, especially with higher input voltages.In many cases, the power dissipated is so low that no heatsink is required or its size couldbe reduced dramatically. A standard series of inductors optimized for use with the LM2575 are available from several different manufacturers. This feature greatly simplifies the design ofswitch-mode power supplies. The LM2575 features include a guaranteed +/- 4% toleranceon output voltage within specified input voltages and output load conditions, and +/-10% on the oscillator frequency (+/- 2% over 0℃ to 125 ℃).External shutdown is included, featuring 80 ㎂ (typical) standby current. The output switch includes cycle-bycycle current limiting, as well as thermal shutdown for full protection under fault conditions.ABSOLUTE MAXIMUM RATINGS(Absolute Maximum Ratings indicate limits beyond which damage to the device may occur)OPERATING RATINGS(Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteedLM2575 LM2575LM2575-5.0LM2575LM2575-ADJLM2575-ADJLM2575-3.3V LM2575-5.0V LM2575-12V LM2575-15VLM2575-ADJ奥伟斯科技提供专业的智能电子锁触摸解决方案,并提供电子锁整套的芯片配套:低功耗触摸芯片低功耗单片机马达驱动芯片显示驱动芯片刷卡芯片时针芯片存储芯片语音芯片低压MOS管 TVS二极管低功耗触摸按键芯片OWEIS奥伟斯触摸芯片:JM01S JM02S JM04S JM08S JM12MCOWEIS奥伟斯电源芯片: JM2575S-12 JM2575S-3.3 JM2575S-5.0 JM2575S-ADJ JM2575T-12 JM2575T-3.3JM2575T-5.0 JM2575T-ADJ JM2576S-12 JM2576S-3.3 JM2576S-5.0 JM2576S-ADJ JM2576T-12 JM2576T-3.3 JM2576T-5.0 JM2576T-ADJ LM2596S-12 LM2596S-3.3 LM2596S-5.0 LM2596S-ADJ LM2596T-12 LM2596T-3.3 LM2596T-5.0 LM2596T-ADJOWEIS奥伟斯接口芯片:JM485S JM3485S JM232S JM232TS JM3232S JM3232TS JM1040SOWEIS语音芯片:JM085S JM170S JM341S JM682S电源管理芯片:LM2575S-12 LM2575S-3.3 LM2575S-5.0 LM2575S-ADJ LM2575SX-12LM2575SX-3.3 LM2575SX-5.0 LM2575SX-ADJLM2575SX-12/NOPB LM2575SX-3.3/NOPB LM2575SX-5.0/NOPB LM2575SX-ADJ/NOPBLM2575T-12 LM2575T-3.3 LM2575T-5.0 LM2575T-ADJ LM2575T-12/NOPB LM2575T-3.3/NOPBLM2575T-5.0/NOPB LM2575T-ADJ/NOPB LM2575HVS-12 LM2575HVS-3.3 LM2575HVS-5.0LM2575HVS-ADJ LM2575HVSX-12 LM2575HVSX-3.3 LM2575HVSX-5.0 LM2575HVSX-ADJLM2575HVSX-12/NOPB LM2575HVSX-3.3/NOPB LM2575HVSX-5.0/NOPB LM2575HVSX-ADJ/NOPBLM2575HVT-12 LM2575HVT-3.3 LM2575HVT-5.0 LM2575HVT-ADJ LM2575HVT-12/NOPBLM2575HVT-3.3/NOPB LM2575HVT-5.0/NOPB LM2575HVT-ADJ/NOPB LM2576S-12 LM2576SX-12LM2576SX-5.0 LM2576SX-12/NOPB LM2576SX-3.3/NOPB LM2576SX-5.0/NOPB LM2576SX-ADJ/NOPB LM2576T-12 LM2576T-12/NOPB LM2576T-3.3/NOPB LM2576T-5.0/NOPBLM2576T-ADJ/NOPB LM2576HVS-12 LM2576HVS-3.3 LM2576HVS-5.0 LM2576HVS-ADJLM2576HVSX-12 LM2576HVSX-3.3 LM2576HVSX-5.0 LM2576HVSX-ADJ LM2576HVSX-12/NOPBLM2576HVSX-3.3/NOPB LM2576HVSX-5.0/NOPB LM2576HVSX-ADJ/NOPB LM2576HVT-12LM2576HVT-3.3 LM2576HVT-5.0 LM2576HVT-ADJ LM2576HVT-12/NOPB LM2576HVT-3.3/NOPBLM2576HVT-5.0/NOPB LM2576HVT-ADJ/NOPB LM2596S-12 LM2596SX-12 LM2596SX-3.3 LM2596SX-5.0LM2596SX-ADJ LM2596SX-12/NOPB LM2596SX-3.3/NOPB LM2596SX-5.0/NOPBLM2596SX-ADJ/NOPB LM2596T-12 LM2596T-12/NOPB LM2596T-3.3/NOPB LM2596T-5.0/NOPBLM2596T-ADJ/NOPB LM2596HVS-12 LM2596HVS-3.3 LM2596HVS-5.0 LM2596HVS-ADJLM2596HVSX-12 LM2596HVSX-3.3 LM2596HVSX-5.0 LM2596HVSX-ADJ LM2596HVSX-12/NOPBLM2596HVSX-3.3/NOPB LM2596HVSX-5.0/NOPB LM2596HVSX-ADJ/NOPB LM2596HVT-12 LM2596HVT-3.3LM2596HVT-5.0 LM2596HVT-ADJ LM2596HVT-12/NOPB LM2596HVT-3.3/NOPBLM2596HVT-5.0/NOPB LM2596HVT-ADJ/NOPB LM2576S-3.3TR LM2576S-5TR LM2576S-5.0TRLM2576S-12TR LM2576S-ADJTR LM2576T-3.3 LM2576T-5.0 LM2576T-12 LM2576T-ADJLM2575S-3.3TR LM2575S-5TR LM2575S-5.0TR LM2575S-12TR LM2575S-ADJTR LM2575T-3.3 LM2575T-5.0LM2575T-12 LM2575T-ADJ LM2596S-3.3TR LM2596S-5TR LM2596S-5.0TRLM2596S-12TR LM2596S-ADJTR LM2596T-3.3 LM2596T-5.0 LM2596T-12 LM2596T-ADJLM2576TV-ADJ LM2576TV-ADJG LM2576T-ADJ LM2576T-ADJG LM2576D2T-ADJ LM2576D2T-ADJGLM2576D2T-ADJR4 LM2576D2T-ADJR4G LM2576TV-3.3 LM2576TV-3.3G LM2576T-3.3LM2576T-3.3G LM2576D2T-3.3 LM2576D2T-3.3G LM2576D2T-3.3R4G LM2576D2TR4-3.3LM2576D2TR4-3.3G LM2576TV-005 LM2576TV-5G LM2576T-005 LM2576T-5G LM2576D2T-005LM2576D2T-5G LM2576D2T-5.0R4G LM2576D2T-005G LM2576D2TR4-005 LM2576D2TR4-5GLM2576TV-12 LM2576TV-12G LM2576TV-012G LM2576T-0120 LM2576T-012G LM2576D2T-012LM2576D2T-12G LM2596D2T-12R4G LM2576D2T-012G LM2576D2TR4-012 LM2576D2TR4-12GLM2576D2TR4-012G LM2576TV-15 LM2576TV-15G LM2576TV-015G LM2576T-015 LM2576T-15GLM2576T-015G LM2576D2T-015 LM2576D2T-15G LM2576D2T-015G LM2576D2TR4-015LM2576D2TR4-15G LM2576D2TR4-015G LM2596TVADJG LM2596TADJG LM2596DSADJGLM2596DSADJR4G LM2596D2T-3.3R4G LM2596D2T-5G LM2596D2T-5R4G LM2596T-3.3G LM2596T-5G LM2596-12G LM2575TV-ADJG LM2575T-ADJG LM2575D2T-ADJG LM2575D2T-ADJR4GNCV2575D2T-ADJG NCV2575D2T-ADJR4G LM2575TV-3.3G LM2575T-3.3G LM2575D2T-3.3GLM2575D2T-3.3R4G LM2575TV-5G LM2575T-5G LM2575D2T-5G LM2575D2T-5R4GNCV2575D2T-5G NCV2575D2T-5R4G LM2575TV-012G LM2575T-012G LM2575D2T-012GLM2575D2T-12R4G NCV2575D2T-12G NCV2575D2T-12R4G LM2575TV-015G LM2575T-015GLM2575D2T-015G LM2575D2T-15R4G LM2576-12BU LM2576-3.3BU LM2576-5.0BU LM2576BULM2576-12BT LM2576-3.3BT LM2576-5.0BT LM2576BT LM2576-12WU LM2576-3.3WU LM2576-5.0WU LM2576WU LM2576-12WU-TR LM2576-3.3WU-TR LM2576-5.0WU-TR LM2576WU-TRLM2576-12WT LM2576-3.3WT LM2576-5.0WT LM2576WT LM2596T-3.3 LM2596T-5.0 LM2596T-12LM2596T-ADJ LM2596TV-3.3 LM2596TV-5.0 LM2596TV-12 LM2596TV-ADJ LM2596R-3.3LM2596R-5.0 LM2596R-12 LM2596R-ADJ LM2576DP-5.0 LM2576DP-ADS LM2576T-3.3 LM2576T-5.0 LM2576T-12 LM2576T-ADJ LM2576R-3.3 LM2576R-5.0 LM2576R-12LM2576R-ADJ LM2575R-3.3 LM2575R-5.0 LM2575R-12 LM2575R-ADJP2576L-33-TA5-T P2576L-50-TA5-T P2576L-12-TA5-T P2576L-AD-TA5-TP2576L-33-TB5-T P2576L-50-TB5-T P2576L-12-TB5-T P2576L-AD-TB5-TP2576L-33-TQ5-R P2576L-50-TQ5-R P2576L-12-TQ5-R P2576L-AD-TQ5-RP2576L-33-TQ5-T P2576L-50-TQ5-T P2576L-12-TQ5-T P2576L-AD-TQ5-TP2576G-33-TA5-T P2576G-50-TA5-T P2576G-12-TA5-T P2576G-AD-TA5-TP2576G-33-TB5-T P2576G-50-TB5-T P2576G-12-TB5-T P2576G-AD-TB5-TP2576G-33-TQ5-R P2576G-50-TQ5-R P2576G-12-TQ5-R P2576G-AD-TQ5-RP2576G-33-TQ5-T P2576G-50-TQ5-T P2576G-12-TQ5-T P2576G-AD-TQ5-TP2576G-50-S08-R P2576G-12-S08-R P2576G-AD-S08-R P2576G-50-SH2-RP2576G-12-SH2-R P2576G-AD-SH2-R欧司朗发光二极管:LTW5SG-GZJX-35 LTW5SN LUWC9EN LUWC9EN-N4N6-EG LUWC9SMLUWC9SM-N1N3-EG LUWC9SP LUWC9SP-8K6L-EG LUWCHCP LUWCJSN LUWCJSN-GYHY-EULW-35LUWCN7M LUWCN7M-HYJY-EMKM-1 LUWCNAP LUWCPDP LUWCPDP-KULQ-5C8E-1 LUWCPDP-KULQ-5E8G-1LUWCQ7P LUWCQ7P-LPLR-5C8E-1 LUWCQDP LUWCQDP-LQLS-MJMW LUWCRDP LUWCRDP-LSLU-MCML-1140…LUWE6SG LUWF65N LUWF65N-KYMX-5P7R LUWH9GP.CELUWH9GP.CE-KYLY-EMKM-1 LUWH9QP LUWH9QP-5M8M-HNJN-1 LUWHWQP LUWHWQP-8M7N-ebvF46fcbB46-8E8H LUWJDSH.EC LUWJDSH.EC-FTGP-5E8G-L1N2 LUWJDSI.PCLUWJDSI.PC-FTGP-5C8E-L1N2 LUWJNSH.PC LUWJNSH.PC-BUCQ-5E8G-1 LUWW5AM LUWW5AM-KZLY-6P7R LUWW5AP LUWW5AP-MYNY-4C8E LUWW5SM LUWW5SM-KXLX-4C8E LWA673LWA673-P1S1-5K8L LWA67C LWA67C-T2U2-5K8L LWA6SG LWA6SG-V2BA-JKPL LWC9ENLWC9EN-F0GB-58 LWC9SN LWC9SN-F0HA-58 LWE67C LWE6SC LWE6SC-U1V1-5K8L-1 LWE6SGLWE6SG-V2AB-5K8L-1 LWETSG LWETSG-AABB-JKPL-1 LWG6CP LWG6CP-EAFA-JKQL-1 LWL283LWM673 LWM673-P1Q2-3K6L LWM673-L1N1-JKPL LWM673-P1R2-FKPL LWM67C LWM67C-S1U2-5K8LLWP473 LWP473-Q2S1-3K8L-1 LWP4SG LWP4SG-V2AB-JKPL-1 LWQ38E LWQ38E-Q1S2-3K6L-1LWQ38G LWQ38G-Q2OO-3K5L-1 LWT673 LWT673-P1S1-5K8L LWT673-P1S1-FKPL LWT67CLWT67C-T2U2-5K8L LWT6SC LWT6SC-T2V1-5K8L LWT6SC-S2V1-5K8L LWT6SGLWT6SG-V1AA-FKKL LWT6SG-V2BA-5K8L LWTTSD LWTTSD-U2V2-JKPL-1 LWVG8E LWW5AMLWW5AM-KYLX-5K8L LWW5PM LWW5PM-KXKZ-5K8L LWW5SM LWW5SM-KXLX-JKQL-24E4LYA67F LYA67F-U2AB-36 LYE65F LYE65F-DBFA-46-3B5A LYE65F-DAEA-35-3B5A LYG6SPLYG6SP-CADB-36-1 LYG6SP-CBEB-36-3B5A LYL196 LYM676 LYM676-Q2T1-26LYM676-Q2S1-26 LYM67K LYM67K-J1L2-26 LYP47B LYP47B-T2V1-26-1 LYT66FLYT66F-ABBB-4D-1-20 LYT66F-ABCA-46-3A4B LYT66F-ABBB-35-3A4B LYT676 LYT676-R1S2-26 LYT676-R1T1-26 LYT67F LYT67F-U1AA-36-1 LYT67K LYT67K-J2M1-26LYT686 LYT686-Q2T1-26 LYT68B LYW5AP LYW5AP-KYLZ-36 LYW5SM SFH4232A ZYT676ADS触摸芯片:TQ01 TS01Q TQ02 TH01TS01S AWS01 TS02NT TS04 TS06 TS08NT TS08NC TS08NE TS08P TS12 TSM12S TSM12MC TSM16C TS20博晶微/晶尊微触摸芯片:SC01A SC02A SC04A SC05A SC09A SC12A通泰触控芯片: TTP223-BA6 TTP223-CA6 TTP223N-BA6 TTP223N-HA6 TTP223N-CA6 TTP223N-DO8 TTP233B-BA6 TTP233B-HA6 TTP233C-BA6 TTP233C-HA6 TTP233D-HA6 TTP233D-BA6 TTP233D-QA6 TTP233D-MA6TTP233D-RB6 TTP233D-SB6 TTP239-BSF TTP239-COBN TTP223E TTP223E-BA6 TTP223E-CA6 TTP223E-HA6 TTP233F-QA6 TTP226-809SN TTP259-ASFN TTP229-AQG TTP229-BSF TTP229-LSFN TTP229-KSFN TTP232-BA6 TTP232-CA6 TTP224B TTP224B-BSBN TTP224B-BSBN TTP224B-COBN TTP224B-COBN TTP224B-SQBN TTP224B-RO8N TTP224B-BCBN TTP224B-RC8N TTY6952B合泰触摸控制芯片:BS801B BS801C BS802B BS802C BS804B BS804C BS806B BS806C BS808B BS808CBS83A04A-3 BS83B08-3 BS83B08A-3 BS83B08A-4 BS83A02A-4 BS83A02A-4 BS83A02A-4 BS83A04A-3BS83A04A-4 BS83B08A-3 BS83B08A-4 BS83B12A-3 BS83B12A-3 BS83B12A-4 BS83B12A-4 BS83B16A-3BS83B16A-3 BS83B16A-4 BS83B16A-4 BS82B12A-3 BS82C16A-3 BS82D20A-3 BS83A01C BS83A02C BS83B04C BS83B08C BS83B12C BS83B16C BS83B24C BS83C40C BS83B08-3 BS83B12-3 BS83B16-3 BS83C24-3 BS83C24-3 BS84B08A-3 BS84B08A-3 BS84B08A-3 BS84B08A-3 BS84B08A-3 BS84B08A-3 BS84C12A-3 BS84C12A-3BS84C12A-3 BS84C12A-3 BS84C12A-3 BS84C12A-3低功耗单片机:STM8L052C6T6 STM8L052R8T6 STM8L152C6T6 STM8L152R8T6 STM32L151C8T6 STM32L152RBT6 STM32L051C8T6指纹识别芯片:AS608 QS808马达驱动芯片:MX08E L9110S BA6287F-E2显示驱动芯片:74HC595PW 74HC164PW刷卡芯片:MFRC52202HN1/RC522 MFCV520/CV520 FM17520 FM17522 MS520 MS522时针芯片:PCF8563T AIP8536 IN1363DT VC8563T DQ8563T存储芯片:W25Q32JVSSIQ W25Q32BVSSIG W25Q32FVSSIG AT24C32D-SSHM-T GD25Q32BSIG GD25Q32CSIGFM25Q32 FM24C32语音芯:AP23085 AP23341 AP89085 AP89341K低压MOS管:SI2300 SI2301 SI2302 AO3400 AO3401 AO3402TVS二极管:SMAJ6.0CA SMAJ15CACAN收发器:TJA1040T TJA1042T TJA1043T TJA1044T TJA1050T TJA1051T TJA1052T TJA1053TMCP2515-I/SO MCP2515T-I/SO MCP2515-I/ST MCP2515T-I/ST网络接口芯片:MAX485ESA MAX485EESA MAX485CSA MAX485ED ST3485EBDR ST3485ECDR ADM485ARZ ADM485EARZ SP485EN SP485EEN ILX485DT MAX4853ESA MAX3485EESA MAX3485CSA ST3485EBDRST3485ECDR ADM3485ARZ ADM3485EARZ SP3485EN SP3485EEN ILX3485DT MAX232ESE MAX232EESEMAX232CSE MAX232DR MAX232IDR MAX232EIDR ST232BDR ST232CDR ST232EBDR ST232ABDR ADM232AARNZ ADM232AARW ADM232LAR SP232ECN SP232EEN ILX232DT MAX232EIPWR ST232BTR ST232ABTR ST232CTR ST232ACTR MAX3232ESE MAX3232EESE MAX3232CSE MAX3232CDR MAX3232ECDR MAX3232IDR MAX3232EIDR ST3232CDR ST3232BDR ST3232EBDR ST3232ECDR ADM3232EARN SP3232EEN ILX3232DT MAX3232EEAE ST3232CTR ST3232BTR ST3232EBTR ST3232ECTR ADM3232EARUZ SP3232EEA SP3232EEYILX3232TSDT电源管理芯片:LM2575 LM2576 LM2596 IL2576 IL2596 XL2596 XL2576 TD2576 TD2596ADI模数转换器:AD7705BRZ AD7705BURZ AD7706BRZ AD7706BURZ AD7715ANZ-3 AD7715ANZ-5 AD7715ARZ-3REEL AD7715ARZ-5REELAMS奥地利微低频唤醒芯片:AS3933-BTST AS3933-BQFTCKS中科芯单片机:CKS32F030K6T6 CKS32F030C8T6 CKS32F051C8T6 CKS32F051R8T6 CKS32F103C8T6 CKS32F103R8T6聚洵运算放大器:聚洵零漂移运算放大器GS8592-SR GS8592-MR GS8594-TR GS8594-SR GS6554-TR GS6554-SR GS6552-SR GS6552-MR GS6551-CR GS6551-TR GS8551-TR GS8551-SR GS8552-SR GS8552-MR GS8554-TR GS8554-SR GS8331-TR GS8331-CR GS8331-SR GS8331Y-TR GS8331Y-CR GS8332-SR GS8332-MR GS8332-FR GS8334-TR GS8334-SR聚洵高速运算放大器:GS8091-CR GS8091-TR GS8091N-CR GS8091N-TR GS8092-SR GS8092-MR GS8092N-MR GS8094-TR GS8094-SR GS8054-TR GS8054-SR GS8052N-MR GS8052-SR GS8052-MR GS8051N-CRGS8051N-TR GS8051-CR GS8051-TR聚洵高精度运算放大器:GS358-SR GS358-MR GS358-DR GS358-FR GS321Y-CR GS321Y-TR GS321-CR GS321-TR GS8721-CR GS8721-TR GS8721-SR GS8722-SR GS8722-MR GS8724-TR GS8724-SR GS8631-CR GS8631-TR GS8631-SR GS8632-SR GS8632-MR GS8634-TR GS8634-SR GS8631N-TR聚洵纳安级运算放大器:GS6041-CR GS6041-TR GS6041-SR GS6041-MR GS6042-SR GS6042-MR GS6042-FR GS6043-SR GS6043-MR GS6044-TR GS6044-SR聚洵高压摆率运放:GS2771-TR GS2772-SR GS2772-MR GS2774-TR GS2774-SR GS2771N-TR聚洵低电压低功耗运算放大器:GS6001A-CR GS6001A-TR GS6001-CR GS6001-TR GS6001Y-CR GS6001Y-TR GS6002-SR GS6002-MR GS6004-SR GS6004-MR优势产品未尽详细,欢迎来电查询!!!。

lm2575原理

lm2575原理

lm2575原理LM2575是一种高效率的降压稳压器,可以将输入电压降低至所需的输出电压。

它是一种开关电源芯片,具有较高的转换效率和稳定的输出电压。

本文将介绍LM2575的工作原理及其应用。

我们来了解一下LM2575的基本原理。

它采用了降压开关稳压器的工作原理,通过开关管的开关周期性地将输入电压接到输出电压上,从而实现稳定的输出电压。

其核心部件包括开关管、电感、电容和反馈控制电路。

在工作过程中,当输入电压通过开关管接到电感上时,电感储存了电能。

当开关管关闭时,电感释放储存的电能,将电流继续传递到输出电容上,以供给负载使用。

通过控制开关管的开关周期和占空比,可以达到稳定的输出电压。

LM2575还具有反馈控制电路,用于调节输出电压。

当输出电压低于设定值时,反馈控制电路会使开关管的占空比增大,从而提高输出电压;当输出电压高于设定值时,反馈控制电路会减小开关管的占空比,从而降低输出电压,以实现稳定的输出电压。

LM2575具有多种保护功能,如过载保护、过热保护和短路保护等。

当负载过大或温度过高时,LM2575会自动进行保护,以避免损坏芯片。

LM2575的应用非常广泛。

它可以用于各种电子设备中,如电源适配器、电子仪器、车载电子设备等。

由于其高效率和稳定性,LM2575在电源领域得到了广泛的应用。

需要注意的是,在使用LM2575时,需要按照规定的参数进行设计。

输入电压范围、输出电压范围、最大输出电流等参数都需要符合芯片的规格书要求。

同时,还需要合理选择电感和电容的数值,以满足设计要求。

总结起来,LM2575是一种高效率的降压稳压器,通过开关管、电感、电容和反馈控制电路实现稳定的输出电压。

它具有多种保护功能,广泛应用于电子设备中。

在使用LM2575时,需要按照规定的参数进行设计,以确保其正常工作。

LM2575(开关稳压管)中文资料

LM2575(开关稳压管)中文资料

LM2575 超详细中文介绍1 概述LM2575系列开关稳压集成电路是美国国家半导体公司生产的1A集成稳压电路,它内部集成了一个固定的振荡器,只须极少外围器件便可构成一种高效的稳压电路,可大大减小散热片的体积,而在大多数情况下不需散热片;内部有完善的保护电路,包括电流限制及热关断电路等;芯片可提供外部控制引脚。

是传统三端式稳压集成电路的理想替代产品。

此主题相关图片如下:该系列分为LM1575、LM2575及LM2575HV三个系列,其中LM1575为军品级产品,LM2575为标准电压产品,LM2575HV为高电压输入产品。

每一种产品系列均提供3.3V、5V、12V、15V及可调(ADJ)等多个电压档次产品。

除军品级产品外,其余两个系列均提供TO-200直脚、TO-220弯脚、塑封DIP-16脚、表面安装DIP-24脚、表面安装T)-263-5脚等多种封装形式,并分别用后缀T、Flow LB3、N、M、S表示。

对于5V输出的LM2575产品,不同的封装形式,其完整表示分别为LM2575T-5.0、LM2575T-5.0 Flow LB03、LM2575N-5.0、LM2575M-5.0、LM2575S-5.0。

LM2575T系列开关稳压集成电路芯片的主要参数如下:●最大输出电流:1A;●最大输入电压:LM1575/LM2575为45V;LM2575HV为63V;●输出电压:3.3V、5V、12V、ADJ(可调);●振荡频率:54kHz;●最大稳压误差:4%;●转换效率:75%~88%(不同的电压输出的效率不同);●工作温度范围:LM1575为-55℃~+150℃;LM2575/LM2575HV为-40℃~+125℃。

2 引脚功能图1是LM2575集成稳压器的两种引脚排列。

其引脚功能如下:VIN:未稳压电压输入端;OUTPUT:开关电压输出,接电感及快恢复二极管;GND:公共端;FEEDBACK:反馈输入端;ON/OFF:控制输入端,接公共端时,稳压电路工作;接高电平时,稳压电路停止。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

FEATURESAPPLICATIONS* Pin 3 is attached to substrate and must beconnected to ANODE or left open.DBZ (SOT-23) PACKAGE(TOP VIEW)DCK (SC-70) PACKAGE(TOP VIEW)ANODENCCATHODELP (TO-92/TO-226) PACKAGE(TOP VIEW)NC – No internal connectionNC – No internal connection DESCRIPTION/ORDERING INFORMATIONLM4040PRECISION MICROPOWER SHUNT VOLTAGE REFERENCESLOS456I–JANUARY2005–REVISED DECEMBER2005•Fixed Output Voltages of2.048V,2.5V,3V,4.096V,5V,and10V•Tight Output Tolerances and LowTemperature Coefficient–Max0.1%,100ppm/°C–A Grade–Max0.2%,100ppm/°C–B Grade–Max0.5%,100ppm/°C–C Grade–Max1.0%,150ppm/°C–D Grade•Low Output Noise…35µV RMS Typ•Wide Operating Current Range…45µA Typ to15mA•Stable With All Capacitive Loads;No OutputCapacitor Required•Available in Extended TemperatureRange…–40°C to125°C•Data-Acquisition Systems•Power Supplies and Power-Supply Monitors•Instrumentation and Test Equipment•Process Controls•Precision Audio•Automotive Electronics•Energy Management•Battery-Powered EquipmentThe LM4040series of shunt voltage references are versatile,easy-to-use references that cater to a vast array of applications.The2-pin fixed-output device requires no external capacitors for operation and is stable with all capacitive loads.Additionally,the reference offers low dynamic impedance,low noise,and low temperature coefficient to ensure a stable output voltage over a wide range of operating currents and temperatures.The LM4040uses fuse and Zener-zap reverse breakdown voltage trim during wafer sort to offer four output voltage tolerances,ranging from0.1%(max)for the A grade to1%(max)for the D grade.Thus,a great deal of flexibility is offered to designers in choosing the best cost-to-performance ratio for their applications.Packaged in space-saving SC-70and SOT-23-3packages and requiring a minimum current of45µA(typ),the LM4040also is ideal for portable applications.The LM4040xI is characterized for operation over an ambient temperature range of–40°C to85°C The LM4040xQ is characterized for operation over an ambient temperature range of–40°C to125°C.Please be aware that an important notice concerning availability,standard warranty,and use in critical applications of TexasInstruments semiconductor products and disclaimers thereto appears at the end of this data sheet.PRODUCTION DATA information is current as of publication date.Copyright©2005,Texas Instruments Incorporated Products conform to specifications perthe terms of the TexasInstruments standard warranty.Production processing does notnecessarily include testing of all parameters.LM4040PRECISION MICROPOWER SHUNT VOLTAGE REFERENCESLOS456I–JANUARY 2005–REVISED DECEMBER 2005ORDERING INFORMATIONDEVICE ORDERABLE TOP-SIDE T AV KAPACKAGE (1)GRADEPART NUMBER MARKING (2)SC-70(DCK)Reel of 3000LM4040A20IDCKR MS_Reel of 3000LM4040A20IDBZR SOT-23-3(DBZ)4MC_2.048VReel of 250LM4040A20IDBZT Bulk of 1000LM4040A20ILP TO-92/TO-226(LP)PREVIEW Reel of 2000LM4040A20ILPR SC-70(DCK)Reel of 3000LM4040A25IDCKR P2_Reel of 3000LM4040A25IDBZR SOT-23-3(DBZ)4NG_2.5VReel of 250LM4040A25IDBZT Bulk of 1000LM4040A25ILP TO-92/TO-226(LP)PREVIEW Reel of 2000LM4040A25ILPR SC-70(DCK)Reel of 3000LM4040A30IDCKR P9_Reel of 3000LM4040A30IDBZR SOT-23-3(DBZ)4M6_3VReel of 250LM4040A30IDBZT A grade:Bulk of 1000LM4040A30ILP 0.1%initial TO-92/TO-226(LP)PREVIEW accuracy Reel of 2000LM4040A30ILPR –40°C to 85°Cand SC-70(DCK)Reel of 3000LM4040A41IDCKR P4_100ppm/°C temperature Reel of 3000LM4040A41IDBZR SOT-23-3(DBZ)4M2_coefficient4.096VReel of 250LM4040A41IDBZT Bulk of 1000LM4040A41ILP TO-92/TO-226(LP)PREVIEW Reel of 2000LM4040A41ILPR SC-70(DCK)Reel of 3000LM4040A50IDCKR N5_Reel of 3000LM4040A50IDBZR SOT-23-3(DBZ)4NA_5VReel of 250LM4040A50IDBZT Bulk of 1000LM4040A50ILP TO-92/TO-226(LP)PREVIEW Reel of 2000LM4040A50ILPR SC-70(DCK)Reel of 3000LM4040A10IDCKR PREVIEW Reel of 3000LM4040A10IDBZR SOT-23-3(DBZ)PREVIEW 10VReel of 250LM4040A10IDBZT Bulk of 1000LM4040A10ILP TO-92/TO-226(LP)PREVIEWReel of 2000LM4040A10ILPR(1)Package drawings,standard packing quantities,thermal data,symbolization,and PCB design guidelines are available at /sc/package.(2)DBZ/DCK:The actual top-side marking has one additional character that designates the assembly/test site.2LM4040PRECISION MICROPOWER SHUNT VOLTAGE REFERENCESLOS456I–JANUARY2005–REVISED DECEMBER2005 ORDERING INFORMATION(continued)DEVICE ORDERABLE TOP-SIDET A V KA PACKAGE(1)GRADE PART NUMBER MARKING(2)SC-70(DCK)Reel of3000LM4040B20IDCKR MT_Reel of3000LM4040B20IDBZRSOT-23-3(DBZ)4MD_2.048V Reel of250LM4040B20IDBZTBulk of1000LM4040B20ILPTO-92/TO-226(LP)PREVIEWReel of2000LM4040B20ILPRSC-70(DCK)Reel of3000LM4040B25IDCKR P3_Reel of3000LM4040B25IDBZRSOT-23-3(DBZ)4NH_2.5V Reel of250LM4040B25IDBZTBulk of1000LM4040B25ILPTO-92/TO-226(LP)PREVIEWReel of2000LM4040B25ILPRSC-70(DCK)Reel of3000LM4040B30IDCKR PA_Reel of3000LM4040B30IDBZRSOT-23-3(DBZ)4M7_3V Reel of250LM4040B30IDBZTB grade:Bulk of1000LM4040B30ILP0.2%initialTO-92/TO-226(LP)PREVIEW accuracy Reel of2000LM4040B30ILPR–40°C to85°C andSC-70(DCK)Reel of3000LM4040B41IDCKR P5_100ppm/°Ctemperature Reel of3000LM4040B41IDBZRSOT-23-3(DBZ)4M3_ coefficient4.096V Reel of250LM4040B41IDBZTBulk of1000LM4040B41ILPTO-92/TO-226(LP)PREVIEWReel of2000LM4040B41ILPRSC-70(DCK)Reel of3000LM4040B50IDCKR MX_Reel of3000LM4040B50IDBZRSOT-23-3(DBZ)4NB_5V Reel of250LM4040B50IDBZTBulk of1000LM4040B50ILPTO-92/TO-226(LP)PREVIEWReel of2000LM4040B50ILPRSC-70(DCK)Reel of3000LM4040B10IDCKR PREVIEWReel of3000LM4040B10IDBZRSOT-23-3(DBZ)PREVIEW10V Reel of250LM4040B10IDBZTBulk of1000LM4040B10ILPTO-92/TO-226(LP)PREVIEWReel of2000LM4040B10ILPR3LM4040PRECISION MICROPOWER SHUNT VOLTAGE REFERENCESLOS456I–JANUARY 2005–REVISED DECEMBER 2005ORDERING INFORMATION (continued)DEVICE ORDERABLE TOP-SIDE T AV KAPACKAGE (1)GRADEPART NUMBER MARKING (2)SC-70(DCK)Reel of 3000LM4040C20IDCKR MV_Reel of 3000LM4040C20IDBZR SOT-23-3(DBZ)4MQ_2.048VReel of 250LM4040C20IDBZT Bulk of 1000LM4040C20ILP TO-92/TO-226(LP)PREVIEW Reel of 2000LM4040C20ILPR SC-70(DCK)Reel of 3000LM4040C25IDCKR M4_Reel of 3000LM4040C25IDBZR SOT-23-3(DBZ)4MU_2.5VReel of 250LM4040C25IDBZT Bulk of 1000LM4040C25ILP TO-92/TO-226(LP)PREVIEW Reel of 2000LM4040C25ILPR SC-70(DCK)Reel of 3000LM4040C30IDCKR PB_Reel of 3000LM4040C30IDBZR SOT-23-3(DBZ)4M8_3VReel of 250LM4040C30IDBZT C grade:Bulk of 1000LM4040C30ILP 0.5%initial TO-92/TO-226(LP)PREVIEW accuracy Reel of 2000LM4040C30ILPR –40°C to 85°Cand SC-70(DCK)Reel of 3000LM4040C41IDCKR P6_100ppm/°C temperature Reel of 3000LM4040C41IDBZR SOT-23-3(DBZ)4M4_coefficient4.096VReel of 250LM4040C41IDBZT Bulk of 1000LM4040C41ILP TO-92/TO-226(LP)PREVIEW Reel of 2000LM4040C41ILPR SC-70(DCK)Reel of 3000LM4040C50IDCKR MZ_Reel of 3000LM4040C50IDBZR SOT-23-3(DBZ)4NC_5VReel of 250LM4040C50IDBZT Bulk of 1000LM4040C50ILP TO-92/TO-226(LP)PREVIEW Reel of 2000LM4040C50ILPR SC-70(DCK)Reel of 3000LM4040C10IDCKR PREVIEW Reel of 3000LM4040C10IDBZR SOT-23-3(DBZ)PREVIEW 10VReel of 250LM4040C10IDBZT Bulk of 1000LM4040C10ILP TO-92/TO-226(LP)PREVIEWReel of 2000LM4040C10ILPR4LM4040PRECISION MICROPOWER SHUNT VOLTAGE REFERENCESLOS456I–JANUARY2005–REVISED DECEMBER2005 ORDERING INFORMATION(continued)DEVICE ORDERABLE TOP-SIDET A V KA PACKAGE(1)GRADE PART NUMBER MARKING(2)SC-70(DCK)Reel of3000LM4040D20IDCKR MW_Reel of3000LM4040D20IDBZRSOT-23-3(DBZ)4MV_2.048V Reel of250LM4040D20IDBZTBulk of1000LM4040D20ILPTO-92/TO-226(LP)PREVIEWReel of2000LM4040D20ILPRSC-70(DCK)Reel of3000LM4040D25IDCKR ME_Reel of3000LM4040D25IDBZRSOT-23-3(DBZ)4ME_2.5V Reel of250LM4040D25IDBZTBulk of1000LM4040D25ILPTO-92/TO-226(LP)PREVIEWReel of2000LM4040D25ILPRD grade:SC-70(DCK)Reel of3000LM4040D30IDCKR PC_1.0%initialReel of3000LM4040D30IDBZRaccuracy SOT-23-3(DBZ)4M9_–40°C to85°C and3V Reel of250LM4040D30IDBZT150ppm/°C Bulk of1000LM4040D30ILPtemperature TO-92/TO-226(LP)PREVIEWReel of2000LM4040D30ILPRcoefficientSC-70(DCK)Reel of3000LM4040D41IDCKR P7_Reel of3000LM4040D41IDBZRSOT-23-3(DBZ)4M5_4.096V Reel of250LM4040D41IDBZTBulk of1000LM4040D41ILPTO-92/TO-226(LP)PREVIEWReel of2000LM4040D41ILPRSC-70(DCK)Reel of3000LM4040D50IDCKR M4_Reel of3000LM4040D50IDBZRSOT-23-3(DBZ)4ND_5V Reel of250LM4040D50IDBZTBulk of1000LM4040D50ILPTO-92/TO-226(LP)PREVIEWReel of2000LM4040D50ILPR5LM4040PRECISION MICROPOWER SHUNT VOLTAGE REFERENCESLOS456I–JANUARY 2005–REVISED DECEMBER 2005ORDERING INFORMATION (continued)DEVICE ORDERABLE TOP-SIDE T AV KA PACKAGE (1)GRADEPART NUMBER MARKING (2)Reel of 3000LM4040C20QDBZR 2.048V4MW_Reel of 250LM4040C20QDBZT C grade:Reel of 3000LM4040C25QDBZR 0.5%initial 2.5V4MA_accuracy Reel of 250LM4040C25QDBZT and SOT-23-3(DBZ)Reel of 3000LM4040C30QDBZR 100ppm/°C 3V 4NJ_temperature Reel of 250LM4040C30QDBZT coefficientReel of 3000LM4040C50QDBZR 5V4NE_Reel of 250LM4040C50QDBZT –40°C to 125°CReel of 3000LM4040D20QDBZR 2.048V4MY_Reel of 250LM4040D20QDBZT D grade:Reel of 3000LM4040D25QDBZR 1.0%initial 2.5V4MB_accuracy Reel of 250LM4040D25QDBZT and SOT-23-3(DBZ)Reel of 3000LM4040D30QDBZR 150ppm/°C 3V 4NK_temperature Reel of 250LM4040D30QDBZT coefficientReel of 3000LM4040D50QDBZR 5V 4NF_Reel of 250LM4040D50QDBZT6Absolute Maximum Ratings(1) Recommended Operating ConditionsLM4040 PRECISION MICROPOWER SHUNT VOLTAGE REFERENCESLOS456I–JANUARY2005–REVISED DECEMBER2005FUNCTIONAL BLOCK DIAGRAMover free-air temperature range(unless otherwise noted)MIN MAX UNITI Z Continuous cathode current–1025mADBZ package206θJA Package thermal impedance(2)(3)DCK package252°C/WLP package156T J Operating virtual junction temperature150°CT stg Storage temperature range–65150°C (1)Stresses beyond those listed under"absolute maximum ratings"may cause permanent damage to the device.These are stress ratingsonly,and functional operation of the device at these or any other conditions beyond those indicated under"recommended operating conditions"is not implied.Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.(2)Maximum power dissipation is a function of T J(max),θJA,and T A.The maximum allowable power dissipation at any allowable ambienttemperature is P D=(T J(max)–T A)/θJA.Operating at the absolute maximum T J of150°C can affect reliability.(3)The package thermal impedance is calculated in accordance with JESD51-7.MIN MAX UNITI Z Cathode current(1)12mALM4040xxxI–4085T A Free-air temperature°CLM4040xxxQ–40125(1)See parametric tables7LM4040x20I Electrical CharacteristicsLM4040PRECISION MICROPOWER SHUNT VOLTAGE REFERENCESLOS456I–JANUARY 2005–REVISED DECEMBER 2005at industrial temperature range,full-range T A =–40°C to 85°C (unless otherwise noted)(1)Thermal hysteresis is defined as V Z,25°C (after cycling to –40°C)–V Z,25°C (after cycling to 125°C).8LM4040x20I Electrical CharacteristicsLM4040PRECISION MICROPOWER SHUNT VOLTAGE REFERENCESLOS456I–JANUARY 2005–REVISED DECEMBER 2005at industrial temperature range,full-range T A =–40°C to 85°C (unless otherwise noted)(1)Thermal hysteresis is defined as V Z,25°C (after cycling to –40°C)–V Z,25°C (after cycling to 125°C).9LM4040x20Q Electrical CharacteristicsLM4040PRECISION MICROPOWER SHUNT VOLTAGE REFERENCESLOS456I–JANUARY 2005–REVISED DECEMBER 2005at extended temperature range,full-range T A =–40°C to 125°C (unless otherwise noted)(1)Thermal hysteresis is defined as V Z,25°C (after cycling to –40°C)–V Z,25°C (after cycling to 125°C).10at industrial temperature range,full-range T=–40°C to85°C(unless otherwise noted)A Array(1)Thermal hysteresis is defined as V Z,25°C(after cycling to–40°C)–V Z,25°C(after cycling to125°C).LM4040x25I Electrical Characteristicsat industrial temperature range,full-range T A =–40°C to 85°C (unless otherwise noted)(1)Thermal hysteresis is defined as V Z,25°C (after cycling to –40°C)–V Z,25°C (after cycling to 125°C).at extended temperature range,full-range T=–40°C to125°C(unless otherwise noted)A Array(1)Thermal hysteresis is defined as V Z,25°C(after cycling to–40°C)–V Z,25°C(after cycling to125°C).LM4040x30I Electrical Characteristicsat industrial temperature range,full-range T A =–40°C to 85°C (unless otherwise noted)(1)Thermal hysteresis is defined as V Z,25°C (after cycling to –40°C)–V Z,25°C (after cycling to 125°C).at industrial temperature range,full-range T=–40°C to85°C(unless otherwise noted)A Array(1)Thermal hysteresis is defined as V Z,25°C(after cycling to–40°C)–V Z,25°C(after cycling to125°C).LM4040x30Q Electrical Characteristicsat extended temperature range,full-range T A =–40°C to 125°C (unless otherwise noted)(1)Thermal hysteresis is defined as V Z,25°C (after cycling to –40°C)–V Z,25°C (after cycling to 125°C).at industrial temperature range,full-range T=–40°C to85°C(unless otherwise noted)A Array(1)Thermal hysteresis is defined as V Z,25°C(after cycling to–40°C)–V Z,25°C(after cycling to125°C).LM4040x41I Electrical Characteristicsat industrial temperature range,full-range T A =–40°C to 85°C (unless otherwise noted)(1)Thermal hysteresis is defined as V Z,25°C (after cycling to –40°C)–V Z,25°C (after cycling to 125°C).at industrial temperature range,full-range T=–40°C to85°C(unless otherwise noted)A Array(1)Thermal hysteresis is defined as V Z,25°C(after cycling to–40°C)–V Z,25°C(after cycling to125°C).LM4040x50I Electrical Characteristicsat industrial temperature range,full-range T A =–40°C to 85°C (unless otherwise noted)(1)Thermal hysteresis is defined as V Z,25°C (after cycling to –40°C)–V Z,25°C (after cycling to 125°C).LM4040x50Q Electrical CharacteristicsLM4040PRECISION MICROPOWER SHUNT VOLTAGE REFERENCESLOS456I–JANUARY 2005–REVISED DECEMBER 2005at extended temperature range,full-range T A =–40°C to 125°C (unless otherwise noted)(1)Thermal hysteresis is defined as V Z,25°C (after cycling to –40°C)–V Z,25°C (after cycling to 125°C).LM4040x10I Electrical CharacteristicsLM4040PRECISION MICROPOWER SHUNT VOLTAGE REFERENCESLOS456I–JANUARY 2005–REVISED DECEMBER 2005at industrial temperature range,full-range T A =–40°C to 85°C (unless otherwise noted)(1)Thermal hysteresis is defined as V Z,25°C (after cycling to –40°C)–V Z,25°C (after cycling to 125°C).LM4040x10I Electrical CharacteristicsLM4040PRECISION MICROPOWER SHUNT VOLTAGE REFERENCESLOS456I–JANUARY 2005–REVISED DECEMBER 2005at industrial temperature range,full-range T A =–40°C to 85°C (unless otherwise noted)(1)Thermal hysteresis is defined as V Z,25°C (after cycling to –40°C)–V Z,25°C (after cycling to 125°C).TYPICAL CHARACTERISTICSTemperature (P C)V Z , C h a n g e (%)1001k1M10k100k Frequency (Hz)Z Z , D y n a m i c O u t p u t I m p e d a n c e(Ω)1001k1M10k100k Frequency (Hz)Z Z , D y n a m i c O u t p u t I m p e d a n c e(Ω)V Z , Reverse Voltage (V)I Z , C a t h o d e C u r r e n t (µA )Frequency (Hz)N o i s e (µV P /)1010.1−10123456−10102030405060708090V Z (V )Response Time (µs)V I N (V )6420−2−4−6−8−10−12LM4040PRECISION MICROPOWER SHUNT VOLTAGE REFERENCESLOS456I–JANUARY 2005–REVISED DECEMBER 2005Figure 1.Temperature Drift for Different AverageFigure 2.Output Impedance vs FrequencyTemperature CoefficientsFigure 3.Output Impedance vs FrequencyFigure 4.Temperature Drift for Different AverageTemperature CoefficientFigure 5.Noise Voltage vs Frequency Figure 6.Start-Up CharacteristicsAPPLICATION INFORMATIONStart-Up CharacteristicsR V INOutput CapacitorSOT-23ConnectionsUse With ADCs or DACs5-V Analog SupplyLM4040PRECISION MICROPOWER SHUNT VOLTAGE REFERENCESLOS456I–JANUARY 2005–REVISED DECEMBER 2005Figure 7.Test CircuitThe LM4040does not require an output capacitor across cathode and anode for stability.However,if an output bypass capacitor is desired,the LM4040is designed to be stable with all capacitive loads.There is a parasitic Schottky diode connected between pins 2and 3of the SOT-23packaged device.Thus,pin 3of the SOT-23package must be left floating or connected to pin 2.The LM4040x-41is designed to be a cost-effective voltage reference as required in 12-bit data-acquisition systems.For 12-bit systems operating from 5-V supplies such as the ADS7842(see Figure 8),the LM4040x-41(4.096V)permits operation with an LSB of 1mV.Figure 8.Data-Acquisition Circuit With LM4040x-41 Cathode and Load CurrentsRS+ǒVS*V ZǓ(IL)I Z)(1)LM4040VV ZR SLM4040PRECISION MICROPOWER SHUNT VOLTAGE REFERENCESLOS456I–JANUARY2005–REVISED DECEMBER2005APPLICATION INFORMATION(continued)In a typical shunt-regulator configuration(see Figure9),an external resistor,R S,is connected between the supply and the cathode of the LM4040.R S must be set properly,as it sets the total current available to supply the load(I L)and bias the LM4040(I Z).In all cases,I Z must stay within a specified range for proper operation of the reference.Taking into consideration one extreme in the variation of the load and supply voltage(maximum I L and minimum V S),R S must be small enough to supply the minimum I Z required for operation of the regulator,as given by data-sheet parameters.At the other extreme,maximum V S and minimum I L,R S must be large enough to limit I Z to less than its maximum-rated value of15mA.R S is calculated according to Equation1:Figure9.Shunt RegulatorPACKAGING INFORMATIONOrderable Device Status(1)PackageType PackageDrawingPins PackageQtyEco Plan(2)Lead/Ball Finish MSL Peak Temp(3)LM4040A10IDBZR PREVIEW SOT-23DBZ33000TBD Call TI Call TILM4040A10IDBZT PREVIEW SOT-23DBZ3250TBD Call TI Call TILM4040A10IDCKR PREVIEW SC70DCK53000TBD Call TI Call TILM4040A10ILP PREVIEW TO-92LP31000TBD Call TI Call TILM4040A10ILPR PREVIEW TO-92LP32000TBD Call TI Call TILM4040A20IDBZR ACTIVE SOT-23DBZ33000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040A20IDBZRG4ACTIVE SOT-23DBZ33000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040A20IDBZT ACTIVE SOT-23DBZ3250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040A20IDBZTG4ACTIVE SOT-23DBZ3250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040A20IDCKR ACTIVE SC70DCK53000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040A20IDCKRE4ACTIVE SC70DCK53000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040A25IDBZR ACTIVE SOT-23DBZ33000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040A25IDBZRG4ACTIVE SOT-23DBZ33000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040A25IDBZT ACTIVE SOT-23DBZ3250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040A25IDBZTG4ACTIVE SOT-23DBZ3250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040A25IDCKR ACTIVE SC70DCK53000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040A25IDCKRE4ACTIVE SC70DCK53000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM4040A25ILP PREVIEW TO-92LP31000TBD Call TI Call TILM4040A25ILPR PREVIEW TO-92LP32000TBD Call TI Call TILM4040A30IDBZR ACTIVE SOT-23DBZ33000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040A30IDBZT ACTIVE SOT-23DBZ3250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040A30IDCKR ACTIVE SC70DCK53000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040A30IDCKRE4ACTIVE SC70DCK53000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM4040A30IDCKT PREVIEW SC70DCK5250TBD Call TI Call TILM4040A30ILP PREVIEW TO-92LP31000TBD Call TI Call TILM4040A30ILPM PREVIEW TO-92LP32000TBD Call TI Call TILM4040A30ILPR PREVIEW TO-92LP32000TBD Call TI Call TILM4040A41IDBZR ACTIVE SOT-23DBZ33000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040A41IDBZRG4ACTIVE SOT-23DBZ33000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMOrderable Device Status(1)PackageType PackageDrawingPins PackageQtyEco Plan(2)Lead/Ball Finish MSL Peak Temp(3)LM4040A41IDBZT ACTIVE SOT-23DBZ3250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040A41IDBZTG4ACTIVE SOT-23DBZ3250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040A41IDCKR ACTIVE SC70DCK53000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040A41IDCKRE4ACTIVE SC70DCK53000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM4040A41ILP PREVIEW TO-92LP31000TBD Call TI Call TILM4040A41ILPR PREVIEW TO-92LP32000TBD Call TI Call TILM4040A50IDBZR ACTIVE SOT-23DBZ33000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040A50IDBZRG4ACTIVE SOT-23DBZ33000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040A50IDBZT ACTIVE SOT-23DBZ3250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040A50IDBZTG4ACTIVE SOT-23DBZ3250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040A50IDCKR ACTIVE SC70DCK53000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040A50IDCKRE4ACTIVE SC70DCK53000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM4040A50ILP PREVIEW TO-92LP31000TBD Call TI Call TILM4040B10IDBZR PREVIEW SOT-23DBZ33000TBD Call TI Call TILM4040B10IDBZT PREVIEW SOT-23DBZ3250TBD Call TI Call TILM4040B10IDCKR PREVIEW SC70DCK53000TBD Call TI Call TILM4040B10ILP PREVIEW TO-92LP31000TBD Call TI Call TILM4040B10ILPR PREVIEW TO-92LP32000TBD Call TI Call TILM4040B20IDBZR ACTIVE SOT-23DBZ33000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040B20IDBZRG4ACTIVE SOT-23DBZ33000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040B20IDBZT ACTIVE SOT-23DBZ3250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040B20IDBZTG4ACTIVE SOT-23DBZ3250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040B20IDCKR ACTIVE SC70DCK53000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040B20IDCKRE4ACTIVE SC70DCK53000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040B25IDBZR ACTIVE SOT-23DBZ33000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040B25IDBZRG4ACTIVE SOT-23DBZ33000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040B25IDBZT ACTIVE SOT-23DBZ3250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040B25IDBZTG4ACTIVE SOT-23DBZ3250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040B25IDCKR ACTIVE SC70DCK53000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMOrderable Device Status(1)PackageType PackageDrawingPins PackageQtyEco Plan(2)Lead/Ball Finish MSL Peak Temp(3)LM4040B25IDCKRE4ACTIVE SC70DCK53000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040B25ILP PREVIEW TO-92LP31000TBD Call TI Call TILM4040B25ILPR PREVIEW TO-92LP32000TBD Call TI Call TILM4040B30IDBZR ACTIVE SOT-23DBZ33000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040B30IDBZT ACTIVE SOT-23DBZ3250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040B30IDCKR ACTIVE SC70DCK53000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040B30IDCKRE4ACTIVE SC70DCK53000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM4040B30IDCKT PREVIEW SC70DCK5250TBD Call TI Call TILM4040B30ILP PREVIEW TO-92LP31000TBD Call TI Call TILM4040B30ILPM PREVIEW TO-92LP32000TBD Call TI Call TILM4040B30ILPR PREVIEW TO-92LP32000TBD Call TI Call TILM4040B41IDBZR ACTIVE SOT-23DBZ33000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040B41IDBZRG4ACTIVE SOT-23DBZ33000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040B41IDBZT ACTIVE SOT-23DBZ3250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040B41IDBZTG4ACTIVE SOT-23DBZ3250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040B41IDCKR ACTIVE SC70DCK53000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040B41IDCKRE4ACTIVE SC70DCK53000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM4040B41ILP PREVIEW TO-92LP31000TBD Call TI Call TILM4040B41ILPR PREVIEW TO-92LP32000TBD Call TI Call TILM4040B50IDBZR ACTIVE SOT-23DBZ33000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040B50IDBZRG4ACTIVE SOT-23DBZ33000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040B50IDBZT ACTIVE SOT-23DBZ3250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040B50IDBZTG4ACTIVE SOT-23DBZ3250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040B50IDCKR ACTIVE SC70DCK53000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040B50IDCKRE4ACTIVE SC70DCK53000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM4040B50ILP PREVIEW TO-92LP31000TBD Call TI Call TILM4040B50ILPR PREVIEW TO-92LP32000TBD Call TI Call TILM4040C10IDBZR PREVIEW SOT-23DBZ33000TBD Call TI Call TILM4040C10IDBZT PREVIEW SOT-23DBZ3250TBD Call TI Call TILM4040C10IDCKR PREVIEW SC70DCK53000TBD Call TI Call TILM4040C10ILP PREVIEW TO-92LP31000TBD Call TI Call TILM4040C10ILPR PREVIEW TO-92LP32000TBD Call TI Call TIOrderable Device Status(1)PackageType PackageDrawingPins PackageQtyEco Plan(2)Lead/Ball Finish MSL Peak Temp(3)LM4040C20IDBZR ACTIVE SOT-23DBZ33000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040C20IDBZRG4ACTIVE SOT-23DBZ33000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040C20IDBZT ACTIVE SOT-23DBZ3250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040C20IDBZTG4ACTIVE SOT-23DBZ3250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040C20IDCKR ACTIVE SC70DCK53000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040C20IDCKRE4ACTIVE SC70DCK53000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040C20QDBZR ACTIVE SOT-23DBZ33000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040C20QDBZRG4ACTIVE SOT-23DBZ33000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040C20QDBZT ACTIVE SOT-23DBZ3250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040C20QDBZTG4ACTIVE SOT-23DBZ3250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040C25IDBZR ACTIVE SOT-23DBZ33000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040C25IDBZRG4ACTIVE SOT-23DBZ33000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040C25IDBZT ACTIVE SOT-23DBZ3250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040C25IDBZTG4ACTIVE SOT-23DBZ3250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040C25IDCKR ACTIVE SC70DCK53000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040C25IDCKRE4ACTIVE SC70DCK53000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040C25IDCKT ACTIVE SC70DCK5250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040C25IDCKTE4ACTIVE SC70DCK5250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LM4040C25ILP PREVIEW TO-92LP31000TBD Call TI Call TILM4040C25ILPR PREVIEW TO-92LP32000TBD Call TI Call TILM4040C25QDBZR ACTIVE SOT-23DBZ33000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040C25QDBZRG4ACTIVE SOT-23DBZ33000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040C25QDBZT ACTIVE SOT-23DBZ3250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040C25QDBZTG4ACTIVE SOT-23DBZ3250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040C30IDBZR ACTIVE SOT-23DBZ33000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040C30IDBZT ACTIVE SOT-23DBZ3250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLM4040C30IDCKR ACTIVE SC70DCK53000Green(RoHS&CU NIPDAU Level-1-260C-UNLIM。

相关文档
最新文档