初中几何必做经典难题
初中数学经典几何难题及答案
经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)第1题图第2题图2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)第3题图第4题图4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .经典难题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二)B D 2C 2B 2A 2D 1C 1B 1C BDAA 1APC DBAFGCEB O D第1题图第2题图2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q .求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)第3题图第4题图4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.(初二)经典难题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二)F第1题图第2题图2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE . 求证:PA =PF .(初二)第3题图第4题图4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)经典难题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5. 求:∠APB 的度数.(初二)第1题图第2题图2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA .求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)第3题图第4题图4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.第1题图第2题图2、P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.第3题图第4题图4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300, ∠EBA =200,求∠BED 的度数.EDC BAAC BPDAC BPDA PCB FPDE CBACBDA经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF 。
初中数学经典几何难题及答案
1、设P是边长为1的正△ABC内任一点,L=PA+PB+PC,求证: ≤L<2.
2、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值.
3、P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.
4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.
经典难题(四)
1.顺时针旋转△ABP 600,连接PQ ,则△PBQ是正三角形。
可得△PQC是直角三角形。
所以∠APB=1500。
2.作过P点平行于AD的直线,并选一点E,使AE∥DC,BE∥PC.
可以得出∠ABP=∠ADP=∠AEP,可得:
AEBP共圆(一边所对两角相等)。
可得∠BAP=∠BEP=∠BCP,得证。
可得△B2FC2≌△A2EB2,所以A2B2=B2C2,
又∠GFQ+∠HB2F=900和∠GFQ=∠EB2A2,
从而可得∠A2B2C2=900,
同理可得其他边垂直且相等,
从而得出四边形A2B2C2D2是正方形。
4.如下图连接AC并取其中点Q,连接QN和QM,所以可得∠QMF=∠F,∠QNM=∠DEN和∠QMN=∠QNM,从而得出∠DEN=∠F。
精品基础教育教学资料,仅供参考,需要可下载使用!
经典难题(一)
1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.
求证:CD=GF.(初二)
2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.
求证:△PBC是正三角形.(初二)
3、如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、CC1、DD1的中点.
初中数学经典几何题及答案
经典难题(一)之杨若古兰创作1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD=∠PDA =150.求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、B2、C2、D2分别是AA1、BB1、CC1求证:四边形A2B2C2D2是正方形.4、已知:如图,在四边形ABCD 中,AD 是AB 、CD 的中点,AD 、BCF .求证:∠DEN=∠F.经典难题(二)1、已知:△ABC 中,H 心,且OM⊥BC 于M . (1)求证:AH =2OM ;(2)若∠BAC=600,求证:AH =AO .2、设MN 是圆O 外不断线,过O 作引圆的两条直线,交圆于B 、C 及D 、E AG CEB分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN DE ,设CD 、EB 分别交MN 于P 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC和BC 侧作正方形ACDE 和正方形求证:点P 到边AB 的距离等于1、如图,四边形ABCD 与CD 订交于F .求证:CE =CF .2、如图,四边形直线EC 交DA 求证:AE =AF .3、设P 是正方形平分∠DCE.求证:PA =PF .4、如图,PC 切圆O 线,AE 、AFBC =AD .(初三)经典难题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5.求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.(初二)3、设ABCD 为圆内接凸四边形,求证:AB·CD+AD·BC =AC·BD.(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 订交于P ,且AE =CF .求证:∠DPA=∠DPC.(初二)经典难题(五)1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L<2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.APC B PADCBCBDA FPDE CBAAP C BACBPD3、P为正方形ABCD内的一点,而且PA=a=3a,求正方形的边长.4、如图,△ABC中,∠ABC=∠ACB=800 AB、AC上的点,∠DCA=300,∠EBA=200度数.经典难题(一)答案1.如下图做GH⊥AB,连接EO.因为GOFE ∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF =GOGH=COCD,又CO=EO,所以CD=GF得证.2. 如下图做△DGC使与△ADP全等,可得△PDG为等边△,从而可得△DGC≌△APD≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG=150所以∠DCP=300 ,从而得出△PBC是正三角形3.如下图连接BC1和AB1分别找其中点F,E.连接C2F与A2E 并耽误订交于Q点,连接EB2并耽误交C2Q于H点,连接FB2并耽误交A2Q 于G点,由A2E=12A1B1=12B1C1= FB2 ,EB2=12AB=12BC=FC1 ,又∠GFQ+∠Q=900和∠GEB2+∠Q=900,所以∠GEB2=∠GFQ又∠B2FC2=∠A2EB2 ,可得△B2FC2≌△A2EB2 ,所以A2B2=B2C2 ,又∠GFQ+∠HB2F=900和∠GFQ=∠EB2A2 ,从而可得∠A2B2 C2=900 ,同理可得其他边垂直且相等,从而得出四边形A2B2C2D2是正方形.4.如下图连接AC并取其中点Q,连接QN和QM,所以可得∠QMF=∠F,∠QNM=∠DEN和∠QMN=∠QNM,从而得出∠DEN=∠F.经典难题(二)1.(1)耽误AD到F连BF,做OG⊥AF,又∠F=∠ACB=∠BHD,可得BH=BF,从而可得HD=DF,又AH=GF+HG=GH+HD+DF+HG=2(GH+HD)=2OM(2)连接OB,OC,既得∠BOC=1200,从而可得∠BOM=600,所以可得OB=2OM=AH=AO,得证.3.作OF⊥CD,OG⊥BE,连接OP,OA,OF,AF,OG,AG,OQ.因为22ADAC CD FD FD AB AE BE BG BG,由此可得△ADF≌△ABG,从而可得∠AFC=∠AGE. 又因为PFOA 与QGOA 四点共圆,可得∠AFC=∠AOP 和∠AGE=∠AOQ,∠AOP=∠AOQ,从而可得AP=AQ.4.过E,C,F 点分别作AB 所在直线的高EG ,CI ,FH.可得PQ=2EGFH .由△EGA≌△AIC,可得EG=AI ,由△BFH≌△CBI,可得FH=BI.从而可得PQ=2AIBI =2AB ,从而得证.经典难题(三)1.顺时针扭转△ADE,到△ABG,连接CG. 因为∠ABG=∠ADE=900+450=1350从而可得B ,G ,D 在一条直线上,可得△AGB≌△CGB. 推出AE=AG=AC=GC ,可得△AGC 为等边三角形. ∠AGB=300,既得∠EAC=300,从而可得∠A EC=750. 又∠EFC=∠D FA=450+300=750. 可证:CE=CF.2.连接BD 作CH⊥DE,可得四边形CGDH 是正方形.由AC=CE=2GC=2CH ,可得∠CEH=300,所以∠CAE=∠CEA=∠AED=150,又∠FAE=900+450+150=1500,从而可晓得∠F=150,从而得出AE=AF.3.作FG⊥CD,FE⊥BE,可以得出GFEC为正方形.令AB=Y ,BP=X ,CE=Z ,可得PC=Y-X .tan∠BAP=tan∠EPF=XY =ZY X Z,可得YZ=XY-X2+XZ,即Z(Y-X)=X(Y-X) ,既得X=Z ,得出△ABP≌△PEF ,得到PA=PF ,得证.经典难题(四)1.顺时针扭转△ABP 600 ,连接PQ ,则△PBQ是正三角形.可得△PQC是直角三角形.所以∠APB=1500 .2.作过P点平行于AD的直线,并选一点E,使AE∥DC,BE∥PC.可以得出∠ABP=∠ADP=∠AEP,可得:AEBP共圆(一边所对两角相等).可得∠BAP=∠BEP=∠BCP,得证.3.在BD取一点E,使∠BCE=∠ACD,既得△BEC∽△ADC,可得:BE BC =ADAC,即AD•BC=BE•AC,①又∠ACB=∠DCE,可得△ABC∽△DEC,既得AB AC =DEDC,即AB•CD=DE•AC,②由①+②可得: AB•CD+AD•BC=AC(BE+DE)= AC·BD ,得证.4.过D 作AQ⊥AE ,AG⊥CF ,由ADES=2ABCDS =DFC S ,可得:2AE PQ =2AEPQ,由AE=FC.可得DQ=DG ,可得∠DPA=∠DPC(角平分线逆定理).经典难题(五)1.(1)顺时针扭转△BPC 600 ,可得△P BE 为等边三角形.既得PA+PB+PC=AP++PE+EF 要使最小只需AP ,PE ,EF 在一条直线上,即如下图:可得最小L=;(2)过P 点作BC 的平行线交AB,AC 与点D ,F. 因为∠APD>∠ATP=∠ADP,推出AD>AP①又BP+DP >BP ② 和PF+FC>PC ③ 又DF=AF ④由①②③④可得:最大L< 2 ; 由(1)和(2)既得:≤L<2 .2.顺时针扭转△BPC 600 ,可得△PBE 为等边三角形.既得PA+PB+PC=AP+PE+EF 要使最小只需AP ,PE ,EF 在一条直线上,即如下图:可得最小PA+PB+PC=AF. 既得213(1)42= 23=4232= 231)2=1)2=622 .3.顺时针扭转△ABP 900 ,可得如下图: 既得正方形边长L =2222(2)()22a = 522a .4.在AB 上找一点F ,使∠BCF=600 ,连接EF ,DG ,既得△BGC 为等边三角形,可得∠DCF=100 , ∠FCE=200 ,推出△ABE≌△ACF , 得到BE=CF , FG=GE .推出 : △FGE 为等边三角形 ,可得∠AFE=800 , 既得:∠DFG=400① 又BD=BC=BG ,既得∠BGD=800 ,既得∠DGF=400② 推得:DF=DG ,得到:△DFE≌△DGE , 从而推得:∠FED=∠BED=300 .。
初中数学经典几何难题及答案.
经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO .求证:CD =GF .(初二)第1题图第2题图2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150.求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)APCDBAFGCEBOD第3题图第4题图4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .经典难题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M .(1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二)·GAO DBECQPNM·ADHEM CBOANFECDMBD 2C 2B 2A 2D 1C 1B 1CBDAA 1第1题图第2题图2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q .求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q .求证:AP =AQ .(初二)第3题图第4题图4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,PCGFBQADE·OQPBDEC NM·A点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.(初二)经典难题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)第1题图第2题图2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE .求证:PA =PF .(初二)ODBFAECPFEPCBAEDACBF AF DECBD第3题图第4题图4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)经典难题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5.求:∠APB 的度数.(初二)第1题图第2题图2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA .求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)PADCBAPCB第3题图第4题图4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.第1题图第2题图2、P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.EDAACBPDAPCB FPDE CBACBDA第3题图第4题图4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA =200,求∠BED 的度数.经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO .求证:CD =GF 。
初中几何难题(初二超难几何)
经典难题(一)1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD=GF.(初二)2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.求证:△PBC是正三角形.(初二)3、如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、CC1、DD1的中点.求证:四边形A2B2C2D2是正方形.(初二)4、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.求证:∠DEN=∠F.1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.(1)求证:AH=2OM;(2)若∠BAC=600,求证:AH=AO.(初二)2、设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、C及D、E,直线EB及CD分别交MN于P、Q.求证:AP=AQ.(初二)3、如果上题把直线MN由圆外平移至圆内,则由此可得以下命题:设MN是圆O的弦,过MN的中点A任作两弦BC、DE,设CD、EB分别交MN于P、Q.求证:AP=AQ.(初二)4、如图,分别以△ABC的AC和BC为一边,在△ABC点P是EF的中点.求证:点P到边AB的距离等于AB的一半.(初二)1、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.求证:CE=CF.(初二)2、如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC交DA延长线于F.求证:AE=AF.(初二)3、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.求证:PA=PF.(初二)1、已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5.求:∠APB的度数.(初二)2、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.(初二)3、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且AE=CF.求证:∠DPA=∠DPC.(初二)。
初二几何证明经典难题
初二几何证明经典难题1、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150.求证:△PBC 是正三角形.如下图做△DGC 使与△ADP 全等,可得△PDG 为等边△,从而可得 △DGC ≌△APD ≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG =150 所以∠DCP=300 ,从而得出△PBC 是正三角形2、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .如下图连接AC 并取其中点Q ,连接QN 和QM ,所以可得∠QMF=∠F ,∠QNM=∠DEN 和∠QMN=∠QNM ,从而得出∠DEN =∠F 。
A PCDB AN FE CDMBPCGFBQADE3、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.3.过E,C,F 点分别作AB 所在直线的高EG ,CI ,FH 。
可得PQ=2EG FH+。
由△EGA ≌△AIC ,可得EG=AI ,由△BFH ≌△CBI,可得FH=BI 。
从而可得PQ=2AI BI += 2AB,从而得证。
4、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .顺时针旋转△ADE ,到△ABG ,连接CG . 由于∠ABG=∠ADE=900+450=1350从而可得B ,G ,D 在一条直线上,可得△AGB ≌△CGB 。
推出AE=AG=AC=GC ,可得△AGC 为等边三角形。
∠AGB=300,既得∠EAC=300,从而可得∠A EC=750。
又∠EFC=∠DFA=450+300=750. 可证:CE=CF 。
5、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .连接BD 作CH ⊥DE ,可得四边形CGDH 是正方形。
初中数学:20道经典几何难题(附答案),练熟后中考成绩不下130
初中数学:20道经典几何难题(附答案),练熟后中考成绩不
下130
老师们都喜欢说语文者得天下,得作文者得语文!可是对于初中数学来说,几何在数学学习和考试中的地位和作文在语文考试中的地位比起来,恐怕只有过之而无不及!所以我们也可以说初中数学是:得几何者得数学!、一来是几何几乎承包初中数学半壁江山,68%的核心考点都出自几何!而且,“几何”问题不仅是初中数学的重点,到了高中数学学习中也占很大比重!如果初中几何知识没学好,那么等到高中继续学习几何知识时,一定会遇到更大的难度!但是不管怎么说,初中的几何其实难度还是不大的。
初中三年也是塑造孩子的抽象思维的最佳时期。
如果在此时,不能够通过数学几何,来对孩子的抽象思维能力进行一点训练,那到了高中,恐怕更加地更不上了。
为此,小课堂整理了这份初中几何必考的20道经典题汇总资料,我希望各位家长朋友可以为自己的孩子收藏一份,哪怕孩子对于初中几何知识掌握并不是十分熟练和牢固,可是多做一些题目,对于孩子们理解和掌握几何知识还是有非常大的帮助,何况这些题目都是初中数学考试中经常出现的题目!。
初中几何必做经典难题(附答案解析)
初中几何经典题(附答案解析)一、解答题(共20小题,满分0分)1.已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD=GF.(初二)2.已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)3.如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、CC1、DD1的中点.求证:四边形A2B2C2D2是正方形.(初二)4.已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.求证:∠DEN=∠F.5.已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.(1)求证:AH=2OM;(2)若∠BAC=60°,求证:AH=AO.(初二)6.设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、C及D、E,直线EB及CD分别交MN于P、Q.求证:AP=AQ.(初二)7.如果上题把直线MN由圆外平移至圆内,则由此可得以下命题:设MN是圆O的弦,过MN的中点A任作两弦BC、DE,设CD、EB分别交MN于P、Q.求证:AP=AQ.(初二)8.如图,分别以△ABC的边AC、BC为一边,在△ABC外作正方形ACDE和CBFG,点P是EF的中点,求证:点P到AB的距离是AB的一半.9.如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.求证:CE=CF.10.如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC交DA延长线于F.求证:AE=AF.(初二)11.设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.求证:PA=PF.(初二)12.如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D.求证:AB=DC,BC=AD.13.已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5.求:∠APB的度数.(初二)14.设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.15.设ABCD为圆内接凸四边形,求证:AB•CD+AD•BC=AC•BD.(初三)16.平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且AE=CF.求证:∠DPA=∠DPC.(初二)17.设P是边长为1的正△ABC内任一点,L=PA+PB+PC,求证:≤L<2.18.已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值.19.P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.20.如图,△ABC中,∠ABC=∠ACB=80°,D、E分别是AB、AC上的点,∠DCA=30°,∠EBA=20°,求∠BED 的度数.初中几何经典题参考答案与试题解析一、解答题(共20小题,满分0分)1.已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD=GF.(初二)考点:相似三角形的判定与性质;圆周角定理.分析:首先根据四点共圆的性质得出GOFE四点共圆,进而求出△GHF∽△OGE,再利用GH∥CD,得出==,即可求出答案.解答:证明:作GH⊥AB,连接EO.∵EF⊥AB,EG⊥CO,∴∠EFO=∠EGO=90°,∴G、O、F、E四点共圆,所以∠GFH=∠OEG,又∵∠GHF=∠EGO,∴△GHF∽△OGE,∵CD⊥AB,GH⊥AB,∵GH∥CD,∴==,又∵CO=EO,∴CD=GF.点评:此题主要考查了相似三角形的判定以及其性质和四点共圆的性质,根据已知得出GOFE四点共圆是解题关键.2.已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)考点:正方形的性质;全等三角形的判定与性质;等边三角形的性质;等边三角形的判定.专题:证明题.分析:在正方形内做△DGC与△ADP全等,根据全等三角形的性质求出△PDG为等边,三角形,根据SAS证出△DGC≌△PGC,推出DC=PC,推出PB=DC=PC,根据等边三角形的判定求出即可.解答:证明:∵正方形ABCD,∴AB=CD,∠BAD=∠CDA=90°,∵∠PAD=∠PDA=15°,∴PA=PD,∠PAB=∠PDC=75°,在正方形内做△DGC与△ADP全等,∴DP=DG,∠ADP=∠GDC=∠DAP=∠DCG=15°,∴∠PDG=90°﹣15°﹣15°=60°,∴△PDG为等边三角形(有一个角等于60度的等腰三角形是等边三角形),∴DP=DG=PG,∵∠DGC=180°﹣15°﹣15°=150°,∴∠PGC=360°﹣150°﹣60°=150°=∠DGC,在△DGC和△PGC中,∴△DGC≌△PGC,∴PC=AD=DC,和∠DCG=∠PCG=15°,同理PB=AB=DC=PC,∠PCB=90°﹣15°﹣15°=60°,∴△PBC是正三角形.点评:本题考查了正方形的性质,等边三角形的性质和判定,全等三角形的性质和判定等知识点的应用,关键是正确作出辅助线,又是难点,题型较好,但有一定的难度,对学生提出了较高的要求.3.如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、CC1、DD1的中点.求证:四边形A2B2C2D2是正方形.(初二)考点:正方形的判定;全等三角形的判定与性质.专题:证明题.分析:连接BC1和AB1分别找其中点F,E,连接C2F与A2E并延长相交于Q点,根据三角形的中位线定理可得A2E=FB2,EB2=FC2,然后证明得到∠B2FC2=∠A2EB2,然后利用边角边定理证明得到△B2FC2与△A2EB2全等,根据全等三角形对应边相等可得A2B2=B2C2,再根据角的关系推出得到∠A2B2 C2=90°,从而得到A2B2与B2C2垂直且相等,同理可得其它边也垂直且相等,所以四边形A2B2C2D2是正方形.解答:证明:如图,连接BC1和AB1分别找其中点F,E.连接C2F与A2E并延长相交于Q点,连接EB2并延长交C2Q于H点,连接FB2并延长交A2Q于G点,由A2E=A1B1=B1C1=FB2,EB2=AB=BC=FC2,∵∠GFQ+∠Q=90°和∠GEB2+∠Q=90°,∴所以∠GEB2=∠GFQ,∴∠B2FC2=∠A2EB2,可得△B2FC2≌△A2EB2,所以A2B2=B2C2,又∠HB2C2+∠HC2B2=90°和∠B2C2Q=∠EB2A2,从而可得∠A2B2 C2=90°,同理可得其它边垂直且相等,从而得出四边形A2B2C2D2是正方形.点评:本题主要考查了正方形的性质与判定,三角形中位线定理,全等三角形的判定与性质,综合性较强,作辅助线构造出全等三角形是解题的关键.4.已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.求证:∠DEN=∠F.考点:三角形中位线定理.专题:证明题.分析:连接AC,作GN∥AD交AC于G,连接MG,根据中位线定理证明MG∥BC,且GM=BC,根据AD=BC 证明GM=GN,可得∠GNM=∠GMN,根据平行线性质可得:∠GMF=∠F,∠GNM=∠DEN从而得出∠DEN=∠F.解答:证明:连接AC,作GN∥AD交AC于G,连接MG.∵N是CD的中点,且NG∥AD,∴NG=AD,G是AC的中点,又∵M是AB的中点,∴MG∥BC,且MG=BC.∵AD=BC,∴NG=GM,△GNM为等腰三角形,∴∠GNM=∠GMN,∵GM∥BF,∴∠GMF=∠F,∵GN∥AD,∴∠GNM=∠DEN,∴∠DEN=∠F.点评:此题主要考查平行线性质,以及三角形中位线定理,关键是证明△GNM为等腰三角形.5.已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.(1)求证:AH=2OM;(2)若∠BAC=60°,求证:AH=AO.(初二)考点:三角形的外接圆与外心;三角形内角和定理;等腰三角形的性质;含30度角的直角三角形;平行四边形的判定与性质;垂径定理;圆周角定理.专题:证明题.分析:(1)过O作OF⊥AC,于F,则F为AC的中点,连接CH,取CH中点N,连接FN,MN,得出平行四边形OMNF,即可得出答案.(2)根据圆周角定理求出∠BOM,根据含30度角的直角三角形性质求出OB=2OM即可.解答:证明:(1)过O作OF⊥AC,于F,则F为AC的中点,连接CH,取CH中点N,连接FN,MN,则FN∥AD,AH=2FN,MN∥BE,∵AD⊥BC,OM⊥BC,BE⊥AC,OF⊥AC,∴OM∥AD,BE∥OF,∵M为BC中点,N为CH中点,∴MN∥BE,∴OM∥FN,MN∥OF,∴四边形OMNF是平行四边形,∴OM=FN,∵AH=2FN,∴AH=2OM.(2)证明:连接OB,OC,∵∠BAC=60°,∴∠BOC=120°,∴∠BOM=60°,∴∠OBM=30°,∴OB=2OM=AH=AO,即AH=AO.点评:本题考查了等腰三角形的性质和判定、三角形的中位线定理、含30度角的直角三角形性质、三角形的外接圆与外心、三角形的内角和定理等知识点,题目综合性较强,有一定的难度,但题型较好,难点是如何作辅助线.6.设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、C及D、E,直线EB及CD分别交MN于P、Q.求证:AP=AQ.(初二)考点:圆周角定理;垂线;平行线的性质;全等三角形的判定与性质;圆内接四边形的性质;轴对称的性质.专题:证明题.分析:作E点关于GA的对称点F,连FQ、FA,FC,根据轴对称和平行线性质推出∠FAP=∠EAQ,∠EAP=∠FAQ,FA=EA,求出∠FCQ=∠FAQ,推出FCAQ四点共圆,推出∠PEA=∠QFA,根据ASA推出△PEA和△QFA 全等即可.解答:证明:作E点关于GA的对称点F,连FQ、FA,FC,∵OA⊥MN,EF⊥OA,则有∠FAP=∠EAQ,∠EAP=∠FAQ,FA=EA,∵E,F,C,D共圆∴∠PAF=∠AFE=∠AEF=180°﹣∠FCD,∵∠PAF=180﹣∠FAQ,∴∠FCD=∠FAQ,∴FCAQ四点共圆,∠AFQ=∠ACQ=∠BED,在△EPA和△FQA中,∴△EPA≌△FQA,∴AP=AQ.点评:本题综合考查了全等三角形的判定和性质,平行线的性质,轴对称的性质,圆内接四边形的性质,圆周角定理,垂线等知识点,解此题的关键是求出∠AEP=∠AFQ,题型较好,有一定的难度,通过做题培养了学生分析问题的能力,符合学生的思维规律,证两线段相等,一般考虑证所在的两三角形全等.7.如果上题把直线MN由圆外平移至圆内,则由此可得以下命题:设MN是圆O的弦,过MN的中点A任作两弦BC、DE,设CD、EB分别交MN于P、Q.求证:AP=AQ.(初二)考点:四点共圆;全等三角形的判定与性质.分析:作OF⊥CD,OG⊥BE,连接OP,OA,OF,AF,OG,AG,OQ,证明△ADF∽△ABG,所以∠AFC=∠AGE,再利用圆的内接四边形对角互补,外角等于内对角,证得∠AOP=∠AOQ,进而得到AP=AQ.解答:证明:作OF⊥CD,OG⊥BE,连接OP,OA,OF,AF,OG,AG,OQ.由于,∠FDA=∠ABQ,∴△ADF∽△ABG,∴∠AFC=∠AGE,∵四边形PFOA与四边形QGOA四点共圆,∴∠AFC=∠AOP;∠AGE=∠AOQ,∴∠AOP=∠AOQ,∴AP=AQ.点评:本题考查了相似三角形的判定和相似三角形的性质,以及圆的内接四边形性质:对角互补,外角等于内对角,解题的关键是添加适当的辅助线构造全等三角形.8.如图,分别以△ABC的边AC、BC为一边,在△ABC外作正方形ACDE和CBFG,点P是EF的中点,求证:点P到AB的距离是AB的一半.考点:梯形中位线定理;全等三角形的判定与性质.专题:证明题.分析:分别过E,F,C,P作AB的垂线,垂足依次为R,S,T,Q,则PQ=(ER+FS),易证Rt△AER≌Rt△CAT,则ER=AT,FS=BT,ER+FS=A T+BT=AB,即可得证.解答:解:分别过E,F,C,P作AB的垂线,垂足依次为R,S,T,Q,则ER∥PQ∥FS,∵P是EF的中点,∴Q为RS的中点,∴PQ为梯形EFSR的中位线,∴PQ=(ER+FS),∵AE=AC(正方形的边长相等),∠AER=∠CA T(同角的余角相等),∠R=∠A TC=90°,∴Rt△AER≌Rt△CAT(AAS),同理Rt△BFS≌Rt△CBT,∴ER=AT,FS=BT,∴ER+FS=AT+BT=AB,∴PQ=AB.点评:此题综合考查了梯形中位线定理、全等三角形的判定以及正方形的性质等知识点,辅助线的作法很关键.9.如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.求证:CE=CF.考点:正方形的性质;全等三角形的判定与性质;等腰三角形的判定;等边三角形的判定与性质.专题:证明题.分析:把△ADE顺时针旋转90°得到△ABG,从而可得B、G、D三点在同一条直线上,然后可以证明△AGB与△CGB全等,根据全等三角形对应边相等可得AG=CG,所以△AGC为等边三角形,根据等边三角形的性质可以推出∠CEF=∠CFE=75°,从而得解.解答:证明:如图所示,顺时针旋转△ADE90°得到△ABG,连接CG.∵∠ABG=∠ADE=90°+45°=135°,∴B,G,D在一条直线上,∴∠ABG=∠CBG=180°﹣45°=135°,在△AGB与△CGB中,,∴△AGB≌△CGB(SAS),∴AG=AC=GC=AE,∴△AGC为等边三角形,∵AC⊥BD(正方形的对角线互相垂直),∴∠AGB=30°,∴∠EAC=30°,∵AE=AC,∴∠AEC=∠ACE==75°,又∵∠EFC=∠DFA=45°+30°=75°,∴CE=CF.点评:本题综合考查了正方形的性质,全等三角形的判定,以及旋转变换的性质,根据旋转变换构造出图形是解题的关键.10.如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC交DA延长线于F.求证:AE=AF.(初二)考点:正方形的性质;三角形内角和定理;三角形的外角性质;等腰三角形的判定与性质;正方形的判定.专题:计算题.分析:连接BD,作CH⊥DE于H,根据正方形的性质求出正方形DGCH,求出2CH=CE,求出∠CEH=30°,根据等腰三角形性质和三角形的外角性质求出∠AEC=∠CAE=15°,求出∠F的度数即可.解答:证明:连接BD,作CH⊥DE于H,∵正方形ABCD,∴∠DGC=90°,GC=DG,∵AC∥DE,CH⊥DE,∴∠DHC=∠GCH=∠DGC=90°,∴四边形CGDH是正方形.由AC=CE=2GC=2CH,∴∠CEH=30°,∴∠CAE=∠CEA=∠AED=15°,又∵∠FAE=90°+45°+15°=150°,∴∠F=180°﹣150°﹣15°=15°,∴∠F=∠AEF,∴AE=AF.点评:本题综合考查了等腰三角形的性质,含30度角的直角三角形,三角形的外角性质,正方形的性质和判定等知识点,此题综合性较强,但难度适中.11.设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.求证:PA=PF.(初二)考点:正方形的性质;全等三角形的判定与性质.专题:证明题.分析:根据已知作FG⊥CD,FE⊥BE,可以得出GFEC为正方形.再利用全等三角形的判定得出△ABP≌△PEF,进而求出PA=PF即可.解答:证明方法一:作FG⊥CD,FE⊥BE,可以得出GFEC为正方形.令AB=Y,BP=X,CE=Z,可得PC=Y﹣X.tan∠BAP=tan∠EPF==,可得YZ=XY﹣X2+XZ,即Z(Y﹣X)=X(Y﹣X),即得X=Z,得出△ABP≌△PEF,∴PA=PF.方法二:在AB上截取AG=PC,连接PG∵ABCD是正方形∴AB=BC,∠B=∠DCB=∠APF=90°∵AG=CP∴BG=BP,∴∠BGP=∠BPG=45°∴∠AGP=180°﹣∠BGP=135°∵CF平分∠DCE∴∠FCE=45°∴∠PCF=180°﹣∠FCE=135°∴∠AGP=∠PCF∵∠BAP+∠APB=90°∠FPC+∠APB=90°∴∠BAP=∠FPC,在△AGP和△PCF中,∴△AGP≌△PCF(ASA)∴PA=PF.点评:此题主要考查了正方形的性质以及全等三角形的判定与性质,根据已知得出△ABP≌△PEF是解题关键.12.如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D.求证:AB=DC,BC=AD.考点:切线的性质;全等三角形的判定与性质.分析:作出辅助线,利用射影定理以及四点共圆的性质得出EFOQ四点共圆,BECQ四点共圆,进而得出四边形ABCD是平行四边形,从而得出答案即可.解答:证明:作CQ⊥PD于Q,连接EO,EQ,EC,OF,QF,CF,所以PC2=PQ•PO(射影定理),又PC2=PE•PF,所以EFOQ四点共圆,∠EQF=∠EOF=2∠BAD,又∠PQE=∠OFE=∠OEF=∠OQF,而CQ⊥PD,所以∠EQC=∠FQC,因为∠AEC=∠PQC=90°,故B、E、C、Q四点共圆,所以∠EBC=∠EQC=∠EQF=∠EOF=∠BAD,∴CB∥AD,易证△AOD≌△COB,所以BO=DO,即四边形ABCD是平行四边形,∴AB=DC,BC=AD.点评:此题主要考查了四点共圆的性质以及射影定理,根据已知得出EFOQ四点共圆,BECQ四点共圆是解题关键.13.已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5.求:∠APB的度数.(初二)考点:等边三角形的性质;直角三角形的性质;勾股定理的逆定理;旋转的性质.专题:计算题.分析:先把△ABP旋转60°得到△BCQ,连接PQ,根据旋转性质可知△BCQ≌△BAP,由于∠PBQ=60°,BP=BQ,易知△BPQ是等边三角形,从而有PQ=PB=4,而PC=5,CQ=3,根据勾股定理逆定理易证△PQC是直角三角形,即∠PQC=90°,进而可求∠APB.解答:解:把△ABP绕点B顺时针旋转60°得到△BCQ,连接PQ,∵∠PBQ=60°,BP=BQ,∴△BPQ是等边三角形,∴PQ=PB=4,而PC=5,CQ=4,在△PQC中,PQ2+QC2=PC2,∴△PQC是直角三角形,∴∠BQC=60°+90°=150°,∴∠APB=150°.点评:本题考查了等边三角形的性质、直角三角形的性质、勾股定理的逆定理、旋转的性质,解题的关键是考虑把PA、PB、PC放在一个三角形中,而旋转恰好能实现这一目标.14.设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.考点:四点共圆;平行四边形的性质.专题:证明题.分析:根据已知作过P点平行于AD的直线,并选一点E,使PE=AD=BC,利用AD∥EP,AD∥BC,进而得出∠ABP=∠ADP=∠AEP,得出AEBP共圆,即可得出答案.解答:证明:作过P点平行于AD的直线,并选一点E,使PE=AD=BC,∵AD∥EP,AD∥BC.∴四边形AEPD是平行四边形,四边形PEBC是平行四边形,∴AE∥DP,BE∥PC,∴∠ABP=∠ADP=∠AEP,∴AEBP共圆(一边所对两角相等).∴∠BAP=∠BEP=∠BCP,∴∠PAB=∠PCB.点评:此题主要考查了四点共圆的性质以及平行四边形的性质,熟练利用四点共圆的性质得出是解题关键.15.设ABCD为圆内接凸四边形,求证:AB•CD+AD•BC=AC•BD.(初三)考点:相似三角形的判定与性质;圆周角定理.分析:在BD取一点E,使∠BCE=∠ACD,即得△BEC∽△ADC,于是可得AD•BC=BE•AC,又∵∠ACB=∠DCE,可得△ABC∽△DEC,既得=,即AB•CD=DE•AC,两式结合即可得到AB•CD+AD•BC=AC•BD.解答:证明:在BD取一点E,使∠BCE=∠ACD,即得△BEC∽△ADC,可得:=,即AD•BC=BE•AC,①又∵∠ACB=∠DCE,可得△ABC∽△DEC,即得=,即AB•CD=DE•AC,②由①+②可得:AB•CD+AD•BC=AC(BE+DE)=AC•BD,得证.点评:本题主要考查相似三角形的判定与性质和圆周角的知识点,解答本题的关键是在BD上取一点E,使∠BCE=∠ACD,此题难度一般.16.平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且AE=CF.求证:∠DPA=∠DPC.(初二)考点:平行四边形的性质;角平分线的性质.专题:证明题.分析:过D作DQ⊥AE,DG⊥CF,由S△ADE==S△DFC,可得:=,又∵AE=FC,可得DQ=DG,可得∠DPA=∠DPC(角平分线逆定理).解答:证明:过D作DQ⊥AE,DG⊥CF,并连接DF和DE,如右图所示:则S△ADE==S△DFC,∴=,又∵AE=FC,∴DQ=DG,∴PD为∠APC的角平分线,∴∠DPA=∠DPC(角平分线逆定理).点评:本题考查平行四边形和角平分线的性质,有一定难度,解题关键是准确作出辅助线,利用角平分线的性质进行证明.17.设P是边长为1的正△ABC内任一点,L=PA+PB+PC,求证:≤L<2.考点:等边三角形的性质;三角形三边关系;旋转的性质.专题:证明题.分析:只要AP,PE,EF′在一条直线上,可得最小L=;过P点作BC的平行线交AB,AC于点D,F,可得AD>AP①,BD+DP>BP②,PF+FC>PC③,DF=AF④,从而得出结论.解答:证明:(1)顺时针旋转△BPC60°,可得△PBE为等边三角形.即得要使PA+PB+PC=AP+PE+EF′最小,只要AP,PE,EF′在一条直线上,即如下图:可得最小L=;(2)过P点作BC的平行线交AB,AC于点D,F.由于∠APD>∠AFP=∠ADP,推出AD>AP ①又∵BD+DP>BP ②和PF+FC>PC ③又∵DF=AF ④由①②③④可得:最大L<2;由(1)和(2)即得:≤L<2.点评:综合考查了旋转的性质,等边三角形的性质和三角形三边关系,分别找到最小和最大L的求法是解题的关键.18.已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值.考点:轴对称-最短路线问题;正方形的性质.分析:顺时针旋转△BPC60度,可得△PBE为等边三角形,若PA+PB+PC=AP+PE+EF要使最小只要AP,PE,EF 在一条直线上,求出AF的值即可.解答:解:顺时针旋转△BPC60度,可得△PBE为等边三角形.即得PA+PB+PC=AP+PE+EF要使最小只要AP,PE,EF在一条直线上,即如下图:可得最小PA+PB+PC=AF.BM=BF•cos30°=BC•cos30°=,则AM=1+=,∵AB=BF,∠ABF=150°∴∠BAF=15°既得AF==.点评:本题主要考查轴对称﹣路线最短问题的知识点,解答本题的关键是熟练掌握旋转的知识,此题难度一般.19.P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.考点:正方形的性质;勾股定理;等腰直角三角形;旋转的性质.专题:综合题.分析:把△ABP顺时针旋转90°得到△BEC,根据勾股定理得到PE=2a,再根据勾股定理逆定理证明△PEC是直角三角形,从而得到∠BEC=135°,过点C作CF⊥BE于点F,△CEF是等腰直角三角形,然后再根据勾股定理求出BC的长度,即可得到正方形的边长.解答:解:如图所示,把△ABP顺时针旋转90°得到△BEC,∴△APB≌△CEB,∴BE=PB=2a,∴PE==2a,在△PEC中,PC2=PE2+CE2=9a2,∴△PEC是直角三角形,∴∠PEC=90°,∴∠BEC=45°+90°=135°,过点C作CF⊥BE于点F,则△CEF是等腰直角三角形,∴CF=EF=CE=a,在Rt△BFC中,BC===a,即正方形的边长为a.点评:本题考查了正方形的性质,旋转变化的性质,等腰直角三角形的性质,勾股定理以及逆定理的应用,作出辅助线构造出直角三角形是解题的关键.20.如图,△ABC中,∠ABC=∠ACB=80°,D、E分别是AB、AC上的点,∠DCA=30°,∠EBA=20°,求∠BED 的度数.考点:全等三角形的判定与性质;等边三角形的判定与性质.专题:几何综合题;压轴题.分析:作∠BCF=60°,分别交AB、BE于点F、G,构造出等边三角形△BCG,可以求出∠DCF与∠FCE的度数,并利用角边角证明△ABE与△ACF全等,根据全等三角形对应边相等得到BE=CF,然后求出△FGE也是等边三角形,再根据等边三角形的角的度数证明EF∥BC,推出∠AFE=80°,根据平角等于180°推出∠DFG=40°,再根据角的度数可以得到BD=BC=BG,然后推出∠DGF=40°,根据等角对等边的性质可得DG=DF,从而利用边边边证明△DFE与△DGE全等,根据全等三角形对应角相等可得∠DEF=∠BED,即可得解.解答:解:作∠BCF=60°,分别交AB、BE于点F、G,连接EF,DG,∵∠ABC=80°,∠EBA=20°,∴∠GBC=80°﹣20°=60°,∴△BGC为等边三角形,∵∠DCA=30°,∠ACB=80°,∴∠DCF=∠BCF﹣(∠ACB﹣∠DCA)=60°﹣(80°﹣30°)=10°,∠FCE=∠DCA﹣∠DCF=30°﹣10°=20°,∴∠EBA=∠FCE,又∵∠ABC=∠ACB=80°,∴AB=AC,在△ABE与△ACF中,,∴△ABE≌△ACF(ASA),∴BE=CF,∵BG=CG=BC(等边三角形的三边相等)∴FG=GE,∴△FGE为等边三角形,∴∠EFG=∠CBG=60°,∴EF∥BC,∴∠AFE=∠ABC=80°,∴∠DFG=180°﹣80°﹣60°=40°①,在△BCD中,∠BDC=180°﹣∠ABC﹣∠BCD=180°﹣80°﹣(80°﹣30°)=50°,∴∠BCD=180°﹣50°﹣80°=50°,∴∠BDC=∠BCD,∴BC=BD,∴BD=BC=BG,在△BGD中,∠BGD=(180°﹣20°)=80°,∴∠DGF=180°﹣∠BGD﹣∠EGF=180°﹣80°﹣60°=40°②,∴∠DFG=∠DGF,∴DF=DG,在△DFE与△DGE中,,∴△DFE≌△DGE(SSS),∴∠FED=∠BED,∵∠GEF=60°(等边三角形的每一个角都等于60°),∴∠BED=∠GEF=30°.故答案为:30°.点评:本题考查了全等三角形的判定与性质,等边三角形的判定与性质,巧妙运用题中的角的度数的关系并作出辅助线是解题的关键,难度较大,对同学们的能力要求较高.。
初中数学经典几何难题及答案
中考几何复习题型题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD =GF .2、已知:如图,P 是正方形ABCD 内点,∠PAD=∠PDA=150.求证:△PBC 是正三角形.APDAFGCEB3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.D 2C 2 B 2A 2D 1C 1B 1CBDAA 14、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 长线交MN 于E 、F . 求证:∠DEN=∠F.题(二)1、已知:△ABC 中,H 为各边高线的交点,O 为外心,且OM⊥BC 于M . (1)求证:AH =2OM ;(2)若∠BAC=600,求证:AH =AO .B2、设MN 是圆O 外一直线,过O 作OA⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .3、如果上题把直线MN 由圆外平移至圆内,则由此NF可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.题(三)1、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.求证:CE=CF.2、如图,四边形ABCD 为正方形,DE∥AC,且CE =CA ,直线EC 交DA 延长线于F . 求证:AE =AF .3、设P 是正方形ABCD 一边BC 上的任一点,PF⊥AP,CF 平分∠DCE. 求证:PA =PF .E4、如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D.求证:AB=DC,BC=AD.题(四)1、已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5.求:∠APB的度数.Array2、设P是平行四边形ABCD内部的一点,且∠PBA =∠PDA.求证:∠PAB=∠PCB.3、设ABCD为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD.4、平行四边形ABCD中,设E、F分别是BC、AB 上的一点,AE与CF相交于P,且AE =CF .求证:∠DPA=∠DPC.题(五)1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L<2.FPDE CBA A PCB2、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值.3、P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.经典难题(一)1.如下图做GH⊥AB,连接EO。
初中数学经典几何题及答案
经典难题〔一〕1、:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD=GF.〔初二〕求证:△PBC是正三角形.3、如图,四边形ABCD、A1B1CC1、DD1的中点.求证:四边形A2B2C2D24、:如图,在四边形ABCD延长线交MN于E、F求证:∠DEN=∠F.1、:△ABC中,H〔1〕求证:AH=2OM;〔2〕假设∠BAC=6002、设MN是圆O外一直线,过及D、E,直线EB及CD求证:AP=AQ.〔初二〕3、如果上题把直线MN设MN是圆O的弦,过于P、Q.求证:AP=AQ.4、如图,分别以△ABC的ACCBFG,点P是EF求证:点P到边AB1、如图,四边形ABCD求证:CE=CF.〔初二〕2、如图,四边形ABCD求证:AE=AF.〔初二〕3、设P是正方形ABCD一边求证:PA=PF.〔初二〕4、如图,PC切圆O于C,AC于B、D.求证:AB=DC,1、:△ABC是正三角形,P求:∠APB的度数.〔初二〕2、设P是平行四边形ABCD求证:∠PAB =∠PCB .〔初二〕3、设ABCD 为圆接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .〔初三〕4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .〔初二〕 经典难题〔五〕1、设P 是边长为1的正△ABC 任一点,L =PA +PB +PC2、:P 是边长为1的正方形ABCD 的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA =200,求∠BED 的度数. 经典难题〔一〕答案1.如以下图做GH ⊥AB,连接EO 。
初中几何经典难题
经典难题(一)1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD=GF.(初二)2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15度求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、CC1、DD1的中点.求证:四边形A2B2C2D2是正方形.(初二)4、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.求证:∠DEN=∠F.经典难题(二)1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.(1)求证:AH=2OM;(2)若∠BAC=600,求证:AH=AO.(初二)2、设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、C及D、E,直线EB及CD分别交MN于P、Q.求证:AP=AQ.(初二)3、如果上题把直线MN由圆外平移至圆内,则由此可得以下命题:设MN是圆O的弦,过MN的中点A任作两弦BC、DE,设CD、EB分别交MN于P、Q.求证:AP=AQ.(初二)4、如图,分别以△ABC的AC和BC为一边,在△ABC的外侧作正方形ACDE 和正方形CBFG,点P是EF的中点.求证:点P到边AB的距离等于AB的一半.(初二)经典难题(三)1、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.求证:CE=CF.(初二)2、如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC交DA延长线于F.求证:AE=AF.(初二)3、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.求证:PA=PF.(初二)4、如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D.求证:AB=DC,BC=AD.(初三)经典难题(四)1、已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5.求:∠APB的度数.(初二)2、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.(初二)3、设ABCD为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD.4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且AE=CF.求证:∠DPA=∠DPC.(初二)经典难题(五)1、设P是边长为1的正△ABC内任一点,L=PA+PB+PC,求证:2、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值.3、P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.4、如图,△ABC中,∠ABC=∠ACB=80度,D、E分别是AB、AC上的点,∠DCA=30度,∠EBA=20度,求∠BED的度数.答案经典难题(一)4.如下图连接AC并取其中点Q,连接QN和QM,所以可得∠QMF=∠F,∠QNM=∠DEN和∠QMN=∠QNM,从而得出∠DEN=∠F。
初中数学:经典几何难题20例(附答案),难倒80%的大学生!
初中数学:经典几何难题20例(附答案),难倒80%的大学
生!
从初中开始,数学就开始登堂入室。
尤其是几何问题,不再像小学几何那样,只是单纯地求几何图形的边长、面积,而是开始转变为求角度求证明,偏向理论化。
因此,对于很多中学生而言,几何是一个大难点,也是他们学习数学的一大痛点。
很多同学学起几何来感觉非常枯燥,除了刷题还是刷题,而且一旦做题时卡住了,就卡半天,怎么想都想不出来。
今天我就给大家总结一下20例经典几何难题,这些也都是今后考试中会经常出现的经典题型,只要勤加练习,总结做题方法,触类旁通,举一反三,几何就再也不是事儿!家长可以替孩子打印出来,把答案剪掉,让孩子练练。
经典难题(一)
经典难题(二)
经典难题(三)
经典难题(四)
经典难题(五)
答案
经典难题(一)
经典难题(二)
经典难题(三)
经典难题(五)
限于篇幅所限,今天的内容就跟大家分享到这里了,大家觉得不错的话可以点一下关注。
更多精彩内容将在后续一一奉上,大家有什么问题也可以在评论区留言,我会为大家耐心解答!。
(word完整版)初中数学经典几何题(难)及答案分析
经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .A P C DB A FG CE BO D D 2 C 2B 2 A 2D 1 C 1 B 1C B DA A 1 BF经典难题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O(1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE 于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.经典难题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC , AE 与CD 相交于F . 求证:CE =CF .(初二) 延长CD 至G ,使CD=DG ,连结AG 、EG 。
则AG=AC易证得△AED ≌△GED ,得AE=GE ,则AE=AG=GE ,得∠AEG=60°2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE .求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)GE B经典难题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5.求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA .求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、设P是边长为1的正△ABC内任一点,L=PA+PB+PC,求证:≤L<2.2、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值.3、P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC0,∠EBA =200,求∠BED 的度数.经典难题(一)1.如下图做GH ⊥AB,连接EO 。
初中几何证明的经典难题
初中几何证明的经典难题一.割补法:1.(全等)如图,点E 是BC 中点,CDE BAE ∠=∠,求证:CD AB =(相似)如图,点E 是BC 上一点,EC k BE ⋅=,CDE BAE ∠=∠,猜想AB 、CD 的数量关系.2. (全等)如图,在ABC ∆中,︒=∠90BAC ,AC AB =,BA CD //,点P 是BC 上一点,连结AP ,过点P 做AP PE ⊥交CD 于E .探究PE 与PA 的数量关系.(相似)如图,在ABC ∆中,︒=∠90BAC ,AC k AB ⋅=,BA CD //,点P 是BC 上一点,连结AP ,过点P 做AP PE ⊥交CD 于E .探究PE 与PA 的数量关系.3. (全等)如图,在ABC ∆中,AC AB =,点D 在AB 上,点E(相似)如图,在ABC ∆中,AC k AB ⋅=,点D 在AB 上,点E 在AC 的延长线上,且CE BD =,DE 交BC 于点P .探究PE 与PD 的数量关系.4. (全等)如图,在ABC ∆中,A ECB DBC ∠=∠=∠21,BD 、CE 交于点P . 探究BE 与CD 的数量关系.(相似)如图,在ABC ∆中,A ECB DBC ∠=∠+∠,BD 、CE 交于点P ,PC k PB ⋅=. 探究BE 与CD 的数量关系.5.(全等)如图,在EBC ∆中,BD 平分EBC ∠,延长DE 至点A ,使得ED EA =,且C ABE ∠=∠. 探究AB 与CD 的数量关系.(相似)如图,BD 平分EBC ∠,D '是BD 上一点,且D B k BD '⋅=,连结C D '、DE ,并延长DE 至点A ,使得ED EA =,且C ABE ∠=∠.探究AB 与D C '的数量关系.6.(全等)如图,在ABC ∆中,︒=∠90C ,BC AC =,P 为AB 的中点,PF PE ⊥分别交AC 、BC 于E 、F .探究PE 、PF 的数量关系.(相似)如图,在ABC ∆中,︒=∠90C ,BC AC =,P 为AB 上一点,且PB k AP ⋅=,PF PE ⊥分别交AC 、BC 于E 、F .探究PE 、PF 的数量关系.(相似)如图,在ABC ∆中,BC AC =,P 为AB 上一点,且PB k AP ⋅=,︒=∠+∠180C EPF ,EPF ∠的两边分别交AC 、BC 于E 、F .探究PE 、PF 的数量关系.7. (全等)如图,CD CB =,︒=∠+∠180CDE ABC ,DE AB =. 探究:AF 与EF 之间的数量关系9(相似)如图,CD CB =,︒=∠+∠180CDE ABC ,DE k AB ⋅=. 探究:AF 与EF 之间的数量关系10如图,直线1l 、2l 相交于点A ,点B 、点C 分别在直线1l 、2l 上,AC k AB ⋅=,连结BC ,点D 是线段AC 上任意一点(不与A 、C 重合),作α=∠=∠BAC BDE ,与ECF ∠的一边交于点E ,且ABC ECF ∠=∠.⑴如图1,若1=k ,且︒=∠90α时,猜想线段BD 与DE 的数量关系,并加以证明; ⑵如图2,若1≠k ,时,猜想线段BD 与DE 的数量关系,并加以证明.二.倍长中线法:11. (全等)如图,点E 是BC 中点,CDE BAE ∠=∠,求证:CD AB =12(相似)如图,AD 是ABC ∆的中线,AC k AB ⋅=,点E 是AC 延长线上一点,且BAD AEF ∠=∠,EF 交BA 延长线于点F .探究AE 、AF 的数量关系.13 (全等)如图,在ABC ∆中,AB CD =,BDA BAD ∠=∠,AE 是BD 边的中线.求证:AE AC 2=14(相似)如图,在ABC ∆中,AD k AB ⋅=,BDA BAD ∠=∠,AE 是BD 边的中线,且C EAD ∠=∠. 探究AE 、AC 的数量关系.15. (全等)如图,在ABC ∆中,AD 平分BAC ∠,G 为BC 的中点,AD EG //交CA 延长线于E . 求证:EC BF =17(全等)如图,等腰直角ABC ∆与等腰直角BDE ∆,P 为CE 中点,连接PA 、PD . 探究PA 、PD 的关系.18(相似)如图,ABC ∆与BDE ∆中,︒=∠=∠90BDE CAB ,AB k AC ⋅=,DB k DE ⋅=,P 为CE 中点,连接PA 、PD .探究PA 、PD 的数量关系.19(全等)如图,两个正方形ABDE 和ACGF ,点P 为BC 的中点,连接PA 交EF 于点Q . 探究AP 与EF 的关系.20(相似)⑴如图1,两个矩形ABDE 和ACGF 相似,AB k AE ⋅=,点P 为BC 的中点,连接PA 交EF 于点Q .探究AP 与EF 的关系.⑵如图2,若将“两个矩形ABDE和ACGF相似”改为“两个平行四边形ABDE和ACGF相似”,且α∠EAB.探究AP与EF的关系.=21.已知:如图,正方形ABCD和正方形EBGF,点M是线段DF的中点.⑴试说明线段ME与MC的关系.α),其他条件不变,上述结论还⑵如图,若将上题中正方形EBGF绕点B顺时针旋转α度数(︒<90正确吗?若正确,请你证明;若不正确,请说明理由.22.如图1,正方形ABCD中,对角线AC、BD交于点O.⑴操作:将三角板中的︒90角的顶点与点O重合,使这个角落在ABC∆的内部,两边分别与正方形ABCD的边AB、BC交于F、E.当F、E的位置发生变化时,请你通过测量并回答,每组AF、FE、EC三条线段中,哪一条线段是中始终最长.⑵以AF、FE、EC这三条线段能否组成以FE为斜边的直角三角形?若能,请你证明;若不能,请你说明理由.结论是否仍然成立?请你证明.23⑴如图1,操作:把正方形CGEF的对角线CE放在正方形ABCD的边BC的延长线上(BCCG )取线段AE的中点P.探究:线段PD、PF的关系,并加以证明.⑵如图2,将正方形CGEF绕点C旋转任意角度后,其他条件不变. 探究:线段PD、PF的关系,并加以证明.。
初中几何经典难题
经典难题(一)1.已知:如图,O是半圆的圆心,C.E是圆上的两点,CD⊥AB,EF⊥AB,EG ⊥CO.求证:CD=GF.(初二)2.已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15度求证:△PBC是正三角形.(初二)3.如图,已知四边形ABCD.A1B1C1D1都是正方形,A2.B2.C2.D2分离是1.DD1的中点.求证:四边形A2B2C2D2是正方形.(初二)4.已知:如图,在四边形ABCD中,AD=BC,M.N分离是AB.CD的中点,AD.BC的延伸线交MN于E.F.求证:∠DEN=∠F.经典难题(二)1.已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.(1)求证:AH=2OM;(2)若∠BAC=600,求证:AH=AO.(初二)2.设MN是圆O外一向线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B.C及D.E,直线EB及CD分离交MN于P.Q.求证:AP =AQ.(初二)3.假如上题把直线MN由圆外平移至圆内,则由此可得以下命题:设MN是圆O的弦,过MN的中点A任作两弦BC.DE,设CD.EB分离交MN于P.Q.求证:AP=AQ.(初二)4.如图,分离以△ABC的AC和BC为一边,在△ABC的外侧作正方形ACDE和正方形CBFG,点P是EF的中点.求证:点P到边AB的距离等于AB的一半.(初二)经典难题(三)1.如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE 与CD订交于F.求证:CE=CF.(初二)2.如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC交DA 延伸线于F.求证:AE=AF.(初二)3.设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF等分∠DCE.求证:PA=PF.(初二)4.如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE.AF与直线PO订交于B.D.求证:AB=DC,BC=AD.(初三)经典难题(四)1.已知:△ABC是正三角形,P是三角形内一点,PA =3,PB=4,PC=5.求:∠APB的度数.(初二)2.设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.(初二)3.设ABCD为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD.4.平行四边形ABCD中,设E.F分离是BC.AB上的一点,AE与CF订交于P,且AE=CF.求证:∠DPA=∠DPC.(初二)经典难题(五)1.设P是边长为1的正△ABC内任一点,L=PA+PB+PC,求证:2.已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值.3.P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.4.如图,△ABC中,∠ABC=∠ACB=80度,D.E分离是AB.AC上的点,∠DCA=30度,∠EBA=20度,求∠BED的度数.答案经典难题(一)4.如下图衔接AC并取个中点Q,衔接QN和QM,所以可得∠QMF=∠F,∠QNM=∠DEN和∠QMN=∠QNM,从而得出∠DEN=∠F.经典难题(二)1.(1)延伸AD到F连BF,做OG⊥AF,又∠F=∠ACB=∠BHD,可得BH=BF,从而可得HD=DF,又AH=GF+HG=GH+HD+DF+HG=2(GH+HD)=2OM(2)衔接OB,OC,既得∠BOC=1200,从而可得∠BOM=600,所以可得OB=2OM=AH=AO,得证.经典难题(三)经典难题(四)2.作过P点平行于AD的直线,并选一点E,使AE∥DC,BE∥∠ABP=∠ADP=∠AEP,可得:AEBP共圆(一边所对两角相等).可得∠BAP=∠BEP=∠BCP,得证.经典难题(五)△BPC 60度,可得△PBE为等边三角形.既得PA+PB+PC=AP+PE+EF 要使最小只要AP,PE,EF在一条直线上,即如下图:可得最小PA+PB+PC=AF.△ABP 90度,可得如下图:更多内容存眷初中数学微信大众号!。